2,301 research outputs found

    Burst Denoising with Kernel Prediction Networks

    Full text link
    We present a technique for jointly denoising bursts of images taken from a handheld camera. In particular, we propose a convolutional neural network architecture for predicting spatially varying kernels that can both align and denoise frames, a synthetic data generation approach based on a realistic noise formation model, and an optimization guided by an annealed loss function to avoid undesirable local minima. Our model matches or outperforms the state-of-the-art across a wide range of noise levels on both real and synthetic data.Comment: To appear in CVPR 2018 (spotlight). Project page: http://people.eecs.berkeley.edu/~bmild/kpn

    Learning sparse representations of depth

    Full text link
    This paper introduces a new method for learning and inferring sparse representations of depth (disparity) maps. The proposed algorithm relaxes the usual assumption of the stationary noise model in sparse coding. This enables learning from data corrupted with spatially varying noise or uncertainty, typically obtained by laser range scanners or structured light depth cameras. Sparse representations are learned from the Middlebury database disparity maps and then exploited in a two-layer graphical model for inferring depth from stereo, by including a sparsity prior on the learned features. Since they capture higher-order dependencies in the depth structure, these priors can complement smoothness priors commonly used in depth inference based on Markov Random Field (MRF) models. Inference on the proposed graph is achieved using an alternating iterative optimization technique, where the first layer is solved using an existing MRF-based stereo matching algorithm, then held fixed as the second layer is solved using the proposed non-stationary sparse coding algorithm. This leads to a general method for improving solutions of state of the art MRF-based depth estimation algorithms. Our experimental results first show that depth inference using learned representations leads to state of the art denoising of depth maps obtained from laser range scanners and a time of flight camera. Furthermore, we show that adding sparse priors improves the results of two depth estimation methods: the classical graph cut algorithm by Boykov et al. and the more recent algorithm of Woodford et al.Comment: 12 page

    Fast sparse coding for range data denoising with sparse ridges constraint

    Get PDF
    Light detection and ranging (LiDAR) sensors have been widely deployed on intelligent systems such as unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs) to perform localization, obstacle detection, and navigation tasks. Thus, research into range data processing with competitive performance in terms of both accuracy and efficiency has attracted increasing attention. Sparse coding has revolutionized signal processing and led to state-of-the-art performance in a variety of applications. However, dictionary learning, which plays the central role in sparse coding techniques, is computationally demanding, resulting in its limited applicability in real-time systems. In this study, we propose sparse coding algorithms with a fixed pre-learned ridge dictionary to realize range data denoising via leveraging the regularity of laser range measurements in man-made environments. Experiments on both synthesized data and real data demonstrate that our method obtains accuracy comparable to that of sophisticated sparse coding methods, but with much higher computational efficiency

    A depth camera motion analysis framework for tele-rehabilitation : motion capture and person-centric kinematics analysis

    Get PDF
    With increasing importance given to telerehabilitation, there is a growing need for accurate, low-cost, and portable motion capture systems that do not require specialist assessment venues. This paper proposes a novel framework for motion capture using only a single depth camera, which is portable and cost effective compared to most industry-standard optical systems, without compromising on accuracy. Novel signal processing and computer vision algorithms are proposed to determine motion patterns of interest from infrared and depth data. In order to demonstrate the proposed framework’s suitability for rehabilitation, we developed a gait analysis application that depends on the underlying motion capture sub-system. Each subject’s individual kinematics parameters, which are unique to that subject, are calculated and these are stored for monitoring individual progress of the clinical therapy. Experiments were conducted on 14 different subjects, 5 healthy and 9 stroke survivors. The results show very close agreement of the resulting relevant joint angles with a 12-camera based VICON system, a mean error of at most 1.75% in detecting gait events w.r.t the manually generated ground-truth, and significant performance improvements in terms of accuracy and execution time compared to a previous Kinect-based system

    Computational Multimedia for Video Self Modeling

    Get PDF
    Video self modeling (VSM) is a behavioral intervention technique in which a learner models a target behavior by watching a video of oneself. This is the idea behind the psychological theory of self-efficacy - you can learn or model to perform certain tasks because you see yourself doing it, which provides the most ideal form of behavior modeling. The effectiveness of VSM has been demonstrated for many different types of disabilities and behavioral problems ranging from stuttering, inappropriate social behaviors, autism, selective mutism to sports training. However, there is an inherent difficulty associated with the production of VSM material. Prolonged and persistent video recording is required to capture the rare, if not existed at all, snippets that can be used to string together in forming novel video sequences of the target skill. To solve this problem, in this dissertation, we use computational multimedia techniques to facilitate the creation of synthetic visual content for self-modeling that can be used by a learner and his/her therapist with a minimum amount of training data. There are three major technical contributions in my research. First, I developed an Adaptive Video Re-sampling algorithm to synthesize realistic lip-synchronized video with minimal motion jitter. Second, to denoise and complete the depth map captured by structure-light sensing systems, I introduced a layer based probabilistic model to account for various types of uncertainties in the depth measurement. Third, I developed a simple and robust bundle-adjustment based framework for calibrating a network of multiple wide baseline RGB and depth cameras
    corecore