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ABSTRACT OF DISSERTATION

COMPUTATIONAL MULTIMEDIA FOR VIDEO SELF MODELING

Video self modeling (VSM) is a behavioral intervention technique in which a learner
models a target behavior by watching a video of oneself. This is the idea behind the
psychological theory of self-efficacy – you can learn or model to perform certain tasks
because you see yourself doing it, which provides the most ideal form of behavior
modeling. The effectiveness of VSM has been demonstrated for many different types
of disabilities and behavioral problems ranging from stuttering, inappropriate social
behaviors, autism, selective mutism to sports training. However, there is an inherent
difficulty associated with the production of VSM material. Prolonged and persistent
video recording is required to capture the rare, if not existed at all, snippets that can
be used to string together in forming novel video sequences of the target skill. To
solve this problem, in this dissertation, we use computational multimedia techniques
to facilitate the creation of synthetic visual content for self-modeling that can be
used by a learner and his/her therapist with a minimum amount of training data.
There are three major technical contributions in my research. First, I developed
an Adaptive Video Re-sampling algorithm to synthesize realistic lip-synchronized
video with minimal motion jitter. Second, to denoise and complete the depth map
captured by structure-light sensing systems, I introduced a layer based probabilistic
model to account for various types of uncertainties in the depth measurement. Third,
I developed a simple and robust bundle-adjustment based framework for calibrating
a network of multiple wide baseline RGB and depth cameras.
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Chapter 1

Introduction

Nowadays, one can learn just about anything by watching a video on the web, on tele-

vision or from the thousands of DVD/Blue-ray titles available from different sources.

Watching a video to learn or model a target positive behavior is in fact a well-studied

technique in behavior therapy called Video Modeling (VM) interventions. They are

widely used in rehabilitation and education of patients recovering from surgery [4] and

cancer [5] as well as job and safety training for hospital staffs [6] and office workers [7].

VM is also effective in a school setting to teach children and young adolescents vari-

ous skills including social interactions, communication, self-monitoring and emotional

regulation [8].

Rather than watching others, some researchers have argued that we can learn even

more effectively by watching our own positive behaviors. Such form of self modeling

is classically done with a mirror and one of the most prominent examples is the use

of the “mirror box” in treating phantom limb pain among amputees [9]. A mirror

box is a simple box with a mirror inside it, separating the box into two vertical

chambers. The top part of the chamber behind the mirror is covered and there is

an opening in the front part of each chamber. When a person puts both of his/her

arms into the openings, the mirror image creates an illusion of the opposite arm. It
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is this illusion that creates visual feedback to the brain that alleviates the phantom

pain caused by the amputated arm. While this form of mirror visual feedback is

still not fully understood, it has already helped a countless number of patients and

has significant implications in our understanding of the elasticity of the adult human

brains ability to rewiring itself [9]. Seeing or visualizing oneself accomplishing the

target behavior provides the most ideal form of behavior modeling. Though still in

its early development, effectiveness of VSM has been demonstrated for many different

types of disabilities and behaviorial problems ranging from stuttering, inappropriate

social behaviors, autism, selective mutism to sports training. A summary of this

research can be found in [10].

There are two forms of VSM: positive self-review and feedforward [11]. In positive

self-review, the portions of the recorded video showing poorly executed routines are

removed leaving only the positive target behaviors. The resulting video will be re-

viewed to enhance fluency of the skills that have already been acquired by the learner

but not yet perfected. On the other hand, the feed-forward VSM focuses on teaching

new skills to a learner by showing novel skills that have never been observed but

still within the reach of the learner. Evidence shows that the feed-forward approach

delivers a more dramatic learning effect than the positive self-review approach [10].

One explanation of these findings comes from the psychological theory of self-efficacy

- “I know I can because I have done it before” [12]. There is an inherent difficulty

associated with the production of VSM material. Prolonged and persistent video

recording is required to capture the rare, if existed at all, snippets that can be used

to string together in forming novel video sequences of the target skill. An example
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of feedforward VSM can be found in [10] – the author records more than six hours

of video from a child who can only speak one or two-word utterances to produce a

two-minute clip of the same child saying one full sentence.

This problem can be potentially solved by using computational multimedia tech-

niques. From computer generated imagery to speech synthesis, there exist a myriad

of multimedia tools that can synthesize realistic video content. The goal is to adapt

such tools for the development of feedforward VSM systems that can be used by a

learner and his/her therapist in creating VSM contents with minimum amount of

training data. For such system to be useful in practice, the synthesis process must

be automatic and real-time so that rapid feedback can be provided. The synthetic

content should be perceptually indistinguishable from real video footage. Such sys-

tems can have a significant impact in reducing the time and effort to achieve the

target learning objectives. The goal of the research is to develop new technologies to

facilitate the creation of synthetic visual contents for self-modeling, and combine the

synthetic contents with 3D sensing to render a mirror-like feedback on novel display

devices.

1.1 Problem Statement

In this dissertation, I study two problems by using computation multimedia for video

self modeling. The first problem is on how to synthesize novel audio-visual contents

for video self modeling. The second is on how to render self-modeled feed-forward

video, in real-time, through an immersive display system so as to reduce the time gap

between the emergence of the target behavior and the availability of the self-modeled

3



video. In order to provide a context for these research problems, we have chosen spe-

cific applications and focuses technological development for these applications. For

the first problem, we have chosen to design a feedforward VSM content production

system called SpeakToMe for patients suffering from vocal hyperfunction. For the

second problem, we have developed a virtual mirror rendering system using a network

of commodity structured-light RGB-D cameras that would be particularly beneficial

to children with autism spectrum disorder (ASD). While we have extensively collab-

orated with domain experts in this area, this dissertation focuses on the development

of the technology and defers the confirmation of the clinica values of these technology

for future research.

1.1.1 VSM for Voice Disorder

We designed a novel feedforward VSM content production system for patients suffer-

ing from a specific type of vocal disorders called vocal hyperfunction. Vocal hyper-

function refers to the use of excessive muscle force and physical effort in the production

of voice, and usually requires a prolonged period of speech therapy. Long-standing

untreated voice disorders can detrimentally affect an individual psychosocially and

academically and can be a source of substantial economic cost to society in terms of

higher health care costs.

The proposed video self modeling approach can be used for voice therapy in indi-

viduals with vocal fold nodules, functional dysphonia. It can also be used in speech

therapy for post-surgical management of individuals with vocal fold polyps and vo-

cal fold cysts. However, before subjecting the approach of video self modeling to

4



empirical testing with traditional voice therapy approaches, it is critical to test the

robustness/accuracy of the image processing algorithm. The goal of our system is

to reduce the amount of time on therapy using the principle of video self model-

ing. Our system records a video of a patient at the clinic reciting a known script,

and synthesizes a new video with a “healthier” voice for self-modeling. To achieve

lip-synchronization, the original video needs to be re-sampled to match the pace of

the replacing voice. Significant up-sampling or down-sampling creates unevenness in

motion or motion jitter, making the resulting video unnatural. Furthermore, consis-

tent segmentation across speakers remains a very challenging problem. Our system

uses a data-driven approach in selecting a replacement speech best resembled that

of the patient and apply adaptive re-sampling to preserve the nation motion in the

synthesized video.

Figure 1.1a shows the setup of the system. It captures the raw video of the

patient through a web camera situated on top of a desktop computer. Figure 1.1b

shows the user interface. A red square is shown in the middle of the screen to provide

a visual cue to anchor the head position. In order to capture a proper eye gaze, the

left-to-right scrolling script is shown near the camera.

Figure 1.2 shows the audiovisual analysis and the VSM content generation process.

After the raw video is captured, the audio track is extracted. The audio is segmented

to extract time markers corresponding to the phone boundaries. The system then

generates a replacement speech using either perceptually similar pre-recorded healthy

voice or text-to-speech synthesis. The merits of both methods will be studied in the

experimental section. Time markers for phone boundaries in the replacement speech
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(a) (b)

Figure 1.1: (a) System Setup; (b) User Interface

will also be identified using the same segmentation module. Both sets of markers are

needed to align the video track with the replacement speech in order to minimize

motion jitter and provide lip-synchronization. Frame interpolation is then applied to

re-sample the video track which is then combined with the new speech track. Our

audio-visual synchronization process is described in Section 3.3 while the generation

of the replacement speech and video re-sampling are presented in Section 3.4.

Figure 1.2: VSM Contenet Generation
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1.1.2 VSM for Children with ASD

We are all familiar with the use of a mirror in fashion, cosmetics and plastic surgery.

The use of a real mirror is often cumbersome because the user needs to physically

change her appearance which is not always possible. The use of image or video manip-

ulation software allows a much greater flexibility but lacks the real-time feedback of a

mirror. The marriage between a mirror-like display and computer generated graphics

presents the holy grail in such applications, and prototype systems have already been

developed for these purposes [13][14][15].

The connection between mirror images and our cognitive functions, however, goes

far beyond mere aesthetics. Perhaps the most well-known example is the use of the

”mirror box” in helping patients suffering from chronic neurological disorders such as

phantom pain, hemiparesis from stroke, and other complex regional pain syndrome

[9]. A mirror box is a simple top-open box with an opening on the side through which

the patient can put her arm inside. There is a mirror in the middle facing the inserted

arm and the mirror image creates an illusion of the presence of the opposite arm. It

is this illusion that creates a visual feedback to the brain that alleviates the phantom

pain caused by the amputated arm. While this form of mirror visual feedback is

still not fully understood, it has already helped countless number of patients and has

significant implication in our understanding of the elasticity of adult human brain in

rewiring itself [16].

Equally mysterious is the special affinity towards self images among children on

the autistic spectrum. Autism affects 1 out of 110 children and it is one of the fastest
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growing development disorders in the United States [17]. Autistic children have sig-

nificant delay in development and typically have poor eye gaze when interacting with

others. Recent fMRI studies have confirmed comparatively low activity in the brains

of autistic children when viewing pictures of human faces even of their family mem-

bers, while maintaining high level of activity when viewing pictures of themselves [18].

While a full neurological explanation of self recognition is still under investigation,

there is little doubt that the omnipresence of mirrors and other reflective surfaces in

the environments as well as the instant visual feedback from the mirror image are

important contributing factors. Both of these studies in neurology strongly suggest

that self images can very useful in the rehabilitation and education of people suffering

from various types of neurological disorder. In fact, one of the prominent behavioral

therapies, the so-called Video Self Modeling or VSM, use multimedia editing tools to

splice unrelated footage together in creating videos of the autistic child herself seem-

ingly accomplishing tasks that are beyond her immediate capability and use them

as teaching material [18]. There is little doubt that a ”programmable” mirror-like

display can provide the flexibility in creating visual contents and the instant feedback

to the patients that go far beyond the rigid video editing tools available today.

Simulating a mirror is not simple. The naive setup of having a video camera on

top of a monitor and showing the output of the camera on the monitor is clearly

insufficient – the viewpoint is fixed for a camera while the mirror image depends on

the position of the viewer. Thus, one challenge of simulating the mirror is to render

different content on the display depending on the viewer’s perspective. To simulate

a large mirror surface that can cope with wide displacement of a viewer, a camera-

8



display system must be able to capture the 3-D world, track the moving viewpoints,

render new view based on the position of a virtual mirror and possibly add new visual

content that are compatible with the scene geometry. Furthermore, it must be able

to accomplish all these tasks in real-time and with extremely high fidelity otherwise

it loses the instant visual feedback required to provide the realism of a mirror.

For this reason, a virtual mirror rendering system is developed using a network

of commodity structured-light RGB-D cameras. The depth information provided

by the RGB-D cameras can be used to track the viewpoint and render the scene

dynamically based on the viewer’s prospectives. To speed up the overall performance,

a scalable client-and-server architecture is used with the 3-D point cloud processing,

the viewpoint estimate, and the mirror image rendering are all done on the client

side. The mirror image and the viewpoint estimate are then sent to the server for

final mirror view synthesis and viewpoint refinement. Figure 5.1 shows the hardware

setting.
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Figure 1.3: System Setting: three Kinects are mounted around the display for 3D
data catpuring.

1.2 Contributions of Dissertation

The research work presented in this dissertation addresses the challenges of Video

Self Modeling and develops novel multimedia processing algorithms for improving

video synthesis and 2D/3D rendering that can be applied for many potential VSM

applications. Specifically,

1. To achieve automatic speech replacement on the captured videos of patients

with voice disorder, we have introduced a novel audiovisual algorithm that

combines audio segmentation with lip-state detection [19]. It allows us to ac-
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curate identify corresponding time markers in the audio and video tracks. Dif-

ferent from traditional lip or speech recognition methods that use model fitting

together with probabilistic algorithm [20][21], such as Hidden Markov Model

(HMM) based approach [22], to recognize specific phonics, our method only

focus on the alignment of the original speech signal and the replacement speech

signal by using both audio and visual information. This can avoid additional

training steps in our algorithm. Furthermore, to generate realistic re-sampled

video, we have introduced a novel adaptive sampling strategy that minimizes

the amount of motion jitter and preserves the spatial sharpness [19]. Our exper-

imental results have shown that natural human voice selected through speaker

similarity provides the subjectively best results.

2. Realistic simulation of a mirror is challenging as it requires accurate viewpoint

tracking and rendering, wide-angle viewing of the environment, as well as real-

time performance to provide immediate visual feedback. Different from previous

work, our system provides a realistic mirror visual effect by incorporating three

key features: viewpoint dependent content, wide field of view, and 3D based

rendering [23]. Existing work are limited in either one or some of these features,

which is further argued in section 2.2. The system is achieved by fusing a

number of RGB-D cameras rather than relying on a single or stereo pair of

cameras. Multiple RGB-D cameras, however, are still not enough to provide

the wide field of view of a freely moving human viewer. As such, we combine the

dynamically-rendered view provided by the stationary RGB-D camera network

11



with a wide-area 3D environmental model of the background which is scanned

off-line using a movable Kinect camera [2]. The environmental model not

only provides a wider view, but also fills in missing background details due to

occlusion. The depth information provided by the RGB-D cameras can be used

to track the viewpoint and render the scene from different prospectives.

3. Missing and erroneous depth measurements are common problems with structured-

light cameras, which can significantly degrade the performance of any subse-

quent vision processing. As such, we developed a novel stochastic framework

that combines multiple RGB-D system noise models to robustly determine the

depth layer label and uses depth layer in steering the completion process to

produce well-defined depth edges [24]. The key to our model is the use of

depth layers to account for the differences between foreground objects and

background scene, the missing depth value phenomenon, and the correlation

between color and depth channels. The depth layer labeling is solved as a max-

imum a-posteriori estimation problem, and a Markov Random Field attuned to

the uncertainty in measurements is used to spatially smooth the labeling pro-

cess. Guided by the layers, we can easily separate foreground and background,

which can be used as the input for the mirror rendering. Our depth correction

and completion algorithm outperforms other techniques in the literature [1][3].

4. To provide real-time performance, we avoid the computational intensive surface

meshing process and base our design on a 3D point cloud which is faster in

terms of both view acquisition and rendering. Our proposed algorithm admits
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a parallel implementation across multiple machines in a scalable client-and-

server architecture, where much of the 3D processing can be carried out on the

client side. Specifically, each client machine can trace a light ray from each 3D

scene point to the viewpoint, and render a partial mirror image which is then

aggregated at the server.

5. To facilitate 3D construction and virtual view rendering from multiple color

and depth cameras, I introduced a simple and robust framework for calibrating

a network of cross-modal cameras with wide baselines. Rather than using the

standard checkerboard, we use a sphere as a calibration object to identify the

correspondences across different views. The procedure can be summarized as

follows. First, we propose an effective sphere-fitting algorithm to identify the

sphere centers in the RGB and depth images respectively. Second, the extrinsics

are automatically obtained based on the corresponding sphere centers across

different views. Two separate scenarios are considered in our framework: RGB

and depth calibration and depth-and-depth calibration.

1.3 Dissertation Organization

This dissertation is organized as follows: After introducing the basic concept of Video

Self Modeling and its potential applications described in Chapter 1.1, I review pre-

vious methods for solving different technical problems that are involved in our VSM

systems in Chapter 2. In Chapter 3, I describe the details of one feedforward VSM

content production system for patients suffering from voice disorders, mainly explor-
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ing the solution for video resampling and lip synchronization. In Chapter 4, the

implementation details of another VSM system, magic mirror, are provided. In par-

ticular, I introduce a novel depth denoising and completion algorithm that can be

applied to any structure-light based depth sensors and potentially improve many sub-

sequent vision processing. As an extension of mirror views for VSM, users can view

self from any arbitrary 3D view. To provide such flexibility, multiple cameras are

often used to capture the 3D data. To achieve this, a fundamental step is to multi-

ple camera calibration. In chapter 5, I describe our calibration method for multiple

cross-modal camera network to obtain globally aligned 3D point clouds. Finally, I

conclude the dissertation and discuss future work in Chapter 6.
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Chapter 2

Related work

In this related work section, I categorize it into multiple sub-sections according to

different problems.

2.1 Lip Synchronization for SpeakToMe Device

Our goal of synthesizing new talking head video bears resemblance with the large body

of work in facial animation using either real video footage [25] or avatars [26, 27]. The

key difference is that we have exploited the requirements from the domain application

in developing a fully automated real-time system. For example, we only need to re-

sample the video sequence to achieve lip synchronization rather than a complete

re-rendering of a new sequence as in [25]. Also it is unimportant for us to preserve

emotion as in [26, 27]. On the other hand, there are more stringent audio requirements

that we need to overcome in synthesizing a new speech track with a healthy voice

that bears strong resemblance to the patient.

The problem of lip synchronization has been extensively studied in literature,

which can be grouped into three different categories according to the data source:

audio-based, video-based, and joint audiovisual processing. For pure audio-based

techniques, Mermelstein’s algorithm [28] is an influential rule-based syllable segmen-
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tation approach. It locates syllable boundaries by computing the convex hull of the

intensity envelope between 500Hz and 4kHz. A modification to Mermelstein’s convex

hull algorithm based on periodicity and normalized energy was developed in [29] for

syllable nuclei detection. In [30], Howitt incorporated Neural Network into an energy-

based vowel detector using Mermelstein’s algorithm. In [31], a multi-pass automatic

speech segmentation algorithm was proposed, which involves a broad segmentation

by intensity dips in the filtered speech, followed by further adjustments for sylla-

ble nuclei. Despite the sophistication of audio segmentation techniques, consistent

segmentation across speakers remains a very challenging problem.

As for video based techniques, a lip-motion recognition method using Hidden

Markov Model (HMM) is proposed in [22]. Lip contour boundary was extracted based

on the contrast intensity of the image. Similarly, in [32] and [33], a lip segmentation

algorithm was developed by contour detection and model fitting. However, these

methods require a priori knowledge about lip structure, which makes it difficult to

achieve full automation. To avoid the training steps, a geometric deformable model

was proposed in [34]. They used spatial fuzzy clustering to create a probability map

about the lip image. Then, the lip position was obtained by maximizing the join

probability of the lip region and non-lip region. Nevertheless, this method requires

heavy computation due to the complex probability model, which makes it hard to

achieve realtime or close-to-realtime performance. In [35], the authors provided an

efficient implementation through field-programmable gate array (FPGA). In their

system, a naive Bayes classifier was used to extract lips features. But this method

may be error-prone if the lip color is close to that of the skin. In [36], an improved
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active contour model was developed to extract the lip shapes by iteratively minimizing

the proposed energy functions. Similar to our approach, it is based on the snake

algorithm. But ours is simpler since for our problem, we do not need to track the lip

motion over time.

Lip-motion and audio analysis are often combined to enhance the accuracy of

speech recognition. There is a body of research termed audio-visual speech recognition

(AVSR) which incorporates lip-motion as additional features in building the speech

recognition engines [37, 38, 39, 40, 20, 21]. In this research, both visual and audio

information are also combined in the production of the output video. The difference is

that we use them for the alignment of the original speech signal and the replacement

speech signal, rather than recognition of specific phones. As such, our focus is on

the accuracy in identifying the same set of markers across speeches from different

individuals. Once the alignment is identified, they are used to re-sample the video to

establish lip-synchronization with the replacement speech.

2.2 Virtual Mirror

Virtual mirror systems are not new concept in computer vision. Several research

groups have developed virtual mirror prototypes. Though they differ in some aspects,

most of them implement simple appearance modification with a limited viewpoint [41,

42, 43]. Darrell et al. described a virtual mirror interface that reacted to people by

applying different graphical effects on their faces [41]. Similarly, in [42], Kitanovski

and Izquierdo proposed a virtual facial modification program by user-driven 3D-

aware image warping. The same authors also presented a system with virtual mirror
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experience in [42]. However, neither of them considered the viewpoint’s influence

on rendering a virtual mirror. The authors of [42] focused on face alteration of a

monocular view of a webcam, while our system is designed to use multiple RGB-D

cameras to capture the entire environment. Francois and Kang designed a hand-held

mirror simulation device in [44]. Although they considered the viewpoint change

during the mirror image transformation, their system used a simplified model by

assuming the 3D world as a plane parallel to the mirror/imaging.

Virtual mirrors have also been used in some very specific applications. In [14], a

real-time system was proposed for the visualization of customized sports shoes. Hils-

mann et al. proposed a dress-fitting system where users can virtually dress themselves

in different clothes and see how they look from the virtual mirror [45]. Similar systems

have also been developed to generate virtual mirror images for fashion [15, 13, 46].

Since the target objects in these systems are already known, they usually have a

pre-computed model from either an existing 3D model or collection of large training

data. Therefore, the on-line computation can focus on rendering the correct texture

on the generated image. In addition, the view point change is usually neglected in

these systems due to its particular commercial intention. A recent paper by Straka

et al. described a system that allowed the user to view himself or herself anywhere

within a 360◦ field of view [47]. Multiple RGB cameras were mounted around the

user to capture the data for 3D reconstruction. However, in their proposed system,

only the person was rendered in the mirror without any background, which negated

the essential characteristic of a mirror where the viewer could observe different scenes

as the viewpoint changed.
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One closely related subject of the virtual mirror is view-dependent texture map-

ping (VDTM) [48, 49, 50]. Though our system shares many similar designs as in

VDTM, it differs from the traditional VDTM in the following aspects. First, the ge-

ometry of the object is usually known and represented as a pre-computed 3D mesh.

In our system, we have a dynamic scene so the geometry needs to be estimated on-

the-fly from the depth cameras. The incomplete description of the 3D world and

the lack of object segmentation make generating a complete 3D mesh representation

computationally difficult. Second, texture information in VDTM systems is usually

recorded as planar image and image warping is a popular tool to map these textures

into the 3D shapes. On the other hand, the network of image and depth camera pairs

in our system is able to obtain texture information at different viewing angles for

every 3D point collected in the system. This provides a more realistic 2D rendering

of the scene. Finally, the viewpoint of our virtual mirror system is part of the 3D

world captured and rendered by our system. Physical laws allow us to ignore certain

aspects of rendering – for example, we cannot see the mirror when we are facing away

from the mirror. No such restriction exists for VDTM.

2.3 Depth Image Denoising and Completion

A key component of our virtual mirror system is the use of commodity structured-light

depth cameras such as the Microsoft Kinect cameras. Depth images obtained by such

devices often have distorted and missing depth values. Most of the works in depth im-

age enhancement can be grouped into two categories: super-resolution [51] [52] [53] [3]

and image in-painting [54] [55]. A common theme is to rely on information obtained
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from the companion color images to predict missing depth information. The use of

color information for depth enhancement is based on the assumption that certain

correlation exists between depth continuity and color image consistency [56]. While

providing useful cue for interpolation, this assumption does not always hold as color

edges and depth edges do not necessarily coincide with each other. In [51], Garro

et al. presented an interpolation scheme for depth super-resolution. A high reso-

lution RGB camera is used to guide the up-sampling process on the depth image.

To interpolate the missing depth pixel, the scheme uses neighboring depth pixels

mapped into the same color segment as the target pixel. This method relies strongly

on the extrinsic alignment between the color and depth image. A similar segmenta-

tion based method can also be found in [52] where a non-local means filtering based

approach is used to regularize depth maps and maintain fine detail and structure. In

[54], Wang et al. proposed a stereoscopic in-painting algorithm to jointly complete

missing texture and depth by using two pairs of RGB and depth cameras. Regions

occluded by foreground are completed by minimizing an energy function. The system

is cumbersome as an additional pair of color and depth cameras are needed. A recent

depth fusion paper proposed by Zhang et al [57] aimed at capturing full frame depth

by adaptively adjusting the contribution from photometric stereo and completed the

depth in a edge-preserving manner. Three additional LEDs are used as assistance to

fulfill the task.

Various probabilistic frameworks are often used in modeling depth measurements,

fusing depth and color information, and predicting missing values. In [3], Diebel et

al. demonstrated the use of Markov Random Field in the super-resolution of depth
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data using high-resolution color data. However, their work provide little insight in

modeling the sources of error in the depth sensor. Similarly, in [53], a low resolution

depth image is iteratively refined through the use of a high resolution color image.

Bilateral filter is applied to a cost function based on depth probabilities. A final high

resolution image is produced by a winner-takes-all approach on the cost function.

These approaches work well for the super-resolution problem where missing depth

pixels are uniformly distributed. Depth images obtained by structured-light sensors

often have large contiguous regions of missing depth measurements which cannot be

handled by such approaches.

2.4 Cross-Modal Camera Calibration

Another important component and essential step of our virtual mirror system is the

cross-modal camera calibration. As the depth or color sensors often have low resolu-

tion and limited field of view, the acquired 3D objects often suffer from nonintuitive,

self-occluding hulls rather than full 3D shapes. Multiple cameras are often used to

resolve these limitations. As such, it is critical to obtain the calibration parameters

of the mounted cameras. Usually the calibration of a camera system consists of mul-

tiple connected cameras, which need to be registered globally by using the estimated

extrinsic parameters to produce a unified data-stream. To achieve this task, a wide

variety of different approaches have been proposed.
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2.4.1 Color Camera Calibration

Traditional color camera calibration method is that the intrinsic and extrinsic param-

eters of a camera are calculated by mathematical transformations after the images

are processed and calculated under a certain camera model, such as the pinhole cam-

era model. Then an linear or nonlinear optimization of the calculation results is

done using the maximum likelihood criterion. A reference target object is often used

for the image capturing to identify correspondences across multiple views. It takes

the advantage of a given calibration target that is known in shape and size. One

of most widely used calibration technique is the Zhang’s method [58], which uses

a planar checkerboard pattern. The extracted checkerboard corners provide suitable

constraints for the color images, followed by solving an optimization problem to es-

timate the camera parameters. Similar techniques can also be found in [59][60][61].

Other calibration objects have also been explored including texture plane [62] or cir-

cular features [63]. Among color camera calibration methods, three target types are

often used: corners, checkerboard corners, and circular dots. The advantages and lim-

itations between corner targets and circular targets can be found in [64]. There are

also several target-free methods for camera calibration, in particular for view align-

ment for multiple cameras. In [65], the authors use sensor ego-motion and tracking

moving texture plane to estimate the baseline between multiple cameras. Similarly,

in [66], the topology of a large camera network is inferred by analyzing the motion of

multiple moving objects. However, for these methods, they often have some limited

assumptions. For example, the tracked moving object is arbitrarily assumed flat as
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a plane, which is not always true and cannot be applied to a generic scenario.

2.4.2 Depth Camera Calibration

For depth cameras, different calibration methods have been developed based on the

sensor’s feature and imaging mechanism. For a time-of-flight (ToF) camera, it can

simultaneously generate a depth image and an intensity image from the same view-

point, which makes the calibration procedure simpler as the color discontinuity can be

easily identified from the intensity image. However, for structure light depth sensors,

texture patterns are not visible to the captured images. Special objects with depth

variations need to be used to calibrate multiple depth sensors. For example, a planar

calibration pattern with holes is used in [52] and [67]. However, there is significant

noise around the holes in the depth images, which lead to erroneous correspondences

across different depth views. A complicated multi-spline model is proposed in [62] to

minimize the noises on the depth image. An improved version of [67] also incorporates

a depth distortion and denoising step to improve the accuracy of calibration [68]. But

each noise model has its own limitations and may not be able to fully remove noise in

the small overlapping area between two depth sensors that are far apart. In contrast,

our method does not rely on any depth noise model and is suitable to be used for any

type of depth cameras. Targetless extrinsic calibration has also been studied in [69]

[70]. They mount range sensors and color cameras on a moving platform and use the

environment for calibration. However, these approaches require an initial estimate of

the sensor pose.
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2.4.3 Cross Modal Calibration

The task of estimating the geometric relationships in a multi-view, multi-modal cam-

era network is called cross-calibration. A typical example is an RGB-D system, which

provides multiple views from color and depth cameras. In the paper [71][72], the au-

thors proposed a sensor-fusion framework by integrating depth and color sensors. It

introduces an empirical calibration method which builds a look-up table with 4 dimen-

sions, mapping observed intensity and 3D positions reported by the sensor to ground

truth distance. However, the proposed methods require manually selecting corre-

spondences points, and are based on a weak perspective camera model. In contrast,

our method is automatic. Another group of cross-calibration methods [73][74][68]

use plane constraints to detect the correspondences from the depth image without

using features. However, these methods do not handle the noise very well as the

correspondences are extracted directly from the depth image pixels. Furthermore,

due to the limited field of view of the cameras and the resolution requirement on

the captured target object, these methods do not work very well for wide baseline

scenario. The same issues also exist in [46][75]. To the best of our knowledge, none

of the approaches above have considered global optimization on multiple color and

depth cameras simultaneously.
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Chapter 3

Audiovisual Self Modeling

In this chapter, we describe a novel feedforward VSM content production system

for patients suffering from voice disorders, which appear to be the most common

communication disorder across the lifespan, are disabling and compromise quality of

life.

3.1 VSM for Voice Disorder

Considering that 3-9% of the population has some type of voice disorder at any

given point in time [76], is a significant medical problem. According to the National

Institute on Deafness and Other Communication 7.5 million people in the United

States have trouble using their voices. Voice disorders can have significant personal

as well as societal impact. Voice disorders are a source of substantial functional loss

for individuals, and a source of substantial economic cost to society in terms of higher

health care costs.

Voice therapy is often the primary choice of treatment for voice disorder called

vocal hyperfunction. Vocal hyperfunction is one type of voice disorders that is defined

as the use of excessive muscle force and physical effort in the production of voice [77].

The traditional model of voice therapy typically involves participation in one or two
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40-45 minute sessions per week over the course of eight weeks with the speech language

pathologist to facilitate behavior change in production of voice. High dropout rates

of 16% to 65% [78, 79, 80] coupled with reduced long-term success rates of 51% to

68% [81], suggest the need for development of new approaches for delivery of voice

therapy to improve treatment success [82][83].

Access to voice therapy services for management of voice disorders in rural areas

and developing countries is particularly lacking, due to difficulties in recruiting and

retaining speech language pathologists and the expenses of time and travel for the

required voice therapy program necessary to re-mediate the voice disorder. The use

of VSM for voice therapy is a novel application where the pathologist can use the

proposed system to create videos of a patient speaking with an improved voice. The

patients can either take these videos after their initial visit to the clinic or access

them through internet, and continue their behavioral modeling in their home. This

new form of treatment has the potential of reducing the length of the treatment

program and the number of therapy sessions, thereby reducing health disparities in

rural populations.

3.2 System Overview

As vocal hyperfunction usually requires a prolonged period of speech therapy. Long-

standing untreated voice disorders can detrimentally affect an individual psychoso-

cially and academically and can be a source of substantial economic cost to society

in terms of higher health care costs. The goal of our system is to reduce the amount

of time on therapy using the principle of video self modeling. Our system records a
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video of a patient at the clinic reciting a known script, and synthesizes a new video

with a “healthier” voice for self-modeling. The purpose of this new video is to en-

courage patients to continue practising of the skills learned at the clinic in order to

accelerate the behavioral changes. The proposed video self modeling approach can be

used for voice therapy in individuals with vocal fold nodules, functional dysphonia.

It can also be used in speech therapy for post-surgical management of individuals

with vocal fold polyps and vocal fold cysts. However, before subjecting the approach

of video self modeling to empirical testing with traditional voice therapy approaches,

it is critical to test the robustness/accuracy of the image processing algorithm. Our

system uses a data-driven approach in selecting a replacement speech best resembling

that of the patient. A novel joint audio-visual algorithm is developed to synchronize

the old speech with the replacement speech. The synchronization process produces

a set of time markers which are then used to re-sample the video to achieve perfect

lip synchronization. To minimize the amount of motion jitter introduced during the

re-sampling process, we introduce a novel adaptive sampling strategy to preserve the

motion energy of the original video. Extensive objective and subjective testing have

been conducted to demonstrate the effectiveness of the proposed system.

3.3 Audiovisual Analysis

The goal of the audiovisual analysis is to identify a set of time markers that partition

the speech signal at the phone boundaries. Two sets of markers are identified based

on the variation of the loudness of the speech signal and the lip openness detected in

the video signal. They are then combined to obtain a robust alignment between the
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original and the replacement speech tracks using dynamic programming. The details

are described in the following subsections.

3.3.1 Audio Analysis

Our audio segmentation module uses a derivative-based approach which consists of

three steps: signal envelop calculation, differentiation, and minima identification. An

example of this three-step process is shown in Figure 3.1. First, the signal envelope is

computed by applying a low pass filter on the cepstrum of the smoothed input signal.

The envelope is obtained by the following equation:

E = exp(F−1(W (F (log(y))))) (3.1)

where y is the input audio signal, and W is a low-pass window. F is the Fourier

transformation. During the recording phase, we use sliding text to control the display

speed for the speaker to read the script. This can roughly partition the speech signal

into alternative continuous speech and silence periods. Starting with these rough

partitions, we use a sliding window over the envelope to compute the short-term

signal variance. A significant increase in the variance indicates the beginning of the

speech period and a significant drop represents the end. Second, we compute the

derivative of the envelope by convolving it with a Gaussian derivative filter. In the

final step, the local minima of the envelope are identified based on the increasing zero-

crossings of the derivative signal. Each local minimum is treated as the boundary

between two phones.
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Figure 3.1: Three steps of phone segmentation: envelope calculation (top),
differentiation of envelop (middle), minima identification (bottom).

The audio segmentation method does not necessarily recover the true partition

of all phones. When the algorithm runs through multiple phones where there is no

volume fall-off, it will interpret them as a single phone, resulting in time marker

omissions. Such an error is not consistent across different speakers. Discrepancies in

time markers between the source and target speech signals can significantly degrade

the performance of the subsequent speech alignment. A misalignment due to an

omission of a time marker in one signal can propagate to a much longer period before

synchronization can be re-established at the end of a continuous speech period. To

enhance the correct detection of all time markers, we turn to the video and analyze
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the lip movement.

3.3.2 Video Analysis

Lip state detection is employed to enhance the accuracy and robustness of phone

segmentation. Unlike lip-reading techniques, it is not necessary for us to identify the

exact lip shape. Instead, we notice a significant change in lip change from open to

closed or vice versa coincide well with time markers of some phones. As such, we

employ the following procedure to detect changes in the shape of the lip.

Face Detection

For each frame, the speaker’s face is first detected using an Adaboost classifier on

Haar-like features [84]. As this classifier is primarily for detecting frontal upright

faces, the input image is rotated about the center by a range of small angles and the

classifier is applied to each rotated image to ensure proper face detection.

Mouth Detection

In this step, we modify the approach described in [85] to detect the mouth region.

The face region is first converted to the HSV space. An edge map is then obtained by

applying the Sobel edge filter on the difference between the hue and the luminance

channels. Connected component clustering is then applied to the edge map. The

mouth blob is determined to be the largest blob straddling the vertical centerline of

the face region. Sample results from these steps are illustrated in Figure 3.2(a)-(c).
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(a) (b) (c) (d)

Figure 3.2: Processing results on the face image: (a) Original face (b) Sobel Filter
on hue-luminance differnce (c) Mouth boundary by blob detection (d) Inside-lip

contour

Lip Contour Tracking

After detecting the mouth region, the contours of the lips are extracted in this step.

Figure 3.2(d) shows the saturation channel of a face image. As the lip is more

saturated in color than the skin tone, we can take advantage of this observation to

track the contour of the inside of the lip and determine if the mouth is open or closed.

To track the contour of the inside lip, we use the active snake algorithm from [86]. A

snake is simply a piece-wise linear contour that is computed based on the optimization

of an appropriately chosen objective function. Two snakes, tracking the upper and

lower lips, are initiated from the left corner of the mouth which is detected using the

feature point detection from [87]. The extension of the snakes from their starting

point is guided by the gradient vector field of the hue channel. Specifically, the end-

points of the segments of a snake, {P0,P1,P2, . . . ,Pn} ∈ <2 with a fixed starting

point P0, are recursively computed by maximizing the normalized line integral along

each line segment:

Pi , arg maxP∈Si

∫
Pi−1P

∇H(r) · dr
|Pi−1P|

(3.2)
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where H(·) is the hue image and Pi−1P is the line segment between Pi−1 and Pi.

Si defines the search region for the endpoint Pi. In our implementation, the integral

in Equation (3.2) is approximated by the corresponding discrete sum, ∇H(r) by the

Sobel edge detector over the hue channel, and Si , {(x0 + i∆x, y) : yi−1 −∆1
y < y <

yi−1 + ∆2
y)} where Pi = (xi, yi). ∆x controls the resolution along the x-direction and

∆1,2
y controls the search range in the y-direction. ∆1

y < ∆2
y is used for the upper snake

and ∆1
y > ∆2

y for the lower snake. These parameters are all empirically determined.

Lip States Classification

In our system, the lip shape is classified into two states: open and closed. The state

is determined by the angle made by the upper and lower snakes. As such, the two

snakes are only grown until they reach the centerline of the mouth. Two regression

lines are then fit to the upper and lower snakes and the angle ϑ between them is

measured. An example of the two regression lines are shown in Figure 3.2(d). A

temporal median filter is then used to remove noise in the time series of ϑ. The

closed state is assigned to time intervals where ϑ is close to zero. Time markers

are recorded when the lip state changes from open to closed or vice versa. The

measurement of lip state provides a visual cue for lip synchronization that cannot be

provided by the audio segmentation step. However, not every phone involves closing

of the lip and the number of lip-state changes is typically far fewer than the actual

number of phones. To provide an accurate set of time markers, the time markers from

this section must be intelligently combined with those from Section 3.3.1 to obtain

the final answers.
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3.3.3 Fusion of audio and video time markers for alignment

From Sections 3.3.1 and 3.3.2, we find that results from audio and video segmentations

could both be used to perform temporal alignment. Yet neither one produces accurate

enough markers for alignment. Audio segmentation may miss markers that separate

closely spaced phones, a phenomenon that differs from speaker to speaker. Lip-state

segmentation is consistent across speakers, but not every phone can be detected based

on changes in lip states. Robust alignment is only possible if we combine both sets

of time markers together.

The combination is performed after the time markers for both the original and

the replacement speech track have been produced. We first normalize all the time

markers by the corresponding duration of the speech tracks so that they are between

0 and 1. Denote the two sets of lip-state time markers as M1 = {s1, s2, . . . , sm} and

M2 = {t1, t2, . . . , tn} with m ≤ n. The alignment ti(k) in M2 for each sk in M2 is

obtained by minimizing the following objective function:

S , min

min(m,n)∑
k=1

|sk − ti(k)| (3.3)

The optimal alignment with the constraint of a monotonic increasing i(k) can be

obtained by applying dynamic programming to minimize S. The video alignment

produces a coarse but reliable alignment of the two speech tracks. For each pair

of corresponding segments (sk−1, sk) and (ti(k−1), ti(k)), we collect all the audio time

markers within and apply exactly the same alignment procedure again to these time

markers. This step provides the finer level of alignment of phones between successive

video markers.
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The fusion of video and audio alignment enhances the matching accuracy and

is more robust to handle errors. For example, if there is an absence of audio time

markers, it could decrease the overall accuracy of the time marker matching between

speech tracks. However, with the fusion of the audio and video, the influence of

the wrong or missing time marker can be reduced. As we first use the lip state to

divide all the (audio) time marks into several subsets. Only time markers from the

corresponding subset are considered for matching. So a wrong or missing audio time

maker can only affect the matching accuracy of those time markers from the same

subset. In this way, the errors are stopped from propagating down to the whole

speech track.

3.4 Video Re-sampling and Synthesis

In this section, we describe the process of generating the replacement speech signal

and re-sampling of the original video signal for lip synchronization based on the

optimal alignment determined in Section 3.3.

3.4.1 Replacement Speech Generation

To generate the replacement speech track, we have tested two different approaches:

the first one is to use a commercially available text-to-speech synthesizer from Cere-

proc [88] and the second one is to use a speech corpus of healthy voices. The motiva-

tion of using the second approach is due to the questionable quality of the synthesized

speech from the text-to-speech engine. While the text-to-speech engine offers great

flexibility in generating arbitrary scripts and produces reasonably sounding speech,
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it still lacks the naturalness in real human speech. Since the scripts used in a typ-

ical therapy session are usually fixed, we collect speech clips from a diverse set of

individuals with healthy voices reciting the same script used in the therapy session.

Then, we identify among all the speakers in the corpus the one who sounds most sim-

ilar to the patient’s voice. To compute speaker similarity, we use a state-of-the-art

text-independent speaker identification system called ALIZE [89]. ALIZE represents

individual speaker models using Gaussian Mixture Model (GMM) over linear fre-

quency cepstral coefficient features. We use the data collected from a generic speech

corpus to construct a 2048 component world GMM model, which is then adapted to

individual speaker models in our voice corpus. In the actual deployment, we use the

patient’s voice as input and find the speaker that produces the maximum likelihood

ratio between the respective GMM models among all speakers in the corpus. To

make the selected or generated speech signal sound even closer to the patient, we

have further experimented with a non-parallel voice conversion process described in

[90]. This module modifies the speech based on the vocal tract model constructed

using the patients speech. The voice conversion algorithm warps the source speakers

spectrum to the target spectrum in time domain using vocal tract model. During the

training phase, the warping parameter and the fundamental frequency ratio are com-

puted. During the conversion, the synthetic speech from the text-to-speech engine or

the healthy voice speech selected from the corpus is warped using these parameters

towards the target spectrum.
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3.4.2 Adaptive Video Re-sampling

The objective of the video processing unit is to re-sample the input video track

so that it will be lip-synchronized with the replacement speech track. Due to the

differences in the word durations between the original and replacement voice tracks,

adaptive re-sampling must be applied to achieve lip synchronization. During the

segmentation phase in Section 3.3, time markers have already been identified for

all segments containing phones. The result is a one-to-one mapping between the

segments from the original and from the replacement speech tracks. The goal of the

re-sampling scheme will be to re-sample each segment of the original video track to

match the length of the corresponding segment in the replacement speech track.

The most straightforward approach is to apply uniform re-sampling for each seg-

ment independently. Based on our preliminary study, we notice that while the differ-

ences in the duration between corresponding word segments from two speech tracks

are relatively small, there are large variations among the corresponding silence seg-

ments in between. Significant up-sampling or down-sampling creates unevenness in

motion or motion jitter, making the resulting video unnatural. While we maintain

a uniform re-sampling for all the word segments, we adopt a different approach for

the silence segments to preserve the original motion as much as possible. In the case

of down-sampling, we would keep more frames at the portions with higher motion to

better preserve the movement. In the case of up-sampling, we would add frames or

expand the static portions so that we will not slow down or distort the significant

object movements. This procedure is illustrated in Figure 3.3.
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Figure 3.3: Up-sampling and Down-sampling

This results in the proposed adaptive re-sampling algorithm for the silence seg-

ments shown in Algorithm 1. The re-sampling is treated as a process of creating

the set of output frames with a target number of frames M from the input set of N

original frames. Step 1 preserves all the original frames in the case of up-sampling.

Motion energy is computed between successive frames in step 2. In step 3 and 4,

we identify the pairs of original frames that have the highest or the lowest motion

energy, depending on whether the goal is to up-sample or down-sample the sequence.

For up-sampling, the new frame will be added to the lowest motion energy to stretch

the static region. For down-sampling, the new frame is added to give priority to the

portion with the highest energy. The routine INTERPOLATE is used to interpo-

late a video frame between two different frames. The simplest technique is to use

bilinear interpolation which can lead to motion blurriness and ghosting. As such,
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we have also tested bidirectional interpolation based on dense optical flow vectors.

The forward and backward optical flow vectors are estimated based on the pyramidal

Lucas-Kanade algorithm as implemented in the OpenCV library. The flow vectors

are then smoothed by a simple median filter. The temporally-scaled forward and

backward vectors are then used in identifying pixels on the input frames that can be

combined in creating the intermediate frames. For pixels in the intermediate frame

that are not mapped by neither a forward or backward vectors, straightforward bilin-

ear interpolation is applied. In step 6 of Algorithm 1, we deliberately remove portions

of the sequence where we have already added new frames - this step prevents cluster-

ing of added frames in a small number of low/high motion areas. The parameter ∆

is empirically determined to be two frames.

Protocol 1 Silence Segment Re-sampling

Input Input frames: I = {I1, I1, . . . , IN}
Output Output frames: J = {J1, J1, . . . , JM}

1. For up-sampling (i.e. M ≥ N), insert all frames of I into J .

2. Compute mean-square error between consecutive input frames:
ei = MSE(Ii, Ii+1) with Ii, Ii+1 ∈ I.

3. For up-sampling, select the pair (Ii, Ii+1) from I with the minimum ei.

4. For down-sampling (i.e.M ≤ N), select the pair (Ii, Ii+1) from I with the max-
imum ei.

5. Create new frame J = INTERPOLATE(Ii, Ii+1) and add J into J with the
time order preserved.

6. Remove Ii−∆+1, Ii−∆+2, . . . , Ii+∆ from I.

7. Repeat previous step 3-6 until |J | = M.
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3.5 Experiments

To test the performance of our system, we capture video clips from a total of 31

participants. The participants are native English speakers of ages between 18-40.

During the recording stage, each participant read the same script commonly used in

speech therapy1, which consists of a series of isolated words and short sentences. The

experiment is conducted in a quiet room that only has a researcher and the testing

subject involved. To accurately track the speakers face, there is a certain limit in the

range of the distance (0.4m to 0.8m) that the subject sits from the camera. The size

of the extracted face region ranges from 160× 240 to 210× 325 in pixels.

We use a Logitech QuickCam Pro 9000 to capture the video at a resolution of

640×480, and an EMU 0404/Electro Voice PL5 combination for the audio recording.

The proposed algorithm is implemented in C++ with the OpenCV library that runs

on a computer with the hardware setting: Intel CoreTM i7-2820QM CPU at 2.3 GHz

and 8.0GB of RAM. The video clips are on average 2 minutes and 8 seconds long, and

are captured at 30fps (video) and 22.5kHz (audio). For the audio segmentation, it

takes about 43 seconds to identify the boundaries between phones. The time cost for

the audio-visual matching is about 3 seconds. The frame rate of lip state detection is

17 fps. It takes about 0.244 seconds to synthesize a new video frame from the original

sequence.

Out of the 31 participants, 25 of whom are considered to have healthy voice. The

speech recordings and the text-to-speech recordings form the candidate dataset for

1The script can be found in http://vis.uky.edu/nsf-autism/speaktome

39



speech replacement. The remaining six participants are voice experts who can imitate

the strained voice commonly present in patients with vocal hyerfunction. The speech

tracks of their video will be replaced by one of the tracks from the candidate set,

followed by voice conversion process. The optimal alignment between the original

and the replacement tracks is identified and adaptive video re-sampling is applied to

achieve lip-synchronization. In the sequel, we measure the performance of individual

components of our proposed system.

Replacement Speech Generation

We first consider the effect of different audio processing steps in producing a speech

sample that best resembles the healthy voice of the subject. We use the following log-

likelihood ratio measured by ALIZE in gauging the similarity between the candidate

speech S and the original speech L:

LLR(S|L) = log

(
l(S|L)

l(S|W )

)
(3.4)

where l(S|L) is the likelihood of S based on the adapted GMM model generated

using L as the training data and l(S|W ) is the likelihood of S based on the world

GMM model. The world model is trained based on the entire TIMIT dataset [91].

This dataset contains 6300 utterances from 630 speakers with both male and female

from 8 major dialect regions of United States. Table 3.1 shows the log-likelihood

ratios of different replacement speech candidates. It is unsurprising to see that the

mimicked voice is the one closest to the healthy voice. Among the other candidates,

the best human voice is ranked top followed by the text-to-speech version. On the
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Table 3.1: Similarity to Healthy Voice

S LLR

Mimicked Voice 9.03e-2
Best-human 2.26e-2

Best-human + Voice Conversion 0.47e-2
Text-to-speech 1.39e-2

Text-to-speech + Voice Conversion -0.63e-2

other hand, the application of voice conversion seems to have a detrimental effect.

One possible explanation is the proper selection of the warping parameter α and the

fundamental frequency ratio r. The parameters computed directly by the software

produce voices that are non-human like, most likely due to the non-natural hoarseness

in the mimicked voice. We have tuned the parameters in such a way that the voice

is more human but it adversely affects the overall similarity to the target voice.

Time Marker Alignment

Once the replacement speech has been identified, the alignment process is performed

between the original and the replacement speech. Time markers from the automatic

audiovisual analysis are compared against the ground-truth alignment which is man-

ually obtained by listening to the original and replacement speech tracks. To arrive at

an appropriate measurement of alignment, consider a pair of speech tracks A and B.

Let the ground-truth time markers for A and B be {t1, t2, . . . , tn} and {s1, s2, . . . , sn}.

Note that the number of markers in A and B are identical and the phone (or silence)

in A during [ti−1, ti) is the same as those in B during [si−1, si).

After our proposed alignment process, we obtain the correspondences between

the automatically-determined time markers from A and B. Denote the correspon-
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dences as ai ↔ bi for i = 1, 2, . . . ,m where ai and bi are time markers from A and

B. To compare with the ground-truth, we first identify the ground-truth interval

[tj(i), tj(i)+1) in A that contains ai for each i. If the ground-truth is correct, ai from

A should roughly correspond to a′i in B based on linear interpolation:

a′i = sj(i) +
(ai − tj(i))(sj(i)+1 − sj(i))

tj(i)+1 − tj(i)

Thus, the absolute error of the correspondence ai ↔ bi is |bi − a′i|. Each ground-

truth interval may contain zero or more such markers and we want to first measure

the matching error over the entire interval. Consider the set of all automatically-

determined time markers MA(j(i)) in [tj(i), tj(i)+1) of A. We can compute the average

relative error:

EA(j(i)) =

 1 if MA(j(i)) is empty

1
|MA(j(i))|

∑
a∈MA(j(i))

|b−a′|
|tj(i)+1−tj(i)|

otherwise
(3.5)

where |MA(j(i))| denotes the number of markers in of MA(j(i)). We use relative

error so that we do not bias against long intervals. Note that for significantly skewed

alignment, i.e. bi /∈ [tj(i), tj(i)+1), the relative error can be bigger than 1.

This error measurement is not symmetric for the case when bi /∈ [tj(i), tj(i)+1).

To derive a symmetric metric, we reverse the role of A and B: if bi is in interval

[sk(i), sk(i)+1) in B, the time marker in A that corresponds to bi is

b′i = tk(i) +
(bi − sk(i))(tk(i)+1 − tk(i))

sk(i)+1 − sk(i)

The absolute error in this direction would be |ai−b′i| and the corresponding average

relative error within [sk(i), sk(i)+1) is analogously defined:

EB(k(i)) =

 1 if MB(k(i)) is not empty

1
|MB(k(i))|

∑
b∈MB(k(i))

|a−b′|
|sk(i)+1−sk(i)|

otherwise
(3.6)
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Finally, a symmetric average relative error over all the ground-truth intervals can be

computed as follows:

E =
1

2n

n∑
i=1

(EA(i) + EB(i)) (3.7)

Using the best human sample as the replacement speech, we measure the average

relative error of the alignment for the six strained speech sample. The results are

tabulated in Table 3.2. For comparison, the performance of using audio only and

video only for alignment are also listed. In the table, the first column < S∗, H∗ >

Table 3.2: Results of forced choice tests

Video Pair Number Error (video) Error (audio) Error (combined)

< S1, H4 > 0.7350 0.1854 0.0760
< S2, H10 > 0.7413 0.2066 0.0859
< S3, H10 > 0.7472 0.2040 0.0692
< S4, H23 > 0.7378 0.2125 0.0751
< S5, H24 > 0.7408 0.1721 0.0704
< S6, H1 > 0.7458 0.1714 0.0767

are pairs of strained and healthy voices, in which each healthy voice is identified

by ALIZE measurement as one bearing maximum resemblance to the corresponding

strained voice. The third column shows the average relative error for alignment

using lip-state changes only. The error is very high but consistent across different

speakers. The fourth column shows the average relative error for alignment using

audio segmentation. The results are better than those using lip-state only but higher

variation is observed across different speakers. The last column shows the average

relative error of combining both together using our proposed scheme. There is a

dramatic reduction in the relative error and the results are accurate across different

speakers.
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While Table 3.2 shows the average relative error, more information can be ob-

tained by showing the histogram of the relative error (EA(i) + EB(i))/2 across all

ground-truth intervals for all pairs of matched speech tracks. The three histograms

corresponding to video only, audio only, and the combined scheme are shown in Fig-

ure 3.4a, 3.4b, and 3.4c respectively. The bimodal nature of Figure 3.4a indicates that

many phones cannot be detected with the changes of lip-states. The high variance in

the relative error shown in Figure 3.4b is characteristics of audio segmentation as the

accuracy is highly speaker-dependent. The sharp concentration on low average error

shown in Figure 3.4c shows the superior performance of our proposed audiovisual

scheme over the other two.

Video Interpolation

Figure 3.5a and 3.5c show two sample frame using bilinear interpolation, while Figure

3.5b and 3.5d the corresponding frame using optical flow interpolation. As expected,

optical-flow interpolation produces a much sharper image, especially around high-

motion areas such as eyelids and mouth.

Adaptive Re-sampling

We also study the effect of our adaptive re-sampling of silence segments. In Figure

3.6a, we first plot the MSE measurements between successive frames for the original

sequence. While keeping all the “word” segments intact, we reduce all the silence

segments into one quarter of their original length. Two methods are tested: uniform

re-sampling and our proposed adaptive re-sampling. MSE between consecutive frames
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(a) (b)

(c)

Figure 3.4: Histograms of relative error using (a) video only, (b) audio only, and (c)
proposed audiovisual approach

are then measured and the curves re-sampled to be the same time scale as the original

curve. As shown in Figure 3.6a, our proposed approach provides a curve that can

better preserve the original temporal energy than the uniform re-sampling approach.

Figure 3.6b shows a similar trend when we up-sample all silence segments by a factor

of four. Figure 3.7 demonstrates the up-sampling case. To synchronize the lip motion

with the replacing audio, the original video (on the first and third rows) is prolonged

by generating multiple intermediate frames.
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(a) (b)

(c) caption (d) caption

Figure 3.5: Interpolation methods comparison: (a),(c) Bilinear Interpolation;
(b),(d) Optical Flow Interpolation
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(a) (b)

Figure 3.6: MSE curves by Uniform Re-sampling and Adaptive Re-sampling: (a)
down-sampling (b) curve-sampling

Figure 3.7: Video Sequence Re-sampling Example: the original video (row 1, 3) is
prolonged in the synthesized video (row 2, 4).
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Chapter 4

Virtual Mirror Self Modeling

In this chapter, we describe another novel feedforward VSM content production sys-

tem - virtual mirror that facilitates the creation of synthetic visual contents for self-

modeling, and combine the synthetic contents with 3D sensing to render a mirror-like

feedback on novel display devices. Beyond the obvious applications of virtual mirror

in fashion and cosmetics, we hypothesize that our proposed systems would be par-

ticularly beneficial to children with autism spectrum disorder (ASD). In contrast to

their typical lack of interest in social interactions, many children with ASD appear

to be highly interested in their own image in mirrors [18]. Additionally, children with

ASD appear to respond well to others imitating their actions [92]. The virtual mirror

will allow us to take advantage of both of these factors to enhance the understanding

of self/other in children with ASD, resulting in superior social functioning.

Despite many advantages of a virtual mirror, there are a number of serious tech-

nical challenges in simulating a mirror. The naive setup of having a video camera

on top of a monitor and showing the output of the camera on the monitor is clearly

insufficient the viewpoint is fixed for a camera while the mirror image depends on

the position of the viewer. Thus, the main challenge of simulating the mirror is to

render different content on the display depending on the viewers perspective. In or-
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der to simulate a large mirror surface that can cope with the wide displacement of

a viewer, a camera display system must be able to capture the 3-D details of the

world, track the moving viewpoint, render the new view based on the position of a

virtual mirror, and possibly add new visual content that is compatible with the scene

geometry. Furthermore, it must be able to accomplish all these tasks in real-time and

with extremely high fidelity, otherwise the virtual mirror system loses the instant

visual feedback required to provide the realism of a mirror.

4.1 Overview

We propose a camera-display system that senses the 3-D world via a network of

RGB-depth (RGB-D) sensors. Our system uses the depth information to track the

viewpoint, and then renders the dynamic scene by tracing the light ray from each

scene point to the point of reflection on the virtual mirror, and finally determines the

proper position and color values on the display surface at which the virtual reflected

ray passes through before reaching the viewpoint. Compared with other RGB-D

rendering systems, our proposed system has the following technical contributions:

1. Like many other contemporary RGB-D systems, ours is also based on the

low-cost Microsoft Kinect sensors which suffer from missing and erroneous

depth measurements around object boundaries and other areas with poor IR

reflection or strong interference [93]. We propose a novel graphical-model

based on depth denoising and completion algorithm which is steered by a fore-

ground/background separation scheme using color, depth, background model-
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ing, depth noise modeling, and spatial constraints.

2. Different from previous work, our system provides a realistic mirror visual effect

by incorporating three key features: viewpoint dependent content, wide field of

view, and 3D based rendering. Existing work are limited in either one or some of

these features, which is further argued in section 2.2. The system is achieved by

fusing a number of RGB-D cameras rather than relying on a single or stereo pair

of cameras. Multiple RGB-D cameras, however, are still not enough to provide

the wide field of view of a freely moving human viewer. As such, we combine the

dynamically-rendered view provided by the stationary RGB-D camera network

with a wide-area 3D environmental model of the background which is scanned

off-line using a movable Kinect camera [2]. The environmental model not

only provides a wider view, but also fills in missing background details due to

occlusion.

3. To provide real-time performance, we avoid the computational intensive surface

meshing process and base our design on a 3D point cloud which is faster in

terms of both view acquisition and rendering. Our proposed algorithm admits

a parallel implementation across multiple machines in a scalable client-and-

server architecture, where much of the 3D processing can be carried out on the

client side. Specifically, each client machine can trace a light ray from each 3D

scene point to the viewpoint, and render a partial mirror image which is then

aggregated at the server.
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4.2 Virtual Mirror Modeling and Simulation

As shown in Figure 4.1(a), the physical model of a mirror is very straightforward.

The mirror image is based on reflecting a light ray from the scene to our eye, which

can be modeled as a pinhole camera. Three components are necessary to reproduce

this process in a virtual system:

1. Color and 3D Structure of the environment.

2. 3D coordinate of the viewpoint, or more precisely, the pupil of the eye. We limit

our discussions to a single eye. Extension to a full stereoscopic system should

be relatively straightforward by duplicating the rendering process for each eye

and displaying the results on a stereoscopic display.

3. 3D location and pose of the mirror.

An important observation is that the mirror image is determined only by the location

of the viewpoint but not the pose of the viewer. When the eye ball rotates from V1 to

V2 around the same viewpoint in Figure 4.1(a), the scene point A should appear at

the same spot A′ on the mirror regardless of the viewing pose V1 and V2. As the pose

of the eye ball is irrelevant to the mirror image, we only need to track the position

but not the pose of the viewer.

To simulate the mirror experience, we need a camera-display system that can

capture the 3D world, the viewer’s position and then render the mirror image on a

display surface. Notice that the virtual mirror does not need to coincide with the

display. The general relationship between the mirror and the display is illustrated
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Figure 4.1: Virtual Mirror Modeling and Considerations

in Figure 4.1(b): a light ray from scene point A impinging on the mirror surface at

point A′ gets reflected along the ray
−−→
A′V towards the viewpoint V . The visual effect

of the virtual mirror is presented by rendering the point A” on the display, which

is the intersection between
−−→
A′V and the display plane. In a similar fashion, B′′ is

rendered as the mirror reflection of another scene point B with respect to the same

virtual mirror.

To capture the 3D world, we have chosen to use the popular Microsoft Kinect

RGB-D sensor. Kinect is a structured-light stereo RGB-D system consisting of a

projector and two camera sensors. Special light patterns, typically in the infra-red

(IR) spectrum, are emitted by the projector and captured by the IR CMOS camera

sensor. Depth information of the sensing environment can then be inferred based on
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how the light patterns are distorted in the IR images [94]. The RGB camera captures

the color information and can be aligned with the IR camera by estimating the

extrinsic parameters between them. While the depth information is independent of

the viewer’s position, color information does depend on the viewpoint unless the scene

surface is Lambertian. Even though the Lambertian assumption is not realistic, more

accurate sampling of the plenoptic function requires a significantly denser camera

array which is not considered in our work.

Figure 4.2: Missing depth measurements due to sensor-project disparity

It is well known that depth measurements from Kinect are noisy [93]. Missing

and erroneous depth values can be caused by absorption, poor reflection or even

shadow reflection of the light patterns. Objects with darker colors, specular surfaces,
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or fine-grained surfaces like human hair are prime candidates for poor depth mea-

surements [95]. Surface orientation also plays a role in depth measurements – as the

surface normal deviates from the principal axis of the IR camera, the accuracy of the

depth measurement declines and becomes unreliable near depth discontinuities [2].

Random noise in depth images may also be a result of inadequate calibration, sensor

noise, and round-off error during normalization [93]. If multiple Kinects are used and

their scanning ranges overlap, interference of the IR patterns may occur which can

also lead to missing depth measurements [96]. For our mirror application in which

the viewer is fairly close to the sensors, the primary source of noise is due to the dis-

parity between the IR projector and the IR camera sensor. As illustrated in Figure

4.2, certain background regions visible to the IR camera are occluded by foreground

objects and receive no structured light patterns. As a result, the depth values in those

regions cannot be measured. Generic image denoising and complete algorithms fail to

take into account the unique problems of structured-light RGB-D systems. Here we

describe a novel stochastic framework that separates the depth image into foreground

and background, and combines multiple RGB-D system noise models to robustly de-

termine the depth layer label for the interpolation and completion of each erroneous

or missing depth pixel. Details of this algorithm can be found in Section 4.3.

Consider the typical scenario where we want to use the entire display surface of

size w × h as a mirror. It is important to determine the dimension of the moving

space for the viewer so that accurate mirror rendering can be achieved. The top view

of this scenario is shown in Figure 4.3. The side view is similar though the sensors

can only be placed on the top and on the bottom of the display. With head and eye
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movement, the human viewer has a very large field of view of 180◦. On the other

hand, Kinect has a horizontal field of view of θ = 57◦ and a vertical field of view

of 43◦. The Kinect also has a practical range limit from dmin = 1.2 m to dmax = 6

m. Depth cannot be reliably measured if the viewer is closer than dmin or farther

than dmax away from the Kinect. To cover a large w, multiple Kinects need to be

used and the resulting merged trapezoidal range field is shaded in gray in Figure

4.3. The characteristic trapezoidal shape implies that, depending on the spacing s

between adjacent Kinects, there are pockets of areas beyond dmin that do not have

depth measurements. As such, the viewer needs to be at least dmin + d′ = s
2 tan(θ/2)

away to prevent any restrictions in the horizontal movement. The rectangular area

with diagonal lines represents the region in which the viewer can move freely and

still be able to see his/her own mirror image. The background, however, requires a

much bigger coverage due to the 180◦ field of view of the viewer as illustrated by the

two pairs of incident and reflect rays between the virtual mirror and the viewer. The

vast background area is scanned off-line and the scanning procedure is described in

Section 4.4.

To provide an efficient computational platform, we adopt a client-server dis-

tributed system to handle multiple RGB-D cameras. Each client is responsible for

one RGB-D camera. It first computes the 3D point cloud in the world coordinate

system and an initial estimate of the viewpoint. Based on the viewpoint from the

previous instance, the client will render the mirror image, possibly incomplete, based

on its own point cloud data. As such, the 3D point cloud processing, the viewpoint

estimate and the mirror image rendering are all done at the client level. The mirror
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Figure 4.3: Moving space of viewer with respect to the placement of multiple
RGB-D cameras

image and the viewpoint estimate are then sent to the server. The server then com-

bines all the mirror images with the 3D background to fill in any area that may be

occluded from one camera but visible at the others. The viewpoint estimate is also

refined by taking a statistical average of all estimates and broadcasted back to all the

clients for the rendering of the next frame. Details of the entire system can be found

in Section 4.5.

4.3 Depth Denoising and Completion

A typical structured-light stereo RGB-D system such as Microsoft Kinect consists of

a projector and two camera sensors. Special light patterns, typically in the infra-red

(IR) spectrum, are emitted by the projector and captured by the IR CMOS camera

sensor. Depth information of the sensing environment can then be inferred based
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on how the light patterns are distorted in the IR images [94]. The RGB camera

captures the color information and can be aligned with the IR camera by estimating

the extrinsic parameters between them.

Depth images obtained by such an imaging system have two major problems:

missing and distorted depth values. Figure 4.4 (left) shows a pair of typical RGB and

depth images obtained by Kinect. All the black regions in the depth image contain no

depth measurements. Some of these regions occur on object surface, such as the holes

on the front penguin’s belly. This is caused by the short distance between the object

and the depth camera. Missing regions also present along the object boundaries.

This represents a major source of depth error caused by the disparity between the

projector and the sensor. Sometimes, they can be orders of magnitude different from

their true values.

Missing and erroneous depth values can also be caused by absorption, poor re-

flection or even shadow reflection of the light patterns. Objects with darker colors,

specular surfaces, or fine-grained surfaces like human hair are prime candidates for

poor depth measurements [95]. Surface orientation also plays a role in depth mea-

surements – as the surface normal deviates from the principal axis of the IR camera,

the accuracy of the depth measurement declines and becomes unreliable near depth

discontinuities [2]. Random noise in depth images may also be a result of inadequate

calibration, sensor noise, and round-off error during normalization [93]. Generic im-

age denoising and complete algorithms fail to take into account the unique problems

of structured-light RGB-D systems.

Our technical contribution is the use of depth “layer” in steering the completion
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process to produce well-defined depth edges. We describe a novel stochastic frame-

work that separates the depth image into multiple layers, and combines multiple

RGB-D system noise models to robustly determine the depth layer label. The goal is

to denoise and complete missing values on the depth image that improve the quality

for any subsequent RGB-D applications.

Figure 4.4: Depth Denoising and Completion. 1st column: input depth image;
completed depth by Camplani et al. [1] and our method. 2nd column: input RGB

image and two corresponding reconstructed virtual views

4.3.1 Problem Definition

Missing depth can be categorized into two types. The first type is the randomly

distributed “small holes” on objects’ surfaces. These missing values can usually be

inferred by the available depth pixels in the neighboring regions. In addition, the

corresponding RGB information can be used to steer the depth completion by using
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techniques such as Joint Bilateral Filter [56].

The second type is the large and contiguous missing depth patches that often

present along the boundary between close (foreground) and far objects (background).

An example can be found in Figure 4.5a, where there are many missing depth (black)

regions around the hand. This is caused by the disparity between the IR projector

and the IR camera sensor. Part of background regions are visible to the IR camera

but not to the projector and receive no structured light patterns. Thus, the depth

values in those regions cannot be measured.

Missing and incorrect depth values due to disparity cannot be easily and correctly

inferred by many existing works including Joint Bilateral Filter based schemes [56] [1]

and probabilistic based schemes [3]. Figure 4.5 explains why these methods yield un-

satisfactory results. The raw depth image shown in Figure 4.5a clearly indicates two

distinct depth layers: foreground in dark gray and background in light gray. No depth

measurements are obtained in the black region. In Figure 4.5b, we overlay semitrans-

parent green (foreground) and red (background) layers over the RGB image as an

indicator of its corresponding depth information. There are a number of background

pixels wrongly labeled as foreground along the boundaries of the hand (annotated

as “A”). The missing depth patches (annotated as “B”) are often adjacent to “A”.

Most existing spatial approaches complete these missing values by using the erroneous

depth in the neighboring areas. Using the color channel provides little to rectify this

problem because the RGB values from “A” are very similar to the ones from “B”,

both of which are from the background color. The depth completion result using a

joint color-depth bilateral [1] shown in Figure 4.5c is indeed quite poor.
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(a) (b) (c)

Figure 4.5: (a) Depth Image; (b)Labeled Image by depth information; (c) Depth
Completion by Camplani et al. [1]. The alignment between the depth and color

images is based on the calibration result from Mircrosft Kinect diver

4.3.2 Proposed Method

We assume that the dynamic 3D environment can be separated into a static back-

ground and a number of dynamic foreground objects. This is a configuration typically

seen in a home or office environment with a small number of individuals moving in

front of the device. The RGB and depth cameras are assumed to be extrinsically

aligned and temporally synchronized.

After an initial step of offline training on background-only frames, our online

algorithm consists of two main phases: layer labeling followed by depth denoising and

completion. In the first phase, each pixel of the incoming frame is labeled by different

layers via a probabilistic framework that incorporates a data measurement model

and a smoothing neighborhood model based on available observations. Maximum A

Posteriori (MAP) estimation is used in the labeling to prevent blurring along depth

discontinuities.
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In the second phase, the labels estimated in the first phase are used to steer

the removal of outlier and the completion of missing depth values, from either the

background model or from neighboring depth values with the same labels. The ro-

bust labeling allows us to preserve the shape of object boundary and prevent noise

propagation across objects with significant depth differences.

4.3.3 Layer-driven Stochastic Models of Depth Measurements

The probabilistic graphical model that describes the multi-layered RGB-D measure-

ment process is shown in Figure 4.6. Let G be the support of the 2D color and depth

images. At each pixel location s ∈ G, Xs denotes the latent random integer vari-

able indicating which layer the pixel belongs to. Xs can assume any value in the set

{−n′,−n′ + 1, . . . ,−1} ∪ {1, 2, . . . , n}. Negative numbers are layers from the static

background while positive numbers refer to layers in the foreground. The larger the

layer number is, the closer it is to the camera. The number of background layers n′

and the number of foreground layers n are determined based on the observed data

and are the same for all pixels. The approaches to estimate n and n′ will be described

in Section 4.3.3.

Spatially, a layer pixel is connected to its four closest neighbors, generically re-

ferred to as Xt. All the labels over the entire image thus form a Markov Random

Field (MRF) and the spatial relationship between adjacent labels is governed by an

edge factor ψ(Xs, Xt, fst), where fst is the measured similarity between the two pix-

els. Each layer label X also has its evidence potential function φ(Xs) based on the

measurement Bayesian Network (BN) shown in the lower half of Figure 4.6. As all
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Figure 4.6: RGB-D model: the smoothing term on top specifies the constraints
between neighboring labels while the data term below describes the measurement
process. Darken nodes are actual measurements, white nodes are hidden variables,

and square nodes are factors.

the measurements are made at the same pixel, the subscript s is omitted and φ(X)

is defined as follows:

φ(X) , P (X) · P (Ic|X) · P (M |X) · P (Id|M, θ,X) (4.1)

where

P (Id|M, θ,X) =∫
D

P (D|X)

∫
Zd

P (Id|Zd,M)P (Zd|D, θ) (4.2)

Ic represents the observed color values. D represents the true but unobserved depth

values. D is corrupted by an additive Gaussian noise which produces a noisy mea-
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surement Zd. The noise variance is determined by the closeness measurement θ to the

nearest edge. Due to the missing depth problem, Zd may not be directly observable.

We thus introduce an observable depth indicator random variable M which is 1 if

the depth value is observed and 0 otherwise. Combining these two random variables

results in the observable depth value Id = MZd. Using this probabilistic model, layer

labeling can be formulated as a Maximum a posteriori or MAP problem:

XMAP
G , arg maxxG

∑
s

log φ(xs) +
∑

(s,t)∈G

logψ(xs, xt, fst) (4.3)

Our choice of parametrization allows ψ(xs, xt) and φ(xs) to be computed. While the

complexity of the exact solution to the MAP problem is exponential in the image

size, which is known to be NP hard. To improve the computation speed, various ap-

proximation algorithms have been proposed for a global optimization, such as Graph

Cuts, or Loopy belief propagation [97]. Here we used max-product based loopy be-

lief propagation to approximate the inference. One major reason of choosing it than

graph cuts is that belief propagation is more efficient in processing video sequence:

the output of previous frame can be used as the initial value of messages for current

frame, which makes the convergence speed improved.

Data Term

In building the data term for the graphical model, the four layer distributions P (X),

P (M |X), P (D|X), and P (Ic|X) are estimated based on both offline training data and

online data. The depth distribution P (D,X) = P (X)P (D|X) is modeled as a mix-

ture of Gaussian (MOG) model while the color distribution P (Ic, X) = P (X)P (Ic|X)
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is modeled as multiple color histograms on the quantized HSV space, one for each

layer. The observable depth indicator distribution P (M,X) = P (X)P (M |X) is based

a simple Bernoulli distribution for each layer. In fact, the parameter estimation for

the depth indicator is a simpler version of the color distribution. As such, our dis-

cussion will focus on the depth and color distributions. The parameter estimation

process is summarized in Figure 4.7.

Figure 4.7: Parameter estimation for depth and color layer distributions

During the offline training phase, we estimate the parameters for the negative

(background) depth layers based on a set of training RGB-D frames of the static

background. There are two phases of the estimation: global estimation and local

adaptation. During the global estimation, all the pixels with both color and depth
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measurements will be aggregated to estimate a single pair of P (D,X) and P (Ic, X)

using the Expectation-Maximization (EM) approach. P (D,X) is initialized by K-

means and P (Ic, X) is initialized as an uniform distribution. It is important to note

that the concept of layers is based only on depth but not on color. As such, the

EM process is primarily driven by the depth data in the sense that the E-step only

estimates the layer posterior P (X|D) for the depth but not the color. During the

M-step, we use the depth data to update the estimates for the layer prior P (X) and

the depth layer conditional P (D|X), only use the color data to update the color layer

conditional P (Ic|X) using the posterior probability P (X|D) of the co-located depth

pixel. As a result, two pixels with the same color value can have different contributions

to different layers. Different number of layers are tested and the optimal number n′ is

determined by using the Bayesian Information Criterion (BIC) on the depth data [98].

The example in Figure 4.7 shows this first step to have two separate background

layers and obtain the global color and depth models. In the second phase, the global

distributions are adapted to each individual pixel by using only the temporal data at

that pixel location. Sequential exponential weighing scheme is used for the adaption.

For example, the local mean for layer Xs = i at location s is updated by a new depth

value dnew as follows:

µ
(t+1)
s,i := λP (t)(Xs = i|Ds = dnew) · dnew

+
(
1− λP (t)(Xs = i|Ds = dnew)

)
· µ(t)

s,i (4.4)

t represents the iteration step and λ controls the rate of adaptation which is empir-

ically set to 0.3. All the other parameters are updated in a similar fashion. Similar
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to the global distributions, the two layer conditional probabilities are updated based

on the corresponding color or depth data. The layer prior is updated using the depth

data if available, or the color data if the depth data is missing. After the adaptation,

the parameters can better describe the characteristics of the local pixel – Figure 4.7

illustrates this idea where the local depth distribution Ps(D) and the color posterior

Ps(X|Ic) clearly indicate that this pixel is more likely to belong to layer -1.

The foreground layer distributions are estimated online. To deliver a real-time re-

sponse and cope with fast moving objects, the foreground distributions are estimated

for every frame. As no temporal data is maintained, we only estimate global distribu-

tions using an approach identical to that of the background global distribution. The

training data are obtained based on only those pixels with valid depth measurements

and very low background posterior probability, i.e. maxi=1,...,n′ Ps(Xs = −i|Ds) < ε

for a small fixed ε. To obtain the full range of P (X), P (D|X), and P (Ic|X), we also

need prior probabilities for foreground and background. We simply set them to be

equally likely for our experiments though better performance may be possible with

more foreground training data. In Figure 4.7, the foreground components of the layer

distributions are in red color.

Next, the noisy depth measurement Zd is modeled based on an additive Gaussian

model:

Zd , D +N, with N ∼ N (0, σ2
θ) and N ⊥ D. (4.5)

The noise standard deviation σθ reflects the uncertainty in the depth measurement.

As argued in Section 4.3.1, erroneous depth measurements occur predominantly near
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object boundaries. To model this effect, we apply an edge detector on the depth map

and use the spatial distance θ to the closest depth edge as a reliability measure. The

noise variance σθ is modeled as a deterministic logistic function given below:

σθ :=
a

1 + e−(bθ−c) (4.6)

a and b are constant scaling parameters. c/b is a distance threshold beyond which the

depth value is relatively noise free. This simple model is easy to compute, though a

more sophisticated one incorporating surface normal, texture, and color can be used

in a similar fashion.

Finally, we present a simple approach to evaluate the integrals in Equation 4.2.

Note that the actual depth measurement Id = MZd implies that P (Id = id|Zd =

z,M = m) = δmid(z), the dirac delta function with the only non-zero value at z =

mid. Substituting this into (4.2) results in the following simplification:

P (Id = id|M = m, θ,X = x)

=

∫
e

P (D = e|X = x)P (Zd = mid|D = e, θ) de

= P (Zd = mid|θ,X = x) (4.7)

Given X = x, Zd and D are multivariate Gaussian with the following distribution:Zd
D

∣∣∣∣∣∣X = x ∼ N

µx
µx

 ,
σ2

x + σ2
θ σ2

x

σ2
x σ2

x

 (4.8)

Thus, Zd|X = x ∼ N (µx, σ
2
x + σ2

θ) and (4.7) can be numerically evaluated.
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Smoothing Term

For the spatial MRF, the edge potential ψ(Xs, Xt) is defined based on the similarity

in color and depth between the neighboring pixels:

ψ(Xs, Xt, fst) ,

 fst for Xs = Xt,

1
n+n′

[1− fst] otherwise
(4.9)

The similarity strength fst is a feature based on how close the color and depth of the

neighboring pixels are. It is modeled using the following equation:

fst = max{α exp(−Cst) + (1− α) exp(−Dst), nf} (4.10)

The color similarity ratio Cst and the depth similarity ratio Dst are defined in a

similar fashion [99]:

Cst =
‖ Ic(s)− Ic(t) ‖2

kc
〈
‖ Ic(s)− Ic(t̃) ‖2

〉 (4.11)

Dst =
|Id(s)− Id(t)|2

kd
〈
|Id(s)− Id(t̃)|2

〉 (4.12)

〈·〉 denotes the average operator. t̃ represents any one of the eight neighboring pixels

of s (including pixel t). kc and kd are normalization constants so that the two terms

are of the same range. nf is the minimum similarity to prevent the potential function

from becoming zero. If either depth measurement is not present, nf will be used.

The parameter α ∈ [0, 1] is a trade-off between depth and color information. If

the depth measurements are reliable, most of the weight should be assigned to depth

values as they are more reliable for foreground/background labeling; if the depth

measurements are unreliable, they should not be used at all in computing the edge

potential. Similar to the approach used in Section 4.3.3, α is defined as the logistic
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function of the distances θs and θt of the two neighboring pixels to the closest edge:

α , f
(
θs+θt

2

)
with f(θ) , 1

1+e−(bθ−c) (4.13)

Depth Image Completion

After assigning each pixel with a layer label, we need to identify erroneous depth

measurements and complete missing depth values. The erroneous depth values are

essentially outliers that are significantly different from other depth values in the

neighborhood. However, as most measurement errors occur around object boundaries,

it is imperative not to mistake true depth discontinuities as wrong depth values. The

layer labels allow us to separate pixels that are likely to have come from objects at

completely different depths. To determine if a depth pixel is an outlier, we robustly

estimate the depth distribution in the neighborhood around the pixel via a RANSAC-

like procedure. First, we only consider depth values in the neighborhood that share

the same label as the target pixel. Then, multiple small sets of random sample

pixels are drawn and a Gaussian distribution is estimated for each set. If only a

small fraction of the neighborhood can be fit within two standard deviations from

the mean of a sample distribution, this distribution is likely to contain outlier samples

and is thus discarded. Among those that survive the robustness test, the one with

the smallest variance is used and the target depth pixel is declared an outlier if it

is beyond two standard deviations from the mean. The outlier depth pixel will join

the rest of the missing depth pixels and will be completing using a joint color-depth

bilateral filtering scheme similar to that in [56]. The only difference is that we only
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consider the contributions from neighboring depth pixels that have the same layer

label as the center pixel.

4.4 Offline Background Scanning

For the off-line background scanning, our scheme is based on a variation of Kinect

Fusion method as proposed in [2]. The scanning process involves moving an RGB-D

camera to capture a sequence of RGB-D frames of the entire background environment.

The heart of the scanning process is a voxel data structure called the truncated signed

distance function or TSDF [100]. The TSDF structure can be used to aggregate mul-

tiple depth images into the same coordinate system and to generate 3D point clouds

for rendering. Iterative Closest Point or ICP algorithm is used to estimate online the

camera pose for each new depth image by computing a rigid transformation between

the depth image with that predicted based on all the data already accumulated in

the TSDF structure.

However, it is problematic when the above method is used in scanning large planar

regions such as wall surfaces in a room. The lack of depth variations on planar surfaces

makes the camera pose estimation an ill-conditioned problem. Figure 4.8a shows a

virtual view of a wall rendered from a 3D structure created by applying the ICP

algorithm from [2] to align 50 frames of moving depth images. One can clearly see

that the scene points are grossly misaligned. The misalignment is caused by the

failure of ICP in identifying correct correspondences between planar point clouds of

successive frames. Such misalignment errors accumulate over multiple frames, making

it impossible to process a longer sequence. This is a significant shortcoming of ICP
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as planar surfaces are common in indoor environments. In Section 4.4.1, we first

explain why existing 3D scanning techniques often yield unsatisfactory results for

planar surface. The details of our scheme for improving the accuracy are presented

in Section 4.4.2

(a) (b)

Figure 4.8: Comparison results of scanning planar surface: (a) result by [2] (b)
result by our method

4.4.1 Problem Definition

To understand the problem on aligning planar surfaces, let us first review the basic

procedure of ICP as summarized in Algorithm 1 [101]. Given two consecutive frames

of 3D point clouds Ft−1 and Ft, at each iteration s, the algorithm refines a rotation

matrix R(s) and a translation vector t(s), which are applied to Ft to best align each

point in Ft−1 to its closest point in Ft. The empirically-determined parameter ε

excludes correspondences that are too far apart to be considered as reasonable.

When ICP initially identifies the closest points between the two point clouds,

there could be many false correspondences. The goal of ICP is to improve these

correspondences by moving two point clouds closer to each other in each iteration.

However, the above procedure may fail if the majority of the 3D points fall on a planar
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Require: Ft−1 = {p1, p2, ... , pm} ∈ R3

Ft = {q1, q2, ... , qn} ∈ R3

1: Initialization:
s := 0 and F (s) := Ft

2: Identify closest points: ∀pi ∈ Ft−1

di := minq∈F (s) ‖pi − q‖2

f (s)(pi) :=

{
arg minq∈F (s) ‖pi − q‖2, di ≤ ε
unmatched, otherwise

3: Find R(s) and t(s) to minimize the average of
‖pi − (R(s) · f (s)(pi) + t(s))‖2

2

among all pi’s with a matching f (s)(pi)
4: Refinement:

F (s+1) := {q′i : q′i := R(s) · qi + t(s)}
5: s := s+ 1
6: Go back to step 2 until error in step 3 is below a threshold

Algorithm 1: ICP

surface. This is illustrated in Figure 4.9. The red points from each plane indicate

the true correspondences. But the closest-point search wrongly assigns the green

points from Ft−1 to match the points in Ft. If there were significant depth variations

among the 3D points, no rigid transformation could produce a good match between

these wrong correspondences and step 3 of the ICP algorithm merely produces a

transformation that moves the two clouds closer. However, for a planar surface, these

wrong correspondences may lead to a wrong rigid transformation that can completely

align the two planes. The lack of depth variations prevents the in-plane rotation and

the translation along the x − y plane to be effectively estimated. As such, we have

an underdetermined system and the ICP prematurely terminates without providing

the true alignment. Notice that such misalignment errors accumulate over time and

thereby significantly affect the subsequent reconstruction of the 3D structure.
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Figure 4.9: How ICP fails to align planar structures

4.4.2 Proposed Background Scanning Pipeline

Figure 4.10 is an overview of our proposed Background Scanning system. Our cam-

era pose estimation starts by first extracting the SIFT features from the color frames

and searching for the closest match between frames [102]. If all the SIFT feature

points fall on the same plane, the matching correspondences between frames would

be related by a planar homography. However, if the scene structure is more complex,

we need a more robust procedure to identify the subset of correspondences that could

fit well within a planar homography. To this end, we use a RANSAC-like procedure

to identify such a subset and to estimate the optimal homography between corre-

spondences [103]: all the correspondences are first used to estimate a homography

matrix. We then apply the estimated homography to map one set of points to the

other and eliminate those pairs that are too far apart. We repeat this process until

it converges to a stable subset of correspondences that are well described by a single

homography matrix. Then these corresponding pairs, along with the associated depth

measurements, are projected back onto the 3D space to be used as the initial point
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Figure 4.10: Overview of our background scanning system

correspondences for the ICP algorithm.

Note that the SIFT correspondences are based on the current and previous color

frames captured by the camera while the ICP is used to align the current depth frame

with the TSDF voxel structure. Thus, we need to first raycast the TSDF structure

using the estimated camera pose of the previous frame to recreate the point cloud

from that frame: given a TSDF structure, we can generate the depth map by first

raycasting from the optical center of the virtual camera and traversing through the

voxel structure. We adopt the fast voxel traversal algorithm in [104]. A visible surface

point is identified when the ray passes through a zero-crossing region in which the

distance values change from positive to negative. Truncated values are skipped over

to decrease the voxel traversal time. Once the zero crossing region is identified, linear

interpolation is utilized to predict a surface point based on the TSDF values of the
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two boundary voxels. All the identified surface points form a 3D point cloud as if

they were captured from a virtual depth camera placed at (X, Y, Z).

This step serves two different purposes: first, it allows us to generate the viewpoint-

dependent mirror view which will be merged with the dynamic view captured by the

stationary RGB-D camera network. Details of this process are described in Sec-

tion 4.5. Second, it provides a reference 3D point cloud that can be used to estimate

the unknown camera pose of the moving RGB-D camera during the background scan-

ning.

After the recreation of the point cloud from the previous frame Ft−1, we match it

with the transformed point cloud of current frame Ft (the transformation R(s) and t(s)

are estimated directly from the SIFT correspondence). To ensure a robust matching,

we again use RANSAC to find the inliers as a subroutine within ICP – outliers are

iteratively removed if they do not agree with the estimated transformation until the

procedure converges to a stable set of correspondences. In each iteration of ICP, R(s)

and t(s) are updated by minimizing the combined point-plane energy for all existing

point-pairs between Ft and Ft−1. The projective data association method in [2] is

utilized to find point correspondences. After the alignment, we can then proceed to

update the TSDF structure using the current frame data: an exponentially weighted

average is applied to the TSDF value at each voxel that is sufficiently close to a 3D

point from the current frame. This averaging helps to remove noises inherent in the

depth image data and multiple passes of all the depth images are usually required to

produce a consistent and stable TSDF structure.
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4.5 System Integration and Mirror Image Synthesis

The overall implementation framework of the proposed mirror rendering system is

shown in Figure 4.11. There are four main components in the system:

1. Background Scanning

2. Depth Denoising and Completion (DDC)

3. Data acquisition and Mirror-view Generation (DMG)

4. Final View Synthesis (FVS)

The background scanning, as described in Section 4.4, is an off-line process that

builds the 3D model of the background. To support large mirror display and to

cope with the high on-line computation complexity of the remaining processes, we

adopt a server-client distributed architecture. Each RGB-D camera is connected to a

client computer which runs the DDC and DMG modules. The DMG module receives

the input from the RGB-D camera and forwards the data to the DDC module for

preprocessing as described in Section 4.3. The processed results are sent back to

DMG for generating 3D points and rendering mirror views. These rendered views are

delivered to the centralized server where the FVS module synthesizes the final image

for display. Details of DMG and FVS are described below.

For each RGB-D camera, the DMG uses the camera’s intrinsic parameters to

obtain a 3D point for each depth pixel by applying the inverse camera projection

operator. An off-line calibration process is used to obtain the extrinsic relationship of

the depth camera with respect to the coordinate system of the color camera. These
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Figure 4.11: RGB-D framework for Virtual Mirror System

extrinsic parameters allow us to associate each color pixel value with a 3D point.

As a result, each client’s DMG provides a set of colored 3D point cloud in the form

of a 6D-tuple (X, Y, Z,R,G,B). As there are multiple RGB-D cameras, we need to

transform the 3D point cloud of each client to a common coordinate system. We

choose one color camera (camera 1) as the reference coordinate origin. For each of

the remaining color cameras i, we estimate the rotation matrix R1i and translation

vector T1i with respect to the reference camera using the standard camera calibration

toolbox. These extrinsic parameters are shared among all client’s DMG’s which will
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apply the transformation on their own point cloud:
X ′i

Y ′i

Z ′i

 = R1i ·


Xi

Yi

Zi

+ (−R1iT1i)

where (Xi, Yi, Zi)
T represents a 3D scene point computed from the ith color camera.

(X ′i, Y
′
i , Z

′
i)
T represents a 3D point in the reference coordinate system.

To provide viewpoint-dependent viewing, each client’s DMG also tracks the view-

point of the viewer. As our display only renders a monocular view, we track the

mid-point between the two eyes of the viewer. We adopt the scheme in [105] to de-

tect the image positions of the eyes on each RGB frame and to temporally track the

center of these two detected positions with a Kalman filter. The final 3D coordinate

of the viewpoint is then estimated to be the 3D point that minimizes the sum of

distances to the line formed between the optical center of each camera and the center

of the two eyes on the camera plane. The last step is performed at the server’s FVS

which will broadcast the final estimate back to all the clients for rendering.

After obtaining the transformed RGB-D data and the estimated viewpoint, the

next step is to render the mirror image from an arbitrarily-positioned virtual plane

mirror onto the display surface. For each 3D scene point, the rendering step is

equivalent to identifying the reflection point on the mirror and the display point on

the display surface. The identification of the reflection and display points can be

viewed as two consecutive virtual camera projections as shown in Figure 4.12. The

reflection point can be viewed as the projection of the scene point onto a virtual

camera, denoted as “Virtual Camera 1” in Figure 4.12, with the image plane at the
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mirror and the optical center at the mirror image V ′ of the viewpoint V . The display

point is the projection of the reflection point onto another virtual camera, denoted

as “Virtual Camera 2” in Figure 4.12, with the image plane at the display plane and

the optical center at V .

Figure 4.12: Modified camera projection models for display rendering

Thus, the rendering problem boils down to estimating the camera projection ma-

trix for each of the two virtual cameras. The approaches to estimate the camera

matrix for both cameras are identical, and we use the display surface camera as an

example. The focal length f is simply the distance between V and the display sur-

face. The image center (cx, cy) on the display plane is the perpendicular projection

Vp of V on the display plane relative to the top-left corner G1. As for the extrinsic

parameters, the rotation matrix R can be inferred by the orientation of the display
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plane. For example, the plane normal is computed as −→n =
−−−→
G1G2×

−−−→
G1G2. R is deter-

mined according to the angle subtended by −→n and the Z axis in the world coordinate

system. The translation T can be computed directly based on the distance between

V and the origin of the world coordinate system.

Once all the above parameters are computed, the corresponding image on the

display can be rendered based on the display points, denoted by S ′′. For each pixel

on the display surface, there might be zero to multiple corresponding display points.

If there is only one display point, that pixel will assume the color value associated

with the corresponding 3D scene point S. If there is more than one display point, they

can either be from the same 3D scene point but originated from different cameras, or

they can be different scene points that fall on the same 3D ray V ′′. For the first case,

their depth values would be close to each other. For the second case, their depth

values would be far apart and the one closest to the mirror would occlude the rest.

This suggests a simple procedure of first clustering all the scene points that share

similar depth values and then selecting the group that is closest to the mirror. To

compute the final color among all points in the winning cluster, we use the scheme

of winner takes all to select the one that best aligns with the viewpoint [106]. To

handle the occlusion issue, a z-buffer value is also computed for each pixel defined as

the distance from the corresponding scene point to the mirror image of the viewpoint.

Finally, each client DMG sends its mirror image and z-buffer image to the server

FVS for rendering. At the FVS, it also uses the stored background model to create

the associated mirror and z-buffer images. The FVS then traverses each pixel on all
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the mirror images and uses the accompanied z-buffer as a guide to determine the

rendering order. We separate the rendering into two phases based on the z-buffer

values – those that are at or closer than the foreground viewer and those that are at

the background. These two sets typically have very different z-buffer values. The FVS

first starts with the latter group with scene points that are far away and performs

interpolation on both depth and color values to fill in small gaps. These interpolated

values are inserted back to the other group as if they are from the true 3D point

clouds. In the second phase, the FVS will render all the foreground pixels, select

the correct color value based on both 3D point clouds and interpolated results, and

finally perform one more round of interpolation just on the color values. Such a

layered approach provides sharper object boundaries than a simple interpolation on

the color image as it respects the inherent depth values. It is possible to increase the

number of depth levels to create a better rendering, but two levels are sufficient for

our application.

4.6 Experimental Results

A number of experiments are conducted to demonstrate the effectiveness and accuracy

of our proposed system. We first compare the proposed depth denoising and com-

pletion algorithm with other state-of-the-art schemes to demonstrate its performance

in providing high-quality depth images. We then present results on our background

scanning procedure. For the experiments on the entire virtual mirror system, we

measure the rendering accuracy with a real mirror and present the improvement of

the rendering results with depth denoising and background scanning. Computational

81



Table 4.1: Time Performance Evaluation

Component Time (seconds)

Data Term 0.115
Smoothing Term 0.032

EM Iteration 0.095
LBP Iteration 0.641

performance of the mirror system is also measured and presented.

4.6.1 Evaluation of Depth Denoising and Completion

We use a Microsoft Kinect (model LPF-00004) with the PrimseSense driver [107] to

capture depth and RGB images at a resolution of 640×480. The proposed algorithm

is implemented in C++ with the OpenCV library. The experiment is conducted on a

computer with the following hardware settings: Intel Core(TM) i7-2820QM CPU at

2.30 GHz and 8.0Gb of RAM. For the static background training, we captured 100

images for each scene to obtain the background color and depth statistics. The speed

performance for each component of our system is shown in table 4.1.

Figure 4.13 shows a simple example with one foreground and one background

layer. We can see that the background wall is clearly visible between the foreground

leaves and the rapid spatial changes of depth layers lead to significant measurement

error shown in the original depth image in the top right. Our algorithm correctly

identifies the number of layers and produces an accurate segmentation mask in the

bottom left. Guided by this segmentation mask, our algorithm corrects and completes

the depth values in the bottom right.

Figure 4.14 presents a more complex example with two foreground and two back-
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Figure 4.13: Scene with Two Layers: input RGB and depth images (top); layer
labeling result and completed depth steered by layers (bottom).

ground layers. The two foreground layers are the head model (layer 2) as well as the

books and the ball (layer 1). The two background layers are the white board and the

table (layer -1) as well as the rest of the region (layer -2). Notice that each layer can

have objects of varying depths. The curves and straight lines from different objects

are well preserved in the output result shown in the bottom right.

We have also compared our scheme with other works. In particular, we have

chosen [1] which represents one of the most recent efforts in using joint color-depth

bilateral filtering for depth completion, and [3] which uses a similar MRF as ours

in providing spatial smoothing. Figure 4.15, 4.16 presents a side-by-side comparison

between these methods and ours. We have selected two sequences for comparison.
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Figure 4.14: Scene with Multiple Foreground and Background Layers: input RGB
and depth images (top); layer labeling result and completed depth steered by layers

(bottom).

Except for the last row, the original data is shown in the first column, results from

[1] in second, [3] in third, and ours in the last column. Two scenes are used in the

experiments. The depth maps of the two scenes are shown in the first and third rows.

To highlight the differences in depth completion, we generate a set of arbitrary views

based on the produced depth image and the RGB image, which are presented in the

second and fourth rows. In the last row, we zoom in on the rendered views and add

pre-captured static background to fill the occluded regions.

The results from [1] are shown in the second column. As shown in the depth maps,

this approach enlarges the foreground shape by attaching unrelated pixels around ob-
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Figure 4.15: Comparison with other schemes. From left to right: input images
together with our layer labeling, results from Camplani et al. [1], results from

Diebel. et al. [3], and our results.

jects’ boundaries. The wrongly assigned depth values move some of the background

pixels to the foreground or vice versa. This error is clearly noticeable in the rendered

virtual views – in the second row, a significant number of wall pixels present around

the boundaries of the person’s hair and arm. In the fourth row, the contours of the

fingers are poorly inferred. Small gaps between fingers are naively wiped out due to

erroneous color similarity or depth. Results from [3] in the third column have better

contour than [1]. However, the MRF blurs the boundaries between foreground and

background by generating intermediate depth values. From the virtual views, these

intermediate depth values can be seen spreading across the space between the fore-

ground and background. In contrast with these two schemes, our proposed method

produces superior results. The depth completion steered by layers can better pre-

serve the shape of object boundary and prevent noise propagation across objects
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with significant depth differences.

Figure 4.16: Comparison with other schemes. From left to right: input images
together with our layer labeling, results from Camplani et al. [1], results from

Diebel. et al. [3], and our results.

4.6.2 Off-line Background Scanning

Figure 4.17 shows two examples of our off-line scanned backgrounds with a voxel size

of 10× 10× 10 mm. The indoor environment is scanned by a moving Kinect and is

presented here as a 3D point cloud from an arbitrarily-placed virtual camera position.

In terms of computation complexity, the only additional steps compared with [2] is

the SIFT extraction and RANSAC matching, both of which can be run faster than
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real time. Using the parallel computation strategy as described in [108], our system

can achieve real-time performance.

(a) (b)

Figure 4.17: Scanned background

To give a better analysis of the proposed method, we concentrate on the planar

areas of the scanned environment and compare the reconstructed results with the ones

by [2]. The reason for choosing [2] for comparison is that it represents a relatively

popular approach that has been adopted by many other literatures [109, 110]. In

Figure 4.18, the images are rendered by projecting the reconstructed 3D data to an

arbitrary virtual view. Our results have significant improvements over the original

scheme through a better preservation of the texture information on the planes. In

particular, the text on the posters is clearly legible in the virtual views.

For quantitative evaluation, we compare the estimated camera poses and locations

against the ground truth, which is manually measured. We first use the Kinect

to scan the environment against a predefined path. Along the path, we pick 10

arbitrary positions and physically measure the relative translation T and rotation R

of the cameras on each spot. According to the manual measurements, a sequence
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(a) (b)

(c) (d)

Figure 4.18: Virtual views comparisons: (a) and (c) are the results by [2]; (b) and
(d) are the corresponding ones by our method.

of cameras are plotted in the 3D space as green cameras in Figure 4.19a. Based on

the associated frames on the spots, two sequences of transformations are estimated

respectively by our proposed method and [2]. Their results are shown in the same

figure. For demonstration purpose, we arbitrarily raise the blue cameras (our result)

and cyan cameras ([2]) along the y axis by a fixed distance.

Figure 4.19b provides the top view of the results: the scan starts from the left

side along the x axis and ends in the z direction. The total path is about 3.5m.

For the first few camera positions, all the three results are aligned closely due to

the corresponding part of the captured environment involving considerable depth

variation. After the red boundary, the camera enters large plane regions (the indoor
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Table 4.2: Error analysis on transformation estimation

Category error T error R

By [2]
nonplanar 0.012m 0.208◦

planar 0.731m 39.20◦

Ours
nonplanar 0.009m 0.224◦

planar 0.024m 0.875◦

(a) (b)

Figure 4.19: Camera pose estimation results: the ground truth is physically
measured as the green cameras shows; the cyan cameras and blue cameras

respectively indicate the results by [2] and our method.

wall), which causes the estimated cyan cameras to mess up. In contrast, our results

are not affected by the planes and remain close to the ground truth.

Table 4.2 summarizes the estimation errors: the translation error T and rotation

error R are statistically computed in terms of the offsets from the ground truth when

the camera is scanned with a movement of 1.0m. The analysis is conducted by two

different occasions depending on whether the scanned environment has dominant

plane surfaces.

4.6.3 Rendering accuracy of the virtual mirror

In order to validate the accuracy of our mirror model, we compare the generated

virtual image I1 with a real photo I2 in Figure 4.20 taken by a digital camera looking
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at a real mirror which is aligned with the display. The camera is in the same position

as the asserted viewpoint that the mirror system uses for rendering. To compare

the virtual mirror image with camera captured real mirror image, we project the

captured mirror image on to the display plane by applying a homography using the

corresponding four corners.

To measure the rendering accuracy, 100 corner points are manually selected on I1

and I2 for analysis. To ensure that the exact pixel locations of the corners are used, we

compute the Normalized Cross Correlation(NCC) over a 3× 3 neighborhood around

each corner point and refine the corner position to that with the maximum local NCC

value. All the matching pairs of corner points are shown in Figure 4.20. The position

differences between the matching pair are indeed quite small – the mean is 1.4865

pixel with standard deviation 0.8156. The small position differences indicate that the

rendering is sufficiently close to a real mirror.

Figure 4.20: Selected points on rectified real mirror image (left) and virtual mirror
image (right)
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4.6.4 Quality Improvements on Mirror View Generation

To demonstrate the effect of adding depth denoising and background scanning to

our mirror system, we first compare the original captured images (see Figures 4.21a

to 4.21d) with the generated mirror views from the viewpoint of the subject with-

out using depth denoising and background scanning (see Figures 4.21e-4.21h). The

viewpoint rendering of the mirror views give the subject the illusion that the images

are always captured directly from the front face. However, noticeable artifacts can

be seen from those images. False outline of the person’s hair and finger regions are

visible near the top part of the images. These artifacts are caused by the erroneous

depth values which map some of the foreground pixels to the background. Figures

4.21i to 4.21l show the improved results using our depth denoising and completion

algorithm with all artifacts eliminated. Figures 4.21m to 4.21p use the same video

sequences captured by the stationary RGB-D cameras but move the virtual mirror to

different locations so that different parts of the background can be seen. Much of the

background is beyond the field of view of the stationary RGB-D cameras and relies

on the stored background model to fill in the missing details.

4.6.5 Virtual Mirror System

In this section, we present the results of our proposed virtual mirror system. Figure

5.1 shows the hardware setting. To fully capture the viewer and enhance the resolution

of the generated view, we place three Kinects around the display where virtual mirror

views are dynamically rendered. The results are demonstrated in Figure 4.22. Figures
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4.21: Mirror View Results I: the first row contains the original RGB frames;
the second row contains the generated mirror view by adding static background

with simple interpolation; the third row contains the improved mirror view by our
method of depth denoising and completion; the fourth row is the generated mirror

view with virtual background; Images from the same column correspond to the
same frame in the captured video sequence.

92



4.22a to 4.22c show the input data captured by three Kinects mounted on top left,

top right, and middle bottom of the display. Figure 4.22d is the synthesized frontal

mirror view of the viewer. We first use our foreground/background separation scheme

to extract the contour of the viewer from all the three input sources. Then the virtual

camera projection model, as described in section 4.5, is applied to transform those side

views into the front view. Since all the transformed views from the three inputs are

aligned in the same coordinate system, we can simply merge them together in pixel

domain. To ensure intensity consistency, we apply color transfer [111] on each view. In

Figure 4.22e and Figure 4.22f, the person is placed in a different virtual environment,

which is constructed off-line. Different 3D objects are inserted in the mirror views: in

Figure 4.22e, the viewer can see himself virtually wearing a hat; in Figure 4.22f, the

viewer hits a flying soccer ball with his head. In both scenarios, we use pose-tracking

to automatically move the object to different locations as if the viewer is interacting

with them. Figures 4.22g-4.22i demonstrate the virtual clothing effects by changing

the T-shirt color and placing the viewer in different virtual environments.

4.6.6 Computational Performance

We have a preliminary prototype mirror system with two RGB-D cameras imple-

mented using C++ and OpenCV library. Each Kinect captures 640× 480 resolution

video for scene points generation, and the local client renders the virtual image with

resolution 1024 × 768, which is the same size as the final image on the display. The

server and client machines are as follows:
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.22: Mirror View Results II: the first row shows the original input frames
from three Kinects: (a) left view, (b) right view, and (c) bottom view; (d) is the
synthesized foreground view from the subject’s viewpoint. (e)-(i) demonstrate

different virtual mirror views by using different 3D background and inserting novel
3D objects.

• Server : Intel Xeon E5335 processor with 4-core CPUs at 2.0 GHz and 4.0Gb

of RAM.

• Client : Intel Core(TM) E8400 Duo CPU at 3.00 GHz and 8.0Gb of RAM

The computation of the 2D and 3D transformations are accelerated by using

optimized matrix operations from the OpenCV library. It takes approximately 12 ms

94



to complete all the transformation for a 320 × 240 frame. For the depth denoising

algorithm, we take advantage of the multi-core architecture to compute the likelihood

function φ(Xs) and edge potential ψ(Xs, Xt) in four separate cores. This process takes

8 ms on average for each frame. The most computationally expensive part is the loopy

belief propagation, which takes 23 ms to complete. Combining all the processes, our

system can achieve real-time performance at 43 ms per frame or roughly 23 frames

per second.
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Chapter 5

3D Self Modeling

The use of a joint RGB-depth camera, like Kinect, allows us to capture the 3D

geometry and color of the environment. This can provide flexibilities for a user to

view self and behaviors dynamically from different perspectives. However, a camera

often has a limited field of view, which constraints the scale of arbitrary views. In this

chapter, I describe our calibration method for multiple cross-modal camera network

to obtain globally aligned 3D point clouds.

Our work is inspired by the significant trend in recent years of using low-cost

commodity depth cameras in different application fields including augmented reality,

stereo vision, video surveillance, 3D reconstruction. Depth sensors such as the Time-

of-Flight (TOF) and the Structured Light cameras can provide per-pixel depth value

at video frame-rate. However, these depth sensors often have low resolution imaging

and limited field of view. To resolve these limitations, multiple cameras are often

used simultaneously to widen the capturing field of view and enhance the resolution.

For example, it is common to rely on information obtained from companion RGB

cameras to predict missing depth values [52][72]. Furthermore, applications like 3D

reconstruction and surveillance require spatially disparate camera views to create

watertight models for rendering, body pose tracking and understanding.
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Figure 5.1: System setting for calibrating multiple color and depth camera network:
the first row shows captured images from color cameras; the second row shows the

ones from depth cameras.

As such, an accurate and robust calibration of multiple color and depth cam-

eras is essential for applications that rely on wide-baseline networks with multiple

color and depth cameras. However, it is challenging to calibrate a large network

so that pixels from multiple disparate camera views can be correctly aligned into a

unified coordinate system. There are three main challenges: first, the wide baseline

means that the overlapping areas between camera views may be small or non-existent,

thereby increasing the complexity of locating common features for calibration. Sec-

ond, the capture data from color cameras and depth cameras are vastly different,

and are distorted in their unique way: color cameras suffer from projective and lens

distortion while depth cameras have missing and noisy measurement around depth

discontinuities, transparent and reflective surfaces. Finally, multiple cameras are of-

ten cumbersome to setup and maintain. Thus, the calibration procedure should be

97



robust and easily adapted to changes in placement.

The main contribution of our method is a simple and robust framework for cali-

brating a network of multiple wide-baseline RGB and depth cameras that can produce

more accurate results than other state-of-the-art techniques such as the work done by

Herrera et al [68]. Our framework utilizes a spherical object for calibration and the

procedure can be summarized as follows. First, we propose an effective sphere-fitting

algorithm to identify the sphere centers in the RGB and depth images respectively.

Second, the extrinsics are automatically obtained based on the detected correspond-

ing sphere centers across different views. Two separate scenarios are considered in

our framework: RGB-and-depth calibration and depth-and-depth calibration. An

example of 3 RGB camera views and 3 depth camera views are shown in Figure 5.1.

5.1 Proposed Method

In our method, the correspondences are estimated based on the trajectory of the

center of a moving sphere. There are two reasons for choosing a sphere as a calibration

object. First, it is suitable for wide baseline: any part of the sphere can be used

to estimate the location of its center. As such, two cameras capturing different

sides of the sphere without any overlap in their fields-of-view can still use the sphere

center as a correspondence. Second, instead of using error-prone small features as

correspondences, we use the entire sphere to estimate the location of its center without

using any a-priori depth noise model for denoising.

For any camera pair, the extrinsics are determined by a translation vector t =

[tx ty tz]
T between the two camera centers and a rotation matrix R parameterized
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by the three rotation angles θx, θy and θz. With a set of estimated correspondences,

an over-determined system of linear equations relating all the unknowns can be built.

Solving this system gives us an initial guess of R and t between each camera pairs.

After estimating all pairwise camera poses, a global alignment scheme is applied to

refine the initial estimates so that they are consistent across the entire network.

Intrinsics parameters of all cameras can be easily obtained using existing calibra-

tion toolbox. To detect the sphere-center correspondences and estimate the extrin-

sics, different strategies for the RGB cameras and depth cameras are needed. In the

following subsections, we describe each case in detail.

5.1.1 Sphere Detection in Depth Image

In this section, we describe the algorithm to identify depth pixels corresponding to

the sphere and estimate the sphere center. First, all the depth measurements are

converted back to a local 3D coordinate system using the inverse camera projection

parameterized by the intrinsic parameters. Since the moving sphere belongs to fore-

ground, we first limit our search to foreground point-clouds which are identified as

those that are significantly different from a pre-captured static background. The fore-

ground pixels may include objects other than the sphere. To search for the sphere,

we coarsely partition all the foreground pixels into equal-size rectangular blocks so

that point clouds within each block are spatially close. For each block, we apply a

RANSAC procedure to iteratively identify all the 3D points that satisfy the surface

equation of a 3D sphere with radius matching that of the calibration object. We use

the direct least-square sphere fitting technique as described in [112]. Finally, we take
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the union of identified points over all blocks and fit a spherical equation over them.

The coordinates of the center can then be computed using the best-fit equation. Re-

peating the same procedure for each input frame yields the trajectory of estimated

sphere centers in the 3D space: {C0, C1, ..., Cn}, where Ci represents the 3D coordi-

nate of an estimated sphere center and the subscript i indicates the frame index in

the video sequence.

5.1.2 Sphere Detection in Color Images

For each input color frame, we first identify the foreground using the background

subtraction algorithm in [113]. Due to perspective distortion, the geometry of the

spherical calibration object alone is not enough for identification. Instead, we have

painted the object with a distinctive color that is not present in the background.

Based on the color distribution during off-line training, a rough sphere contour can be

approximated from the foreground mask. To accurately compute the sphere center,

we follow an approach similar to that in [114], which is based on the relationship

between the image of the sphere C and the IAC or Image of the Absolute Conic ω. The

IAC ω can be calculated using pole-polar relation with orthogonal constraints [60]: l =

ω ·v, where l and v are the polar and pole respectively. Let the camera intrinsic matrix

be K, the IAC is then given by ω = K−T ·K−1 [115]. In the dual space, the relation

between C∗ and ω∗ can be expressed as C∗ = K ·KT − c · cT and ω∗ = K ·KT where

c is the image of the sphere center. For any three frames from the captured video

sequence, we first fit the boundaries of all the three spheres (one from each frame) by

using the least-square approach [116]. The corresponding conic homography matrices
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can be computed as: Hc12 = C2 ·C∗1 , Hc32 = C2 ·C∗2 , and Hc31 = C1 ·C∗3 . For each of these

three conic homography matrices, its eigenvector and eigenvalue are computed. We

then choose the three eigenvectors that intersect their corresponding sphere image

pairs to obtain three polars l12, l23, and l31. The image of the sphere centers c1, c2,

and c3 from the three frames can then be computed as the intersections between the

three polars. By following the steps above, for a sequence of frames, we can obtained

the images of the sphere centers in 2D coordinate {c1, c2, ..., cn}. Figure 5.2 shows

the sphere detection results from the color cameras.

(a) Background subtraction (b) Foreground mask

(c) Canny edge detection (d) Final ellipse fitting result

Figure 5.2: Sphere detection from color camera captured images
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5.1.3 Calibration between two depth cameras

In this section, we describe how we compute the extrinsics between two depth cam-

eras. After the trajectory of the sphere center is detected from each depth camera, we

can use them as correspondences to estimate the rotation matrix R and translation

t between the coordinate systems of the two cameras. For the two depth cameras p

and q, we denote the two trajectories as {C(p)
0 , C

(p)
1 , ...C

(p)
n } and {C(q)

0 , C
(q)
1 , ..., C

(q)
n }.

Time synchronization is assumed between the two cameras but some of these mea-

surements could be empty as the sphere may not be visible in those instances. Thus,

the first step is to go over the two data sequence and filter out those frames that have

no sphere detected. To compute the unknown parameters, we also require at least

m > 6 correspondences. Our goal is to find R(pq) and t(pq) that satisfy:

[C(q)
s0

C(q)
s1
· · · C(q)

sm ]T

= R(pq) · [C(p)
s0

C(p)
s1
· · · C(p)

sm ]T + t(pq) (5.1)

Due to the orthogonality constraint on the rotation matrix R(pq), the usual SVD

approach does not necessarily produce the optimal solution. As such, we use the

least-square based method for determining rigid body transformation in [117] by first

computing the covariance matrix as follows:

A =
m∑
i=1

[(C(p)
si
− C̄(p)) · (C(q)

si
− C̄(q))T ] (5.2)

where C̄(p) = 1
m
·
∑m

i=1C
(p)
si and C̄(q) = 1

m
·
∑m

i=1C
(q)
si are the respective centroids of

the two correspondence sets. Then, we can compute SVD A = USV T and obtain
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R(pq) = V UT and t(pq) = C̄(q) − C̄(p). The output of this step is the set of extrinsics

between all adjacent pairs of depth cameras.

5.1.4 Calibration between depth and color cameras

As only the images of the sphere center can be estimated from a color camera, we

cannot apply the same approach in finding the extrinsics between a color camera and a

depth camera. An alternate constraint is required. Consider a pair of correspondence

between the 3D sphere center Ci from the depth camera and its image ci on the color

camera. Let the extrinsics that map the depth camera to the color camera be R

and t. Using the coordinate system at the color camera, the ray emanating from the

optical center of the color camera to ci is [ci fc]
T where fc is the focal length. This

ray is caused by the “light” reflected by the sphere center to the optical center, and

thus it must be parallel to R · Ci + t. This constraint can be captured in a cross

product equation as follows:

(R · Ci + t)× [ci fc]
T = 0 (5.3)

which holds for all correspondences i = 1, 2, . . . , n. Applying SVD on these equation

results in an optimal solution in terms of Rt from the decomposed matrices [U, S, V ].

To ensure the orthogonality constraint on the rotation matrix R, we can apply the

essential matrix E = [t]×R to further extract R and t.

5.1.5 Global Alignment

In this stage, we refine all the parameters estimated from previous steps to produce

jointly optimal viewing parameters, including intrinsics and extrinsics for all the
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cameras, and generate a unified 3D point cloud. Our global optimization algorithm

is derived from the idea of Bundle Adjustment (BA) [118], which is essentially a

parameter estimation problem using non-linear model and has been invariably used as

the last step for many 3D reconstruction applications. The goal of bundle adjustment

is to adjust the camera parameters that minimize the overall projection error between

the 3D points and the 2D correspondences. Mathematically, the original format of

BA can be expressed as the equation below [118]:

min
Pj ,X̃i

n∑
i=1

m∑
j=1

vijd(f(Pj, X̃i), x̃ij)
2 (5.4)

where i and j represent the indices of points and cameras. m and n are the total

number of cameras and points. The function f denotes the relation that maps 3D

point X̃i to 2D pixel x̃ij by the corresponding projection matrix Pj. The variable

vij ∈ {0, 1} indicates whether the point is visible by camera j. The function d denotes

the square Euclidean distance.

For our problem, we have a slightly different version from the original bundle

adjustment due to the special data types. As mentioned earlier, the input for this

stage is:

1. m1 sequences of 2D sphere center points fromm1 color cameras {cc1 , cc2 ..., ccm1
}.

Each ccj is a 3×n matrix, representing n 2D points in homogeneous coordinate

detected from a color camera cj.

2. m2 sequences of 3D sphere center trajectories fromm2 depth cameras {Cd1 ,Cd2 ...,Cdm1
}.

Each Cdj is a 4×n matrix, representing n 3D points in homogenous coordinate
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extracted from a depth camera dj.

3. Initial estimated intrinsic parameters for each camera: {Kc1 , ...,Kcm1
,Kd1 , ...,Kdm2

}.

4. extrinsic parameters based on rotation matrices {Rpq} and translation vectors

{tpq}, where p and q are any two different camera indices.

To register all the cameras globally, a referenced position is chosen as the world

coordinate origin. Based on the input 3) and 4), we can map the extracted 3D sphere

center trajectories to the world system. Meanwhile, for each camera, we can obtain

an initial camera projection according to the equation P = K[R|t]. So our bundle

adjustment equation can be developed as follows:

min
P,C̄

m1∑
j=1

wcjd(f1(Pcj , C̄), ccj)
2 +

m2∑
j=1

wdjd(f2(Pdj , C̄),Cdj)
2 (5.5)

There are two components in equation (5.5) with the first part for the color metric

and the second part for the depth metric. Function f1 is to map a 3D point to a

2D pixel on the color image: ĉcj = PcjC̄, where ĉcj represents the projection 2D

point. The variable C̄ is a 4× n matrix that stores the 3D coordinate of the sphere

center trajectory in the world coordinate. As an initial input, we simply transfer

all the extracted 3D sphere center trajectories from each local camera to the world

coordinate and take the average of them. For the function f2, different from f1, it

simply transforms C̄ from the world coordinate back to the camera coordinate. Since

the Rdj and tdj can be extracted from Pdj , we can obtain the transformed 3D points:

Ĉdj = R−1
dj

C̄− tdj . Since the error values are measured differently for the color and

depth data, we use the weight parameters wcj and wdj to control their contributions.
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To find the best solution of {Pc1 , ...,Pcm1
,Pd1 , ...,Pdm2

} and C̄, we need to find

the minimum value of the nonlinear least-square equation (5.5). The most standard

technique for solving nonlinear least-square problem is Levenberg-Marquardt (LM)

algorithm [119], which uses an iterative procedure to find a local minimum of a

multivariate function. LM can be considered as a combination of a steepest descent

method and the Gauss-Newton method. When the current configuration is far away

from a local minimum, the algorithm works like a steepest decent method which

is slow but always converges. Otherwise, when the current configuration is close

to a local minimum, LM has similar behavior as the Gauss-Newton method. For

our problem, from equation (5.5), we define a parameter vector ~P which can be

extracted from the projection matrix set {Pc1 , ...,Pcm1
,Pd1 , ...,Pdm2

} by stretching

each individual matrix in row-wise and concatenating them together. We denote this

mapping function as ψ:

~P = ψ(Pc1 , ...,Pcm1
,Pd1 , ...,Pdm2

)

= [P00
c1
,P01

c1
,P02

c1
, ...,P31

cm1
,P32

cm1
,P33

cm1
, ...,P31

dm2
,P32

dm2
,P33

dm2
]

(5.6)

where the superscript indicate the matrix element index. Now we can consider equa-

tion (5.5) as a new function ḟ parameterizing on the vector ~P that produces an

estimated measurement vector ~C:

~C = ψ([ĉc1 , ..., ĉcm1
, Ĉd1 , ..., Ĉdm2

]) = ḟ(~P) (5.7)

Our goal is to find the desired configuration for the vectors ~P and C̄ that minimize

the squared distance error:
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εT ε = min
P,~C

(ḟ(~P)− ψ(C̄))T (ḟ(~P)− ψ(C̄)) (5.8)

As there are two variables ~P and C̄ involved in this minimization problem, our

strategy is: during the iterations, these two variables are refined alternately. When

update the value for ~P, we consider C̄ as a constant variable. Then the updated ~P

is used to re-compute the value of C̄.

The basic principle of LM algorithm is to apply affine approximation to the func-

tion ḟ by finding an appropriate step value ∆~P around the current ~P, such that

ḟ(~P + ∆~P) ≈ ḟ(~P) + J∆~P (5.9)

where J is the Jacobian matrix of function ḟ . At each iteration, we need to find

a proper step value ∆~P that minimize ||ḟ(P) − ψ(C̄)|| ≈ ||ḟ(~P) + J∆~P − ψ(C̄)|| =

||J∆~P−ε||. According to the normal equation principle [120], the minimum is yielded

when J∆~P − ε is orthogonal to the column space of J:

(J∆~P − ε)J
T = 0 =⇒ JTJ∆~P = JT ε (5.10)

So by solving the equation (5.10), we can identify the step value ∆~P. In fact, for

the original Bundle algorithm, it is has a slight different version than (5.10) by in-

troducing damping term µ: (JTJ + µI)∆~P = JT ε. Users can refer [121] for further

details. By iteratively solving this equation, the step value ∆~P can be computed.

The steps of finding an optimal camera parameter vector P+ and a 3D point vector

C̄ is summarized in algorithm-2.
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Data: Estimated Camera Projection Matrices {Pc1 , ...,Pcm1
,Pd1 , ...,Pdm2

}
3D sphere center trajectory matrix C̄

Result: Optimized Camera Projection Matrices {P∗c1 , ...,P
∗
cm1

,P∗d1 , ...,P
∗
dm2
}

and C̄∗ minimizing ||ḟ(P)− ψ(C̄)||
initialization;
define minimum square error ε̂;
~P = ψ(Pc1 , ...,Pcm1

,Pd1 , ...,Pdm2
);

ε = ||ḟ(~P)− ψ(C̄)|| ;
while epsilon > ε̂ do

Solve (JTJ + µI)∆~P = JT ε;

if ∆~P < ε̂(ε̂+ ||~P||) then
break;

else
~P = ~P + ∆~P;

update µ; update C̄ by ~P;

end

end

{P∗c1 , ...,P
∗
cm1

,P∗d1 , ...,P
∗
dm2
} = ψ−1(~P); C̄∗ = C̄

Algorithm 2: Global Optimization Algorithm on Camera Parameters

5.2 Experiments

The Microsoft Kinect sensors, which have both RGB and structure-light depth cam-

eras, are used in our experiments. The experiment is conducted in an indoor environ-

ment with the size of 9.6m × 7.2m. Three Kinect cameras are mounted around the

capturing space. Each Kinect is connected to a separate computer. To ensure time

synchronization, we set up a local NTP time server to synchronize all computers.

We install a GPS Board at the time server which can output a precise PPS (pulse

per second) signal. After synchronizing with the local time server, offset of system

time among all computers are within 4 ms. Our system can achieve near realtime

performance on the captured 640 × 480 resolution video running on the computers

with the hardware setting: Intel Core(TM) E8400 Duo CPU at 3.00 GHz and 8.0Gb
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of RAM.

5.2.1 Surface Mesh

Our surface mesh generation is based on [122]. The surface are reconstructed by tak-

ing into account that the point cloud is organized in rows and columns, so adjacent

pixels’ points will be connected by triangles. Since a depth image’s size is 640*480,

each pixel P (x, y) in a depth image can generate triangle TA = [P (x, y), P (x, y +

1), P (x + 640, y)] and TB = [P (x, y + 1), P (x + 640, y), P (x + 640, y + 1)]. These

generated triangles are back-projected to our global space. A threshold Ts is used

to check length of triangle sides. If it is too large, the triangle will be discarded in

rendering process. The surface mesh usually have overlapping problems due to trian-

gles are generated from multiple camera, and it results in a nonuniform surface. The

overlapping triangles can be removed by projecting triangles generated by Camera Ci

to adjacent Cameras Ci−1 and Ci+1, such that the triangle from Ci which is located

on image space of Ci−1 and Ci+1 will not be rendered. Finally, we utilize the method

of re-triangulation to recover the boundary regions between two adjacent cameras. A

unified surface mesh created by multiple cameras is formed.

5.2.2 Qualitative Evaluation

We compare the performance of our system with the recent work in [68]. During the

calibration procedure, a checkerboard and a sphere are used separately to capture the

data as the input for [68] and our framework. In Figure 5.3, it shows the reconstructed

3D views of the indoor environment that are captured by three pairs of color and depth
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(a) Our results (b) Our results

(c) Our results (d) Herrera et al. 2012 [68]

Figure 5.3: Scene reconstruction results by using the estimated extrinsics.

cameras. Our results (shown on the left) achieve better accuracy in aligning multiple

views. By contrast, the method in [68] does not work well for the wide baseline

environment. One reason is that as the baseline gets wider, the checkerboard has to

be placed far away from each camera to make sure it is captured in multiple views.

This affects the captured image resolution and the correspondence matching between

different views. In figure 5.4,5.5, we show aligned view from multiple Kinects that

are registered via our estimated extrinsics. The results show satisfactory alignment

of the person’s face and body.
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(a) Aligned View from Multiple Kinects (b) View of Kinect 1

(c) View of Kinect 2 (d) View of Kinect 3

Figure 5.4: Example 1: multi-views and each individual views from different cameras

5.2.3 Quantitative Evaluation

For the quantitative analysis, we evaluate the two calibration components in our

framework: RGB-and-depth and depth-and-depth calibration, by comparing the es-

timated extrinsics against the ground truth, which is measured manually. For the

RGB-and-depth calibration, we use one Kinect’s RGB camera to align with another

Kinect’s depth camera. 18 pairs of color and depth images are captured from the

two cameras. For the translation vector t, the mean error along x, y, and z-axes is
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(a) Aligned View from Multiple Kinects (b) View of Kinect 1

(c) View of Kinect 2 (d) View of Kinect 3

Figure 5.5: Example 1: multi-views and each individual views from different cameras

3.374 cm with standard deviation 1.934 cm. For the rotation angles θx, θy, and θz,

the mean error is 2.661◦ with standard deviation 1.157◦. After aligning the color and

depth image, the average offset between the corresponding sphere centers is 4.325

pixels.

For the depth-and-depth calibration evaluation, we compare our results with the

ones by [68] against the ground truth. We place two kinects with a distance ranging

from 0.3m to 3m, and with the angles from 0◦ to 90◦. In table 5.1, it shows the

112



Table 5.1: Quantitative error analysis of depth-and-depth calibration. The
translation t is in centimeters. To save the table space, the decimal part is removed.

Ground Truth Ours by [68]

t1(30, 0, 0) t1(28, 2, 9) t1(33, 13, 1)
R1(0◦, 0◦, 0◦) R1(3◦, 2◦, 2◦) R1(2◦,−2◦,−1◦)
t2(135, 0, 120) t2(134, -2, 123) t2(187, 13, 93)
R2(0◦, 60◦, 0◦) R2(−2◦, 62◦, 3◦) R2(23◦, 47◦,−9◦)
t3(269, 0, 135) t3(265, -3, 132) t3(209, 8, 267)
R3(0◦, 90◦, 0◦) R3(1◦, 88◦, 0◦) R3(−34◦, 68◦, 26◦)

calibration results based on three different camera settings. We can find as the

baseline gets wider, the calibration error by [68] increases, while our method maintains

relatively consistent accuracy. Figure 5.6 demonstrates the aligned sphere paths that

are captured by three Kinects. By computing the distances between the aligned

correspondences, the root MSE can be reduced to no more than 2 cm.

Figure 5.6: Aligned sphere movement trajectories by using our estimated extrinsics
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Chapter 6

Conclusions and Future directions

In this dissertation, I have developed novel multimedia processing algorithms and

demonstrated the use of computational multimedia techniques in automatically gen-

erating video material for video self modeling intervention. The advantage of com-

putational techniques lies in its flexibility in creating unseen behaviors.

Two VSM based systems have been developed and evaluated. For the SpeakToMe

device, it is designed specifically for voice therapy and produces a video with the pa-

tient’s coarse voice replaced by a healthy voice. Experimental results have shown that

natural human voice selected through speaker similarity provides the best subjective

results. No additional benefit has been found by using voice conversion techniques

due to the inaccurate target models created with the coarse voice. Optimal align-

ment between the original and replacement speech has been accomplished through

a combination of automatic audio segmentation and lip-state extraction. Based on

the alignment, an adaptive re-sampling algorithm has been proposed to preserve the

motion energy during the lip-synchronization process. Extensive objective and sub-

jective evaluations have demonstrated the advantages of our design and a clinical test

is currently underway to study the effectiveness of our system in a larger scale.

For the Magic mirror system, we have presented a framework for rendering vir-
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tual mirror by fusing multiple color-and-depth cameras. Our system can be easily

implemented with modern PCs and commodity RGB-D cameras such as the Microsoft

Kinect. The initial depth data has been enhanced using a depth denoising and comple-

tion algorithm which takes advantage of a novel probabilistic background/foreground

separation to eliminate outliers and complete missing values. To support a large mir-

ror surface and wide viewing angle, an off-line background scanning is used to capture

the background environment. Dynamic RGB-D data captured by each client is used

to estimate the viewpoint and create a 3D point cloud to render a viewer-dependent

mirror image. The server aggregates all the partially rendered mirror images to

compute the final result. Experimental results have demonstrated its accuracy and

consistency with respect to a real mirror. Our current implementation can achieve

the real-time performance for low resolution frames. We are currently exploring GPU

implementation and algorithmic speedup on the multiple-round belief propagation in

depth denoising.

While our proposed systems are domain specific, we believe that the concept of

using multimedia techniques for video self modeling has far-reaching importance in

many different areas of health care and behavioral intervention. My future research

plan will continually focus on the Magic Mirror System by developing it to a more

practical stage and further exploring its therapeutic values for VSM.

1. The visual field of the mirror must be large, preferably room-size. This is

because many children with ASD are also hyperactive and have short attention

span. A large visual field allows the subject to not only explore the self-image,
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but also the environment and social partners.

2. A consequence of the hyperactivity and hypersensitivity commonly seen in chil-

dren with ASD is that it would be difficult to acquire proper training data to

build multimedia models for rendering.

3. Most children with ASD are visual learners and tend to concentrate on visual

details. Unwanted visual side effects caused by rendering delay and poor image

quality can be highly distracting.

4. In addition to plane mirrors, other types of reflective surfaces such as curved

mirrors, composite mirror systems or even arbitrary reflective surfaces such as

one side of a race car may enhance the interest level and prolong the attention

span of the subject.

6.1 Room-Size Virtual Mirror

These design objectives challenge the state-of-the-art technologies in visualization.

In this section, I address these challenges by proposing a novel design of a room-size

virtual mirror of arbitrary surface geometry. This design is illustrated in Figure 6.2.

In the small prototype discussed in Chapter 4, the cameras are located around the

display. Even with a relative small-size display (50” diagonal), the limited field of

view of the cameras and the short distance between the subject and the display result

in the rendering of only the top half of the mirror. In order to capture the full image

of a subject in front of a large display, the only feasible solution is to replace the

HDTV with a partially seethrough projector screen and place the cameras directly
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behind the screen. Researchers have tried different techniques in creating a see-

through display, such as half-silver mirrors[23], switchable liquid crystal diffuser[68],

holographic projection screens [80], and weave fabric screens [81]. The weave fabric

screen used in [81] is the preferred choice due to the relatively high percentage of

pass-through light flux and its independence on the polarity and angle of the incident

light. To prevent the light of the projector from entering the cameras, the combined

projector and cameras system must be synchronized so that they will not be turned

on at the same time. The consumer-grade Kinect devices do not support cross-device

synchronization and their capturing frame rate is too slow. Instead, I plan to use an

array of RGB cameras and two professional grade depth cameras to capture the light

field and detailed depth field of the subjects in front of the screen. These cameras have

much higher frame rates and can be easily synchronized with the projector. A network

of Kinect devices will be placed outside of the light path of the projectors to capture

the full view of the subject’s body and the ambient environment. Interference between

adjacent Kinects would be minimized through careful placement and calibration.
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Figure 6.1: Aligned sphere movement trajectories by using our estimated extrinsics

6.2 Curved Virtual Mirror

To simulate the mirror experience, the proposed camera-display system will capture

the 3D world, the viewer’s position, and then renders what a viewer should see on

a virtual mirror. The basic work-flow of our system is illustrated in Figure 11. The

process is fundamentally different from our earlier prototype in order to cope with

the rendering of curve surfaces. It is well known that for an arbitrary mirror surface,
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there are few viewpoints at which a single perspective image can be obtained [123].

Specifically, light rays emanating from a scene point may be reflected through multiple

paths towards the viewpoint, resulting in a so-called multi-viewpoint image. For

specific configurations such as a spherical mirror, the center is the only point that

can produce a singleviewpoint image. As such, using a virtual pinhole camera at the

viewpoint to render the mirror image as described in Chapter 4 is no longer applicable.

An alternative approach is to use the computer graphics approach of ray tracing by

following the light rays from the virtual camera center [124]. This is problematic

as a typical graphics rendering system requires a complete knowledge of the surface

meshes of the 3D world, and can easily determine if the light ray has hit an opaque

scene point. The depth cameras in our system only provide 3D point clouds. As

our 3D point clouds spread over many cameras, geometric registration followed by

surface meshing of all point clouds are computationally intensive and not suitable for

real-time implementation.

Instead, I plan to traverse each 3D point S in the cloud to find the correspond-

ing reflection point R on the mirror, which determines its reflection ray to hit the

view point V. The determination of the reflection point is typically formulated as

an iterated minimization problem based on the Snell law or the Fermat principle.

Significant speedup can be achieved by pre-computing surface properties of the vir-

tual mirror [125], restricting to special surfaces such as a quadric mirror [126], and

taking advantages of the fast processing pipeline of GPUs. Once the reflection point

is obtained, we can compute the intersection point P between the display surface and

the light ray RV to determine the image location of the scene point. A Z-buffer is

119



Figure 6.2: Aligned sphere movement trajectories by using our estimated extrinsics

used to determine if S is not occluded and indeed visible to the viewer based on the

depth value. After identifying the closest scene point S, the light ray SR will be used

to access the light field captured through the array of camera networks. The concept

of light field was proposed by Levoy and Hanrahan [127] as a simplified 4D represen-

tation of the Plenoptic function. It has been extensively used for various real-time

image-based rendering tasks of dynamic scenes [128][129]. Here we can use the light

field to interpolate the closet spectral radiance as viewed by the subject at viewpoint

V.
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6.3 Self/Other Cognition in ASD

We believe that the virtual mirror system may be helpful in understanding some of

the self/other social deficits associated with ASD. Many children with ASD appear

to be highly interested in their own image in mirrors (in contrast to their typical

lack of interest in social interactions). This is presumably due to the fact that im-

ages/actions in mirrors have a 100 percent contingency with one’s image/actions and

provide immediate and sustained feedback. Additionally, children with ASD appear

to respond well to others imitating their actions (e.g., [92]). The Virtual Mirror will

allow us to take advantage of both of these factors to enhance the understanding of

self/other in children with ASD, resulting in superior social functioning. Success in

this venture will indicate that the self/other system in ASD is amenable to modifi-

cation, and suggest that a fundamental deficit in ASD is subject to environmental

modification. More specifically, success in enhancing social behavior in children with

ASD by contrasting their own image versus the images of another person imitating

them will support the hypothesis by Lombardo et al. [16] that a key aspect of ASD

is the failure to adequately understand “self” as an autonomous being in the social

world.

The Virtual Mirror will be used to substitute the child’s own image with another

person’s image resulting in real time imitation which will provide immediate and con-

tingent feedback. Whereas individuals with ASD do not normally attend to others,

the immediate feedback and contingency provided by the Virtual Mirror should en-

hance their interest and enable them to attend to another person imitating them in
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the mirror. Moreover, back-to-back contrasts of ones own image with that of another

individual made possible by the Virtual Mirror might enhance the understanding of

the self/other distinction. So my next step is to test these possibilities and explore

further of the therapeutic value of virtual mirror.
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