
January 2018 | Volume 11 | Article 711

Original research
published: 10 January 2018

doi: 10.3389/fnbot.2017.00071

Frontiers in Neurorobotics | www.frontiersin.org

Edited by: 
Keum-Shik Hong,  

Pusan National University,  
South Korea

Reviewed by: 
Kyujin Cho,  

Seoul National University,  
South Korea  

Lorenzo Masia,  
Nanyang Technological  

University, Singapore

*Correspondence:
Qiushi Fu  

qiushi.fu@ucf.edu

Received: 31 October 2017
Accepted: 18 December 2017

Published: 10 January 2018

Citation: 
Fu Q and Santello M (2018) 

Improving Fine Control of Grasping 
Force during Hand–Object 

Interactions for a Soft Synergy-
Inspired Myoelectric Prosthetic Hand.  

Front. Neurorobot. 11:71.  
doi: 10.3389/fnbot.2017.00071

improving Fine control of grasping 
Force during hand–Object 
interactions for a soft synergy-
inspired Myoelectric Prosthetic hand
Qiushi Fu1,2* and Marco Santello1

1 Neural Control of Movement Laboratory, School of Biological and Health Systems Engineering, Arizona State University, 
Tempe, AZ, United States, 2 Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, United States

The concept of postural synergies of the human hand has been shown to potentially 
reduce complexity in the neuromuscular control of grasping. By merging this concept 
with soft robotics approaches, a multi degrees of freedom soft-synergy prosthetic hand 
[SoftHand-Pro (SHP)] was created. The mechanical innovation of the SHP enables 
adaptive and robust functional grasps with simple and intuitive myoelectric control from 
only two surface electromyogram (sEMG) channels. However, the current myoelectric 
controller has very limited capability for fine control of grasp forces. We addressed this 
challenge by designing a hybrid-gain myoelectric controller that switches control gains 
based on the sensorimotor state of the SHP. This controller was tested against a conven-
tional single-gain (SG) controller, as well as against native hand in able-bodied subjects. 
We used the following tasks to evaluate the performance of grasp force control: (1) pick 
and place objects with different size, weight, and fragility levels using power or precision 
grasp and (2) squeezing objects with different stiffness. Sensory feedback of the grasp 
forces was provided to the user through a non-invasive, mechanotactile haptic feedback 
device mounted on the upper arm. We demonstrated that the novel hybrid controller 
enabled superior task completion speed and fine force control over SG controller in 
object pick-and-place tasks. We also found that the performance of the hybrid controller 
qualitatively agrees with the performance of native human hands.

Keywords: neuroprosthetics, hand function assessment, object manipulation, grasping, haptic feedback, force 
control

inTrODUcTiOn

Restoring hand function through prostheses in individuals with upper limb loss is critically impor-
tant to help them regain independence and improve quality of life. Unfortunately, the current state 
of commercially available prosthetic hands is still far from achieving human level dexterity, even 
in relatively simple object grasping tasks. Limitations in the reliability, function, and robustness 
of hand prosthesis has led to little use or abandonment of advanced terminal devices, as these 
factors are considered to be most important to the amputees (Atkins, 1989; Atkins et  al., 1996; 
Biddiss and Chau, 2007a,b). Human-inspired approaches have been recently proposed to tackle this 
challenge through novel mechanical design (Godfrey et al., 2013), intuitive control (Ajoudani et al., 
2014; Jiang et al., 2014), and sensory feedback (Clemente et al., 2015). Specifically, by observing 
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how the human neuromuscular system solves the sensorimotor 
complexity of controlling hand movements during grasping 
tasks, it was found that hand postures used to grasp a large set 
of common objects can be approximated by a few finger joint 
coordination patterns, i.e., synergies (Santello et al., 1998, 2002). 
This implies a synergy control scheme in which controlling a 
large number of degrees of freedom could be simplified by 
using a reduced set of neural signals [for review, see Santello 
et al. (2013, 2016)]. By combining the concept of synergy with 
soft robotics technologies, a prosthetic hand, the SoftHand-Pro 
(SHP), was developed to simultaneously maximize simplicity 
and functionality (Godfrey et al., 2013). Specifically, this hand 
employs an under-actuated design where the number of syner-
gies, and thus, the number of actuators, was reduced to one,  
i.e., the first principal component observed in human grasping 
data that accounts for more than 50% of the variance in grasp 
posture data (Santello et al., 1998). Movement from the motor 
was transmitted to all 19 finger joints of the SHP by means of a 
single tendon, hence the SHP follows the movement described 
by the first synergy for human grasping: flexion and adduction 
of the metacarpal-phalangeal and inter-phalangeal joints of 
the fingers, accompanied by flexion and palmar abduction of 
the thumb. This design is combined with an elastic recoil force 
implemented as elastic ligaments in all joints to help the fingers 
conform to arbitrary object shapes, and bring the fingers back 
to their starting position. These ligaments also accommodated 
temporary joint displacements during unexpected perturbations 
through hyperextension and/or torsion. Such flexibility avoids 
stress that could damage the hand and the environment, while 
enabling versatility to grasp a wide variety of objects. The embed-
ded flexibility in the mechanical design also simplifies myoelectric 
control with surface electromyography (sEMG), as the user does 
not need to generate a sequence of muscle activation to produce 
hand postures that match different object shapes. Indeed, only 
two sEMG channels from a pair of antagonistic muscles are 
needed to operate the hand efficiently in individuals with upper 
limb loss (Godfrey et al., 2017). Although the SHP demonstrated 
human-like motion during reach-to-grasp (Fani et al., 2016), its 
capability to interact with objects with human-like force remains 
to be systematically validated. Such human-like force control is 
important in activities of daily living (ADL), which includes but 
are not limited to moving delicate objects, modulating grasp 
force to object weight, and manipulate compliant objects.

The main objective of the current study was to improve force 
control of the SHP. The default control gain of the SHP is tuned 
to enable fast free motion response, but the motor current (and, 
therefore, grasp force) ramps up quickly after the SHP contacts 
the object. This makes it difficult for the user to modulate the 
grasp force to the desired level (Gailey et  al., 2017). In fact, a 
recent study, individuals with upper limb loss using SHP did not 
exhibit proper modulation of grasp force when lifting objects 
with different weights, even with the help of a mechanotactile 
haptic feedback device (Godfrey et al., 2016). One way to solve 
this limitation is to let the user modulate the control gain through 
co-contraction of the muscles (Ajoudani et al., 2014), such that 
a high co-contraction level can be mapped to high stiffness of 
the SHP. However, this approach could increase the complexity 

of myoelectric control, as the user would have to adjust co-
contraction level while exerting differential activity between the 
flexor and extensor. Another approach is to use a force-position 
hybrid control scheme to handle motion and force automatically 
within the hand based on feedback from force/position sensing 
(Engeberg et  al., 2008; Engeberg and Meek, 2013). However, 
such controller relies on accurate measurement of finger force 
and position in a prosthetic hand with rigid structure, and 
therefore, it is not fully compatible with SHP, a device designed 
to be mechanically compliant with only synergistic sensing of 
force and position across all fingers. Therefore, we propose a 
novel approach that automatically switches control gain based 
on grasping context detected from combined information from 
force, position, and EMG channels. This approach will be tested 
against the conventional SHP controller, as well as human hands, 
in functional tasks that require fine control of grasp forces.

MaTerials anD MeThODs

subjects
Sixteen subjects enrolled in the study (nine females and seven 
males, ages 19–34  years). They had normal or corrected-to-
normal vision, and no history of musculoskeletal or neurological 
disorders. All subjects were naive to the experimental purpose 
of the study and gave informed consent to participate in the 
experiment. The experimental protocols were approved by the 
Institutional Review Board at Arizona State University in accord-
ance with the Declaration of Helsinki. Before data collection, sub-
jects signed an informed consent and completed the Edinburgh 
Handedness Questionnaire. Fifteen subjects were right-handed, 
and one subject was ambidextrous. They were randomly assigned 
to two “controller” groups [i.e., single-gain (SG) and hybrid-gain 
(HG) controllers, see below].

experimental apparatus
For the present investigation of myoelectric controllers for hand 
prostheses, we used the SHP which is a soft robotic hand inspired 
from human hand synergies (Godfrey et al., 2013). Although we 
tested only able-bodied subjects, it has been shown that transra-
dial amputees are able to use SHP effectively in ADL (Godfrey 
et al., 2017). In addition to the SHP, each subject wore a Clenching 
Upper-limb Force Feedback device (CUFF) for haptic feedback of 
the grasping force (Casini et al., 2015). Finally, we built a gravity 
compensation system to off-load the weight of harness worn by 
subjects on their forearm and the SHP, thus minimizing fatigue 
(Figure 1A). We describe these systems below.

SoftHand-Pro
The SHP is the prosthetic version of the Pisa/IIT SoftHand 
(Catalano et  al., 2014). The size and weight of the SHP were 
designed to approximate a large male hand. The electronic 
control board was enclosed in the back of the hand. A glove is 
used to cover the joints and increase contract area and friction. 
The battery was placed on user’s body and connected to the 
hand through a cable. For testing with able-bodied subjects, a 
customized socket interface was used to mount the SHP on their 
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FigUre 1 | Prosthetic system implementation. (a) Complete setup with integration of SoftHand-Pro, Clenching Upper-limb Force Feedback device (CUFF), and 
gravity compensation. (B) Design of the Single-gain myoelectric controller. (c) Design of the hybrid-gain myoelectric controller.

3

Fu and Santello Force Control of Prosthetic Hand

Frontiers in Neurorobotics | www.frontiersin.org January 2018 | Volume 11 | Article 71

forearms (Figure 1A). Importantly, as part of the interface, we 
used a Quick Disconnect Wrist (Hosmer 61921, Fillauer LLC, 
TN, USA) to allow task-specific manual adjustment of supina-
tion/pronation angle. This ensures subjects to maintain a neutral 
supination/pronation angle with their own wrist throughout the 
experiment. The onboard microcontroller drives the motor with 
PID position/current control. It also communicates with EMG 
sensors and external programs. For myoelectric control, we 
used two sEMG electrodes that are commonly used for myoe-
lectric prostheses (13E200 Myobock electrodes, Otto Bock, 
Germany). These electrodes are equipped with a logarithmic 
sensitivity adjustment and high common-mode rejection in the 
low frequency range (>100 dB at 50 Hz). The output of the elec-
trodes was appropriately filtered and rectified. We placed the 
electrodes over m. flexor digitorum superficialis (FDS) and m.  
extensor digitorum communis (EDC) for flexion and exten-
sion, respectively. The difference between the sEMG magnitude 
measured from flexor and extensor muscles is used to drive the 
change of the reference motor position for the SHP (see below). 
This type of velocity-based proportional control allows users to 
scale the speed of the finger motion by modulating their EMG 
activities, as well as to minimize fatigue.

The SHP does not have force sensors, and it estimates the over-
all grasp force by current sensor. This approach takes advantage 
of the synergy design, since all fingers are connected by a single 
cable to one motor. Therefore, the grasp forces of all fingers can 
be transmitted to this cable, absorbing current from the motor. 
The motor total current (C) is the sum of grasp force-dependent 
and motor kinematics-dependent (CK) components. The latter 
component can be calibrated with a model that consists of 
position, velocity, and acceleration terms (Ajoudani et al., 2014; 

Casini et  al., 2015). After proper calibration, the grasp force-
dependent current (Residual Current, CR) can be estimated as 
the difference between C and CK. It has been demonstrated that 
relation between the overall grasp force and the residual current 
is approximately linear (Casini et al., 2015).

SG Controller
The SG controller is mostly identical to the best performing SHP 
motion controller demonstrated by Fani and colleagues (Fani 
et al., 2016). A small modification was made to dynamically limit 
the reference position. Specifically, this EMG-to-motion map-
ping uses the difference between the sEMG signals from wrist 
flexor and extensor muscles to drive the SHP. After a signal dead 
zone of 2% MVC was applied to each channel, the channel dif-
ferential Ed was used to drive the change of SHP motor reference 
position with a predetermined gain Km based on preliminary 
testing and previous studies (Figure  1B). Therefore, the sign 
and the magnitude of the differential Ed dictate the direction and 
velocity of the finger movement during free motion, respectively. 
Furthermore, we used an adaptive motor position limit which 
prevents the increase of reference position if the motor total 
current C is close to the max capacity. This prevents the refer-
ence position “closing into” the object too much, thus allowing 
consistent opening motion from objects with any size. Eight 
subjects were assigned to use the SG controller (SG group).

HG Controller
As mentioned earlier, the main drawback of the SG differential 
controller is that it cannot adapt to both free motion control 
and grasp force control equally well, if the reference position 
changes too quickly. To overcome this problem, we created a HG 
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TaBle 1 | Summary of sensorimotor states for the hybrid-gain controller.

softhand- 
Pro states

residual  
current Cr

eMg  
differential Ed

control  
gain

Free motion CR = 0 Any Km

Fine force CR > 0 Ed > 0 Kf

Quick release CR > 0 Ed < 0 Km
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controller. The overall design of the HG controller is similar to the 
SG controller. However, the EMG-to-motion gain changes adap-
tively depending on the state of the SHP (Figure 1C). We defined 
three sensorimotor states of the SHP using the residual current CR 
as well as the EMG differential Ed. Specifically, Free Motion state is 
when the grasp force is 0 or very low, i.e., CR = 0. Fine Force state 
is when grasp force is above minimum and the user is trying to 
control grasp force, i.e., CR > 0 and Ed > 0. The last state, Quick 
Release, is when grasp force is above minimum and subject is 
trying to quickly release the grasped object i.e., CR > 0 and Ed < 0. 
We used a large gain Km for both Free Motion and Quick Release 
states, and a small gain Kf for Fine Force state (see Table 1). Eight 
subjects were assigned to use the HG controller (HG group). We 
would like to emphasize that the adjustable gain is used to map 
EMG activity to the reference position of the motor. Unlike previ-
ous work (Ajoudani et al., 2014), the control gain for the internal 
motor control loop remain unchanged, therefore preserving the 
stability during the passage from one state to another.

Clenching Upper-Limb Force Feedback Device
The force feedback device CUFF used in this study has been 
demonstrated to enable intuitive modulations of grasp forces 
and correct softness discrimination (Ajoudani et  al., 2014; 
Casini et al., 2015). Briefly, the CUFF is comprised of two DC 
motors attached to an elastic belt worn around the upper arm 
(Figure  1A). When the motors spin in opposite directions to 
tighten or loosen the band on the arm, the pressure around the 
arm applied by the band would increase or decrease, respectively. 
This type of mechanotactile cues provides the same modality of 
somatosensation as the one involved in the hand–object interac-
tions (e.g., grasping), although at a different location. This may 
have advantages over other types of haptic feedback due to its 
ability to deliver natural feeling of force/pressure (Li et al., 2017). 
When the subjects use CUFF and SHP as an integrated system, 
the SHP estimates the grasp force using residual current CR which 
is then linearly mapped to CUFF motor positions. Therefore, the 
grasp force can be proportionally delivered as pressure through 
the CUFF. Specifically, due to differences in the biomechanical 
characteristics of arms, we calibrated CR to CUFF motor map-
ping for each subject. The automated calibration procedure finds 
the motor position range when the CUFF motor current reaches 
high and low threshold. Then the full range of CR is linearly 
mapped to CUFF motor position range.

Gravity Compensation System
In most studies of hand prosthetics with able-bodied subjects, 
the prosthesis is either mounted on subject’s arm or fixed on the 
table separately from the subject. Both approaches are suboptimal 
in the investigation of object manipulation. When the prosthetic 

hand is mounted on the arm, healthy subjects have to overcome 
significant added weight to move the system. This could lead to 
muscle fatigue in long period of testing, thus negatively impact 
subjects’ performance. Additionally, the weight from the hand 
prosthesis may influence subject’s perception of the object physi-
cal property, preventing modulation of grasping force in response 
to object weight. In contrast, if the prosthetic hand is detached 
from the subjects, the experiments could not assess the hand-
arm coordination (e.g., reach to grasp), which is an important 
component of natural hand-object interactions (Grafton, 2010; 
Davare et  al., 2011). To overcome these drawbacks, we built a 
gravity compensation system that offsets the gravitational force 
created by wearing the prosthetic hand (Figure 1A). This system 
is functionally similar to the one developed in Wilson et  al. 
(2017). Specifically, we use a light cable and a series of pulleys to 
connect the wrist part of the prosthesis to a counter-weight. The 
counter-weight has the same weight as the entire hand prosthetics 
(SHP and harness) worn by the subjects. This system helped to 
prevent fatigue in our study, which required intensive repetition 
of hand movement over more than 1 h of testing.

experimental Protocol
Our study consisted of three sessions: (1) baseline trials: experi-
mental tasks with normal right hand, (2) training trials: training 
tasks with SHP and CUFF, and (3) SHP trials: experimental tasks 
with SHP and CUFF. We use the data from normal hand as a 
benchmark to evaluate the performance of the prosthetic system. 
The tasks used in our study are described below.

Training Tasks
We developed a two-step simple training scheme that helps 
subjects to familiarize with myoelectric control of the SHP and 
haptic feedback from the CUFF.

Motion Control Training
The objective of this training was to help subjects learn the EMG-
to-motion mapping of the SHP. No CUFF feedback was given 
during this task. Subjects sat comfortably wearing the prosthetic 
system, with their forearm resting on the table. We adjusted the 
quick connector at the wrist to have the SHP 90° supinated, such 
that palm of the SHP facing upwards. A monitor was placed in 
front of the subjects, showing continuous visual feedback of the 
motor position of the SHP, as well as a target motor position. 
Subjects were required to control the open and close of the SHP 
to match the target motor positions as quickly as possible (0° and 
170° are fully open and close, respectively). We defined five levels 
of target motor position: 30°, 60°, 90°, 120°, and 150°. The target 
position automatically advanced to the next if the actual motor 
position stays within target with an error margin of ±5° for an 
accumulated 1 s. There were three trials for this task. Each trial 
consists of eight “close and open” actions that always start from 
30° and move to one of the other positions, then move back to 
30° (Figure 2A).

Force Control Training
The objective of this training is to help subjects learn the haptic 
feedback given by the CUFF. We directly measure grasp force 
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FigUre 2 | Training and experimental tasks. (a) Representative trial of motion control training. (B) Representative trial of force control training from hybrid-gain 
group. (c) Representative trial of force control training from single-gain group. (D) Design of the objects used for training and experimental tasks. From left to right: 
Compliant object, Large object, Small object. The compartments at the bottom of Large and Small objects allow additional mass to be inserted and changing the 
weight of the objects. Large object can be set to 820 or 420 g, whereas Small object can be set to 420 or 220 g. The force sensors in the middle of Large and 
Small objects measure grasp forces, which can be used to render the Fragility of the objects. (e) Top view of the setup for object pick-and-place task.
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with a cylindrical object fixed to the table. The object is split 
into two grasp surfaces with a Force/Torque sensor (Nano 25, 
ATI Industrial Automation, NC, USA) is installed in the center 
(Figure  2D). Each grasp surface is a curved surface (3.25  cm 
radius 150° arch) with a height of 12 cm. In this task, the quick 
connector at the wrist was adjusted to neutral position to allow 
natural power grasp around the cylindrical object, with thumb 
and fingers of the SHP placed on each grasp surface. Visual 
feedback of the actual grasp force and target force were shown on 
the monitor. To get ready for each trial, subjects were instructed 
to move the SHP to the close proximity of the cylindrical object. 
Upon hearing a “Go” cue, subjects control the SHP to grasp on 
the object and they were instructed to match the target force as 
quickly as they can. Three target levels of grasp force were defined 
and repeated three times in the same order within a trial: 6, 12, and 
0 N (Figures 2B,C). Similar to motion training, the target force 
automatically advanced to the next if the actual grasp force stays 
within target with an error margin of ±1 N for an accumulated 1 s. 
There was a total of five training trials. Most importantly, subjects 
were told that the pressure applied by the CUFF is proportional to 
the displayed grasp force, and they should familiarize themselves 
with the CUFF feedback.

Experimental Tasks
To assess the performance of two myoelectric controllers, we 
developed the following three Experimental Tasks. They were 
inspired by commonly used clinical hand function assessment 
tools (e.g., Southampton Hand Assessment Procedure, Block 
and Box Test, etc.), with the focus on the ability of fine control of 
grasp forces during functional use of the prosthetic hand. Note 
that these tasks were performed with native right hand and the 
SHP in baseline trials and SHP trials, respectively.

Large Object Pick and Place
Grasp and transport object is one the most common activities in 
daily life. Subjects were instructed to pick and place a cylindrical 
object (Figure 2D) with power grasp repetitively. The object was 
the same as the one used in the CUFF familiarization task, but it 
was free to move instead of being fixed to the table. Additionally, 
the weight of the object can be modified by inserting mass into 
the base of the object. There were two object weights: Medium 
(420 g) and Heavy (820 g). A soft mat was placed on the table in 
front of the subjects to prevent damage to the object if dropped. 
We marked two target regions separated by 30 cm, and a 5-cm 
high metal bar was placed on the mid-line between the two 
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target regions as an obstacle (Figure 2E). Subjects had to align 
their right shoulder with this obstacle. The proximal end of 
the obstacle was defined as the start region, which was 30 cm 
away from the right shoulder. For SHP trials, we set the wrist 
at neutral position to enable natural grasp posture (i.e., thumb 
and fingers of the SHP placed on each grasp surface). Subjects 
were asked to start a trial with either their normal hands or 
the SHP in the start region, and the object started in the right 
target region.

On an auditory “GO” signal, subjects reached to grasp the 
object and transport it to the other target region and move their 
hand back to the start region, and repeat this process as many 
times as possible successfully within 45 s. A successful transport 
was recorded if the object was not dropped or “crushed.” The 
crushing of the object was rendered by giving “glass breaking” 
sound when the force normal to the grasp surface exceeded a 
pre-defined crushing threshold. There were two types of fragil-
ity. The Solid type had a crushing threshold of 80 N, therefore 
subjects did not need to be careful about crushing the object. 
The Fragile type had a crushing threshold defined based on the 
object weight, such that the threshold is ~3 N above the mini-
mum grip force required to prevent slipping. The coefficient of 
friction between the glove and the object was estimated to be 
0.5. Therefore, the fragile crushing threshold for the Medium 
and Heavy objects was 6 and 9  N, respectively. We instructed 
subjects to replace the object to the closest target region if the 
object is “crushed,” and they can retry without completely release 
the object. The kinematics of the object was tracked by motion 
capture system with a marker placed on the base of the object 
(Impulse, Phasespace, Inc.).

Small Object Pick and Place
This task was similar to the Large object pick-and-place task, 
the only difference being that the object is smaller (Figure 2D). 
Specifically, there were two small grasp surfaces (size: 3.5 cm × 4 cm,  
3  cm distance) and subjects were required to use a three-digit 
precision grasp (tips of thumb, index, and middle finger). For 
SHP trials, we set the wrist at 45° pronation to allow natural grasp 
posture. The small object used in this task required a higher preci-
sion in reach-to-grasp in order to place the thumb accurately on 
the grasp surface. Similar to the large object, the object weight 
can be adjusted by inserting weight into the base of the object. 
Two object weights were used: Light (220 g) and Medium (420 g). 
The solid crushing threshold was again 80 N. The fragile crush-
ing thresholds for the Light and Medium objects were 4 and 6 N, 
respectively. Subjects received same instruction as the large object 
pick and place regarding task objective. The kinematics of the 
object was tracked by motion capture system.

Compliant Object Squeeze
Subjects were instructed to repetitively squeeze a compliant 
object (Figure 2D) with power grasp. The object consisted of two 
curved grasp surfaces, which were connected by a pair of linear 
sliders and a spring. Therefore, the object only allows one dimen-
sional deformation with maximum width of 8.5 cm (determined 
by a mechanical stop). The compliance of the object was deter-
mined by the stiffness of the spring, and two types of compliance 

were selected: Soft (0.33  N/mm) and Hard (0.54  N/mm).  
Visual feedback about the deformation of the object was given 
to the subjects on the monitor by tracking the positions of the 
grasp surfaces with motion capture system. To prepare for a 
trial, subjects had to lightly grasp the object (<0.2  cm defor-
mation) with either their normal right hand or the SHP. For 
SHP trials, the wrist was set at 60° supination to allow natural 
grasp posture. On a “Go” signal, subjects were asked to match 
the target deformation shown on the monitor repetitively. There 
were two levels of target deformation 0.8 cm, and 1.8 cm with 
an error margin of 0.2 cm, each was presented five times within 
a trial. These two target levels alternated, and each level had to 
be maintained for 1 s continuously to automatically proceed to 
the next one.

experiment Procedure
Both SG and HG groups followed the exact same experimental 
procedure, and the only difference between the two groups 
was the myoelectric controllers. In experiment preparation, we 
placed the sEMG electrodes over the muscle bellies of the target 
muscles (i.e., FDS and EDC). The skin was cleaned with alcohol 
pads and the electrodes were secured by elastic medical tape. 
A calibration procedure was implemented by asking subjects 
to perform maximal voluntary isometric contraction (MVC) 
of the FDS or EDC. The onboard gains of the electrodes were 
adjusted such that the maximum output voltage represents the 
MVC of the corresponding muscle. In the baseline session, sub-
jects performed all experimental tasks with their normal right 
hand wearing the same glove as the SHP glove, such that the 
friction conditions are matched. There were four conditions for 
Large object pick-and-place task: Heavy-Solid, Heavy-Fragile, 
Medium-Solid, and Medium-Fragile. Similarly, there were four 
conditions for Small object pick-and-place task: Medium-Solid, 
Medium-Fragile, Light-Solid, and Light-Fragile. Finally, there 
were two conditions for the Compliant object squeeze task: Soft 
and Hard. One baseline trial was performed for each of these 
ten conditions, with 1 min break given between conditions (see 
Table 2 for summary of conditions). The order of these condi-
tions was randomized within each task for each subject. Most 
importantly, before each condition involving fragile object, 
subjects were given 15  s to understand the corresponding 
crushing threshold. Subjects were instructed to slowly ramping 
up the grasp force multiple times without lifting the object, until 
they heard the glass breaking sound. We also told subjects to 
memorize the fragility in association with the object type (e.g., 
Large Heavy) for the SHP trials later. For all baseline trials, we 
also recorded the position of the wrist center with the motion 
capture system, in addition to object positions, grasp forces, 
and sEMG.

Following baseline session, subjects were fully equipped 
with the prosthetic system and went through two training 
tasks. One-minute break was given after each training task. 
After training session, subjects performed all ten experimental 
conditions again with SHP, with three consecutive trials per 
each condition (Table  2). The order of these conditions was 
also randomized within each task for each subject. In contrast 
to the baseline session, subjects were not allowed to explore 
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FigUre 3 | Sample experimental recording. (a) Representative 3-dimensional trajectory profile during object pick-and-place task. (B) Representative temporal 
profile of multiple experimental variables from one object pick-and-place trial.

TaBle 2 | Summary of experimental conditions for both controller groups.

Native hand Large object Heavy (820 g) Solid (80 N)
Fragile (9 N)

SoftHand-Pro Large object Heavy (820 g) Solid (80 N)
Fragile (9 N)

Medium (420 g) Solid (80 N) Medium (420 g) Solid (80 N)

Fragile (6 N) Fragile (6 N)

Small object Medium (420 g) Solid (80 N) Small object Medium (420 g) Solid (80 N)

Fragile (6 N) Fragile (6 N)

Light (220 g) Solid (80 N) Light (220 g) Solid (80 N)

Fragile (4 N) Fragile (4 N)

Compliant object Soft (0.33 N/mm)
Hard (0.54 N/mm)

Compliant object Soft (0.33 N/mm)
Hard (0.54 N/mm)

Actual order was randomized.
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the crushing threshold for the fragile objects, but only rely on 
their previous experience with the same object instead. For all 
baseline trials, we recorded the position of the wrist center of 
the SHP, object positions, grasp forces, SHP residual current, 
SHP motor position, CUFF motor current, and sEMG. All 
tasks were implemented using customized Matlab, C++, and 
LabView programs.

Data Processing and analysis
Experimental Variables
Training Tasks
For motion control training, we assessed the performance by 
computing the averaged time to perform each target action, 
which was defined as the time between the onsets of two con-
secutive target positions. Within each trial, there were four types 
of required change of motor positions (30°, 60°, 90°, and 120°) 
combined with two actions (open or close). Each specific action 
(e.g., open 60°) occurred twice, and we used the average time of 
the two as within trial performance. Note that the two controller 
groups had the same EMG-to-motion gains in this task, because 
the SHP is always in Free Motion state. For force control train-
ing, we assessed the performance by computing the total time 

to complete each trial. Additionally, we computed the averaged 
EMG magnitude as an indicator of motor effort within each trial.

Experimental Tasks
For both object pick-and-place tasks, we mainly focus on the 
following measures. First, we use the number of successful 
transport completed within 45 s as the gross outcome measure. 
This is computed from both object marker data and object force 
sensor data, since successful completion requires no dropping 
(kinematics) or crushing (force) of the object between two target 
regions. Second, we assess hand-arm coordination by defining 
transport speed during successful transport. This is computed as 
wrist velocity at the time when the object is moving across the 
obstacle. Third, we assess the force modulation by defining grasp 
force during successful transport. This is computed as the force 
normal to the grasp surface at the time when the object is moving 
across the obstacle. Finally, we evaluate the myoelectric control by 
defining flexor activation, extensor activation, and co-contraction. 
These are computed as the average magnitude of the correspond-
ing sEMG signals. Note that for SHP trials, each experimental 
condition consists of three trials and we take the average for these 
measures. A representative trial (sub13, Large object, Medium 
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FigUre 4 | Motion and force training results. (a) The time to complete open and close of the SoftHand-Pro in motion training across four levels of required absolute 
change of the motor position, averaged across three trials. (B) The time to complete all force targets with two controllers across five training trials (mean ± SE).

TaBle 3 | Summary of experimental variables for both controller groups.

Motion training Averaged time to perform each target open/close action
Force training Total time to complete each trial

Averaged EMG magnitude

Object pick and place Number of successful transport completed within 45 s
Grasp force during successful transport
Transport speed during successful transport
EMG activation of flexor
EMG activation of extensor
EMG activation of co-contraction

Object squeeze Averaged time to complete each trial
EMG activation of flexor
EMG activation of extensor
EMG activation of co-contraction
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weight, Fragile) is shown in Figure 3. For the object squeeze task, 
we computed the time to complete one trial (i.e., five squeezes), 
as well as the averaged EMG magnitude for flexor, extensor, and 
co-contraction. A summary of variables is given in Table 3.

Statistical Analysis
One subject in the differential control group was excluded from 
the data analysis because he was not able to finish training within 
an acceptable performance range, therefore did not participate 
the experimental task with SHP. To compare between two 
controllers, we used mixed ANOVA with Group as the between 
subject factor and task conditions as within subject factors. 
We also used repeated measure ANOVA to assess benchmark 
performance with subject’s normal hand. Post hoc comparisons 
were used with Bonferroni correction when needed.

resUlTs

Motion control Training
The motion training was designed to familiarize subjects with 
the myoelectric controller. For both “open” and “close” actions, 
subjects were able to perform quite well from the beginning 
and we did not observe improvement over three training trials. 
With separate three-way mixed ANOVA (Group, Trial, and 
Target), we found only a significant effect of Target for both 

“close” and “open” actions (p  =  0.001 and p  <  0.001, respec-
tively). This is expected, since both SG and HG groups used the 
same free motion controller that has been previously shown to 
be intuitive and efficient (Fani et  al., 2016). Furthermore, we 
performed another three-way mixed ANOVA after averaging 
across trials (Group, Target, and Action). We found a significant 
Target  ×  Action interaction (p  =  0.015, Figure  4A). Post hoc 
T-test showed that 30° close took significantly shorter time than 
the other three closing actions, whereas 120° open took signifi-
cantly longer than the other three opening actions (p < 0.05). 
This indicates that subjects were able to take advantages of the 
proportional control implemented for the SHP to scale the 
movement speed of the fingers as a function of the distance to be 
covered. Note that such scaling is an important feature observed 
in human when grasping object with different sizes (Bootsma 
et al., 1994).

Force control Training
Force training was designed to precisely generate desired grasp 
force with the help of visual feedback. Additionally, subjects 
could associate the haptic feedback from the CUFF to their 
own actions. Unlike motion control, force control with SHP 
was challenging in the beginning for both controller groups. 
The performance gradually improved over five training trials. 
Importantly, SG group performed consistently worse than the 
HG group (Figure  4B). These findings were confirmed by 
two-way ANOVA (Group and Trial) which showed signifi-
cant effect of both Trial (p <  0.001) and Group (p =  0.048). 
Furthermore, we examined the average EMG used in force 
control training with two-way mixed ANOVA (Group and 
Trial). For both flexor and extensor muscles, we found HG 
group used significant larger activity than the SG group across 
training trials (main effect of Group p < 0.001 and p = 0.01; no 
effect of Trial). This result suggests that the hybrid controller 
allows better control of grasping force but requires greater 
effort/energy. We want to point out that, unlike natural grasp-
ing, here the energy is spent in modulating grasp force, but not 
maintaining grasp force, due to the nature of velocity-based 
myoelectric control.
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FigUre 5 | Number of successful transport in pick-and-place tasks. (a) and (B) Native hand performance for Large and Small objects, respectively. (c) and (D) 
SHP performance for Large and Small objects, respectively.
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Object Pick-and-Place Tasks: 
Performance
We first quantified subjects’ performance with their native hand. 
This allows us to establish benchmark behavior for our novel 
tasks, which is then used evaluate the SHP controllers. Similar 
benchmark quantifications will also be used in the following 
sections regarding different aspects of the object pick-and-place 
tasks. The overall task performance is assessed by the number of 
successful transport within 45 s, using three-way mixed ANOVA 
(Group, Weight, and Fragility) per object size. For both Large 
and Small object pick-and-place tasks, two groups performed 
equally well. Furthermore, only Fragility but not Weight of the 
objects played a role in the net performance (Figures  5A,B). 
We found that the number of successful transport for fragile 
objects is significantly less than the solid ones (only main effect 
of Fragility with both Large and Small object p <  0.001). This 
could be because subjects handled the fragile objects with more 
caution, thus being slower.

With SHP, both groups performed the tasks much slower 
than their native hands, and we found that HG controller 
outperformed SG controller when transporting fragile objects 
(Figures  5C,D). Specifically, with the Large object, we found 
significant Fragility × Group (p = 0.003) and Fragility × Weight 
interactions (p = 0.023). Post hoc comparisons suggested that the 
HG group performed significantly better than the SG group in 
Heavy-Fragile, Medium-Solid, and Medium-Fragile conditions 
(p  <  0.05; Figure  5C). No difference was found between two 
groups in the Heavy-Solid condition. Similarly with the Small 
object, we found a significant Fragility  ×  Group interaction 
(p = 0.035). Further t-test suggested that hybrid group performed 
significantly better than differential group in Heavy-Fragile, 
Medium-Solid, and Medium-Fragile conditions (p  <  0.05; 

Figure 5D), but not in Heavy-Solid condition. Interestingly, we 
demonstrated a qualitatively similar pattern of Fragility effect 
between SHP and native hand in the HG group but not the SG 
group, despite of significantly less number of completion overall.

To further understand the difference between the HG and 
SG controller, we examined the hand-arm coordination using 
the velocity of the wrist center when the object was moving over 
the obstacle during successfully completed object transport.  
For the native hands, the velocity is significantly lower for Fragile 
objects than Solid objects (Figures  6A,B). Three-way mixed 
ANOVA (Group, Weight, and Fragility) showed only main effect 
of Fragility with both Large and Small objects (p < 0.001). With 
SHP, subjects were also moving slower with Fragile objects (main 
effect of Fragility, p = 0.003 and p = 0.005 for Large and Small 
objects, respectively). There were also significant Weight × Group 
interaction (p = 0.033 and p = 0.019 for Large and Small objects, 
respectively). Post hoc analyses showed that HG group was mov-
ing significantly faster in Heavy-Fragile, Medium-Solid, and 
Medium-Fragile conditions (p  <  0.05, Figures  6C,D). These 
results suggest that the superior performance of HG controller 
can be partially attributed to the faster arm movement when 
holding an object.

Object Pick-and-Place Tasks:  
grasp Forces
In addition to performance, we also measured grasp force when 
the object was moved over the obstacle during successfully 
completed object transport. For the native hands, we found that 
subjects scaled grasp force to object weight and fragility in both 
object size conditions (Figures 7A,B). Specifically, subjects used 
larger grasp force for heavier objects, and smaller grasp force 
when the object was fragile. These observations were confirmed 
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FigUre 7 | Grasp force in pick-and-place tasks. (a) and (B) Native hand grasp force for successful transport of Large and Small objects, respectively. (c) and (D) 
SHP grasp force  for successful transport of Large and Small objects, respectively.

FigUre 6 | Wrist velocity in pick-and-place tasks. (a) and (B) Native hand wrist velocity for successful transport of Large and Small objects, respectively. (c) and 
(D) SHP wrist velocity for successful transport of Large and Small objects, respectively.
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by three-way mixed ANOVA (Group, Weight, and Fragility). With 
the Large object, there was a significant main effect of both Weight 
(p = 0.003) and Fragility (p < 0.001), but not Group. Similarly with 
the Small object, we found significant main effect of both Weight 
(p < 0.001) and Fragility (p < 0.001), but not Group.

With SHP, subjects were able to modulate grasp force 
in successful transport (Figures  7C,D). With the Large 
object, we found a main effect of Weight (p  <  0.001), and a 

significant Fragility × Group interaction (p = 0.024). Post hoc 
comparisons showed that HG group used significantly smaller 
grasp force than the SG group in Medium-Solid condition 
(p  <  0.05; Figure  4C). Similarly with the Small object, we 
also found a main effect of Weight (p = 0.003), and significant 
Fragility × Group interaction (p < 0.001). t-Test showed that 
HG group used significantly smaller grasp force than the 
SG group in both Medium-Solid and Light-Solid conditions 

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


FigUre 8 | sEMG magnitude in pick-and-place tasks. (a), (B), and (c) sEMG activities of flexor, extensor, and co-contraction in Large object tasks, respectively. 
(c), (D), and (e) sEMG activities of flexor, extensor, and co-contraction in Small object tasks, respectively.

FigUre 9 | Performance and sEMG in compliant object squeeze tasks. (a) and (B) Completion times for Native hand and SHP, respectively. (c), (D), and (e) sEMG 
activities of flexor, extensor, and co-contraction in compliant object tasks, respectively.
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(p < 0.05; Figure 4D). When compared with native hand, we 
found that HG group showed qualitative similar pattern of 
grasp force modulation, but SG group did not.

Object Pick-and-Place Tasks: eMg
To better understand how subjects use their muscle activities 
with SG and HG controllers, we also compared the average EMG 
used in these tasks. Note that we do not use EMG from native 
hand here as benchmark because (1) velocity-based myoelectric 
control is different from natural muscle control by nature and (2) 
the two sEMG channels cannot provide comprehensive measure 
of the muscle activity from native hand used in these tasks  
(e.g., missing intrinsic muscles).

With the Large object, we found no difference in the aver-
age flexor EMG magnitude between the two controller groups 
(Figure  8A; three-way mixed ANOVA, only main effect of 
Weight and Fragility, p  =  0.035 and p  <  0.001, respectively). 
Furthermore, we found no difference in the extensor EMG 
magnitude between the two groups (Figure  8B; only main 
effect of Fragility p  =  0.002). Finally, we found no difference 
in the co-contraction of the muscles between two groups 
(Figure 8C). With the Small object, we found a main effect of 
Fragility (p  =  0.009) for the wrist flexor muscle, as well as a 
Group × Weight interaction (p = 0.038). Post hoc comparisons 
showed that subjects in the HG group used less EMG for light 
weight than for the medium weight, but the SG group did not 
show difference between weights (Figure  8D). For the wrist 
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extensor muscle, we found no difference between the two 
controller groups (Figure  8E; only main effect of Fragility 
p  =  0.005). Finally, we again found no difference in the co-
contraction of the muscles between two groups (Figure 8F). To 
summarize, subjects used less EMG from both flexor and exten-
sor muscles for fragile objects regardless of group (Figure 8#). 
This is expected because fragile objects require much smaller 
grasp force (Figures 8C,D), therefore less EMG was needed to 
drive the reference motor position. Interestingly, it was found 
that the flexor activity was scaled to object weight in all condi-
tions for the HG group, but not SG group.

compliant Object squeeze Task
In addition to object pick-and-place tasks, subject performed 
compliant object task in which they had to deform a compliant 
object with either their native hand or the SHP. There were two 
levels of compliance that were set by the stiffness of the spring 
inside the object (soft and hard, 0.33 and 0.54 N/mm, respec-
tively). There was no difference between the two compliance 
levels for the native hand (Figure 9A). For the SHP, we found 
that single gain and the HG controller performed similarly in 
this task, and both were much slower than their native hands 
(Figure 9B). Two-way mixed ANOVA (Group and Compliance) 
showed a significant Group × Compliance interaction (p = 0.032). 
However, post  hoc comparison between two compliance levels 
did not reveal significant differences.

We also compared the average EMG between the two controller 
groups with two-way mixed ANOVA (Group and Compliance). 
For the flexor muscle, we found that subjects used significant 
larger activity in the hybrid controller group (Figure  9C; only 
main effect of Group, p = 0.011). For the extensor activity and 
co-contraction, no significant difference was found between the 
two groups (Figures 9D,E).

DiscUssiOn

The goal of this study was to improve the myoelectric control 
of grasp forces in functional tasks using a soft synergy-based 
prosthetic hand. Specifically, we developed and implemented 
a HG controller and compared its performance to a previously 
validated conventional SG controller. We demonstrated that 
the new controller (a) significantly improved subjects’ ability to 
perform fine force control when transporting objects with differ-
ent shapes, weights and fragility (Figure 5) and (b) qualitatively 
demonstrated natural modulation of grasp force in response to 
object’ physical property, such as weight (Figure 7). We discuss 
our results and future work below.

Quantitative assessment of Performance 
of hand Prosthesis with Functional Tasks
To meet the needs of creating reliable, functional, and robust 
hand prostheses, it is important to assess their performance in 
functional tasks that require physical interaction with objects, as 
well as coordination of arm and hand. This is because the use of 
prosthetic hand in ADL often involves dynamic and unstructured 

environments, in which the effect of gravity and object physical 
properties needs to be properly compensated. There are several 
clinical assessment tools available, such as Southampton Hand 
Assessment Procedure, Box and Block Test, and Jebsen Hand 
Function Test. However, these tests are usually scored based 
on gross measures, such as task completion time or quality of 
movement. As such, they do not provide information about how 
the tests are completed (i.e., movement kinematics, grasp force). 
Additionally, these tasks typically do not assess subjects’ ability 
to control grasp force, which plays an important role in ADL. 
Researchers have recently started to incorporate motion capture 
and force sensors to quantify and standardize the evaluation 
of the hand–object interactions during use of prosthetic hands 
(Hebert and Lewicke, 2012; Engeberg and Meek, 2013; Fani et al., 
2016; Godfrey et al., 2016; Wilson et al., 2017). Such quantitative 
assessment can identify potential bottlenecks and issues within 
the complex integration among hardware, control, and human 
user input, therefore helping to validate and optimize the pros-
thetic systems. In the current study, we developed a set of novel 
functional tasks that aimed to quantify the capability of prosthetic 
system to control grasp forces. The advantages of our tasks are 
threefolds. First, our tasks use objects that can be easily adjusted 
to cover a wide range of different physical properties, such as size, 
weight, and fragility. This allows us to test the versatility of the 
function of a prosthetic hand. Second, our tasks require repetitive 
dynamic actions similar to the Box and Block Test, which can 
be used to assess the reliability and robustness of the prosthesis. 
Third, our setup is fully equipped with both motion capture and 
force sensing technologies, thus being able to capture multiple 
dimensions of the task performance. Furthermore, our experi-
mental design also allows comparison between the prosthetic 
system and benchmark performance from the native hands. We 
believe that the ability of a prosthetic system to exhibit human-
like kinematic and kinetic behavior is critical for the acceptance 
of the terminal device.

improved Force control with context-
Dependent hg controller
Fine grasp force control is a defining feature in human’s manual 
dexterity. When grasping and moving an object, it is well 
known that the grasp force is regulated to the object’s weight 
and friction. Specifically, there is a minimum level of grasp 
force required to prevent object slip, given a weight and friction 
coefficient combination. The applied grasp force is normally 
slightly higher than the minimally required, demonstrating a 
consistent “safety margin” which balances energy efficiency and 
slip prevention (Johansson and Westling, 1984; Westling and 
Johansson, 1984). When friction is constant as in our study, 
such grasp force control will lead to the natural scaling of 
grasp force to object weight (e.g., larger grasp force on heavier 
objects). Indeed, in current study we showed that subjects 
were able to modulate grasp force in response to object weight 
with their native hands even when wearing a glove (Figure 7). 
Extensive investigation has revealed that weight specific grasp 
force control is achieved by a combination of memory based 
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feed-forward control and sensory feedback driven corrections. 
During initial encounter with a novel object, feedforward motor 
command can be generated based on the object’s physical prop-
erties which are visually estimated using previous experiences 
with similar objects (Gordon et  al., 1993). If the motor com-
mand is erroneously programmed due to inaccurate estimation, 
the central nervous system (CNS) can use somatosensory 
feedback to generate corrective responses after contact and/or 
after lift (Johansson and Westling, 1988; Johansson and Cole, 
1992). After repetitive interaction with the same object, internal 
representation of the object properties can be formed and used 
to generate more precise feedforward motor command in the 
following interactions (Flanagan et al., 2001). Importantly, the 
“safety margin” for grasp force can also be flexibly adjusted in a 
feedforward fashion to account for uncertainty in the dynamic 
environment (Hadjiosif and Smith, 2015), or the fragility of 
objects (Gorniak et al., 2010). In the current study, subjects used 
much less grasp force on the fragile object than on the solid ones 
(assuming same object weight) with their native hands. Such 
drop of “safety margin” was accompanied by decreased arm 
movement speed, which is consistent with previous findings 
(Gorniak et al., 2010).

There are two common ways to enable grasp force control 
in prosthetic hands. The first approach is fully automated by 
the implementation of force feedback loop using force and 
position sensors (Engeberg et  al., 2008, 2009; Engeberg and 
Meek, 2013). While the accuracy and reliability of automated 
force control is very good in single degrees of freedom rigid 
prosthetic hand (e.g., Motion Control Hand), it is challenging 
to scale this approach up to multi-finger hands and/or hands 
with embedded compliance (e.g., SHP) due to complex hand–
object interactions. Alternatively, the force control can be fully 
operated by the user with some form of haptic feedback about 
the grasp force [for review, see Antfolk et al. (2013) and Li et al. 
(2017)], such as vibrotactile stimulation (Rombokas et al., 2013; 
Lum et al., 2014), electrotactile stimulation (Wang et al., 1995), 
mechanotactile stimulation (Ajoudani et al., 2014; Casini et al., 
2015), and direct nerve stimulation (Raspopovic et al., 2014). In 
most cases, the feedback signal carries continuous information 
about grasp force, allowing subjects to reduce grasp force or 
perceive object softness. A more recent study also showed that 
discrete feedback about mechanical events during hand-object 
interaction is sufficient to allow user to better handle fragile 
object (Clemente et  al., 2015). However, most of the studies 
used relatively static and/or constrained tasks, and have not 
tested the user’s ability to integrate haptic feedback in force 
control during highly dynamic tasks across a range of different 
object size and weight. In the current study, we showed that 
our novel hybrid controller, paired with a soft synergy-based 
hand and continuous mechanotactile feedback can achieve this 
goal. Most importantly, to the best of our knowledge, we are 
the first to demonstrate human-like grasp force modulation to 
object weight.

Instead of tuning the haptic feedback, our approach focused 
on the design of EMG-to-motor control interface. This is 
because we acknowledge the importance to enable users to 

(1) accurately generate anticipatory motor command and (2) 
to make fine corrective motor response after receiving sensory 
feedback. Both of which are crucial to human’s manual dexter-
ity, as reviewed in the beginning of this section. Furthermore, 
we propose that, in a proportional EMG control scheme as in 
SHP, the EMG-to-motor control mapping has to be optimized 
separately for free motion and grasp force due to distinct 
behavior of the motor during motion and force generation. 
Note that the modulation of EMG-to-motor mapping can be 
designed to fully rely on the user, such as the concept of “tel-
eimpednace” where muscle co-contraction is used to change the 
mapping (Ajoudani et al., 2014). However, this would increase 
the complexity of the myoelectric interface, leading to higher 
demand in attention to simultaneously control multiple vari-
ables. It has been shown that a trade-off has to be made when 
deciding the level of sharing of control between the user and 
the hardware, and an intermediate level of interaction between 
the two was favored (Cipriani et al., 2008). Following this idea, 
context-dependent switching scheme can be found in several 
recent studies to control kinematics of the prosthetic hands 
based on sEMG pattern (Amsuess et al., 2016), limb kinematics 
and/or grasp force (Jiang et al., 2013; Patel et al., 2017), or vision 
(Markovic et al., 2014, 2015; Ghazaei et al., 2017). It has been 
argued that such semi-autonomous shared control can help to 
shield some low level execution details and decreases cognitive 
burden while maintaining high level function (Castellini et al., 
2014). We agree with this assessment, and furthermore believe 
that the prosthetic system needs to merge both sensory and 
motor information to best determine the context of operation, 
including both sensors in the hardware and the sEMG from user 
input. Therefore, we choose to improve prosthesis force control 
by implementing a “context aware” controller that changes the 
EMG-to-motor mapping based on both the condition of the 
hand (i.e., free motion or object grasping) and the intent of 
the user (i.e., open or close). We note that the state switching 
rules were relatively simple in our study due to limited sensing 
capability associated with the design goal of enabling intuitive 
control of the SHP Nevertheless, the present work provides 
proof-of-concept evidence that human-like force control can 
be achieved using the proposed approach.

effort-Performance Trade-Off in 
Myoelectric control of hand Prosthesis
We want to point out that the superior performance of the 
hybrid controller came at a cost of increased demand of energy 
(i.e., muscle activation at higher amplitude and for longer time). 
However, this is not necessarily undesired. In fact, our result 
where subjects scale grasp force to object weight indicates that 
the increased energy demand from our controller effectively 
evoke the CNS’s ability to optimize the motor command for 
energy efficiency. This indirectly leads to lower energy con-
sumption in the prosthetic hand as the grasp force is subse-
quently optimized, which can extend the usage time thanks to 
less battery consumption and reduced tension of the driving 
tendon.
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conclusion and Future Work
Our results provide strong support to the functional advantage 
of a context-dependent myoelectric interface for the control 
of grasp force during hand–object interactions. Although the 
controller was only tested with a soft-synergy based prosthetic 
hand and a mechanotactile feedback system, we believe that it 
can be extended to other terminal devices and feedback systems, 
including next generation of SHP with multiple actuators (Delia 
Santina et al., 2015) and direct nerve stimulation. Future work 
includes, but not limited to, finding optimal EMG-to-motor 
mapping parameters in different sensorimotor states, better state 
definition and transitions, as well as determining the level of 
control sharing between user and hardware.
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