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Abstract—With increasing importance given to tele-
rehabilitation, there is a growing need for accurate, low-cost, and
portable motion capture systems that do not require specialist
assessment venues. This paper proposes a novel framework
for motion capture using only a single depth camera, which is
portable and cost effective compared to most industry-standard
optical systems, without compromising on accuracy. Novel
signal processing and computer vision algorithms are proposed
to determine motion patterns of interest from infrared and
depth data. In order to demonstrate the proposed framework’s
suitability for rehabilitation, we developed a gait analysis
application that depends on the underlying motion capture
sub-system. Each subject’s individual kinematics parameters,
which are unique to that subject, are calculated and these are
stored for monitoring individual progress of the clinical therapy.
Experiments were conducted on 14 different subjects, 5 healthy
and 9 stroke survivors. The results show very close agreement
of the resulting relevant joint angles with a 12-camera based
VICON system, a mean error of at most 1.75% in detecting
gait events w.r.t the manually generated ground-truth, and
significant performance improvements in terms of accuracy and
execution time compared to a previous Kinect-based system.

Index Terms—signal processing for rehabilitation, depth image
processing, motion analysis, feature extraction, tele-rehabilitation

I. INTRODUCTION

Following a stroke, the recovery of physical functions such

as walking, could be greatly enhanced by the intervention of a

rehabilitation team focused on the identification and resolution

of movement problems, typically through the practice of exer-

cise tasks. A range of movement abnormalities are periodically

assessed to track and design rehabilitation progress for each

individual patient. The outcome of rehabilitation is generally

improved if the patient receives a high intensity of practice

combined with feedback on their movement to correct errors

[1]. However, this ideal type of therapy is restricted by access

to professional rehabilitation staff and equipment, a situation

which has led to the growing importance of self-management

strategies, including the use of tele-rehabilitation.

Most motion analysis systems used for rehabilitation are

based on multiple wearable sensors (e.g., passive/active optical

markers, EMG/EEG/ECG, inertial sensors, force plates) and

require a large laboratory space, are of high cost, and not

portable, thus unsuitable for flexible, mobile clinical and

home-use rehabilitation programs [2]. Optical motion analysis

systems are attractive; however, current marker-based and

marker-less, single or multiple infrared/RGB camera motion

analysis systems have limitations, such as dependency on

the underlying fabric color, time-consuming process, lack of

portability and/or high price, such as VICON [3], single RGB

camera systems of [4]–[7] and multiple RGB camera systems,

such as [8]. Inertial tracker-based systems, like Xsens MVN

[9] and M3D [10], are options for large clinics or hospitals,

but are not suitable for small clinics and home use.

Alternatively, single RGB-depth camera systems, such as

[11], [12], [13], after significant technological advances, have

become cheap and popular options. For example, Microsoft

(MS) Kinect enables tracking of human joints in three di-

mensional (3D) space using a single camera and its SDK

via skeleton tracking [11]. However, Kinect’s skeleton data

are too noisy (see, e.g., Fig.1 in [14]), and do not provide

sufficient accuracy [14]–[17]. Using two Kinect sensors, as in

[18], can potentially improve the accuracy, but at the expense

of portability, required expertise, and ease of setup.

The marker-less Kinect-based approach of [19], for per-

forming the ‘Get Up and Go Test’, which is part of the larger

Tinetti test to identify subjects at risk of falling, is based on

the construction of the background depth frame, which enables

background removal, followed by frontal pose analysis to get

body structure parameters and the sagittal view joint trajectory

estimation. The method does not achieve clinical accuracy

showing an error of up to 15 pixels compared to the reference

trajectory. Six joints are tracked in the sagittal plane; the foot

joint was not tracked, and it is not expected to work well

due to interference with the floor. A similar approach [20]

uses RGB and depth images of MS Kinect for semi-automatic

postural and spinal analysis using Dynamic Time Warping,

pose estimation and gesture recognition. The algorithm re-

quires substantial manual effort, operation expertise and is

time-consuming, hence not suitable for real-time application.

Note that [19] and [20] are not validated against state-of-the-

art benchmarks. [21] uses Kinect’s depth images to perform

3D pose estimation with high computational complexity and is

unsuitable for near real-time processing. [22] relies on Kinect

SDKs virtual skeleton of the body and supervised learning

to extract positions of the joints of interest in a gait analysis

application, but is limited by high computational complexity,

need for training data, and presents no scientific evidence that



2

the proposed methods are clinically accurate. [23] uses two

cameras and requires complex calibration, camera synchro-

nization and setup.

In this paper, we develop a general framework to facili-

tate the next generation of portable and cost-effective tele-

rehabilitation applications, suitable for local clinics and home

use, that do not require any clinical expertise to operate. The

proposed framework combines high accuracy marker-based

tracking methodology based on infrared (IR) sensing and

portability and affordability of range imaging methodology

using structured light or Time-of-Flight sensors. Our proposed

kinematics framework is capable of building various motion

analysis assessment tools that target different rehabilitation

applications. In contrast to previous work [19] and [20],

our proposed framework is benchmarked against the state-

of-the-art gold standard optical motion system VICON [3]

for gait analysis using the walk forward and back test, with

6 markers on each sagittal plane (left and right) to capture

both sagittal planes during the walking test in one go, and

most importantly, create a person-centric subject model to

define the geometric relationship between different markers.

Additionally, as opposed to [6], [7], [19], our framework maps

markers in 3D space since 2D measurements are nonlinear

due to the fish eye effect from the sensor lens; the depth

information for the marker centroid in the depth hole is

recovered to perform coordinate mapping from image space

to camera space.

The framework is based on several image processing algo-

rithms, that enable extraction of specific movement patterns

from IR and depth image data, is robust to occlusion, and

facilitates real-time post-processing and visualization of the

results. Namely, the main contributions of the paper are

(see Section II for more details): (1) Single-camera imaging

methodology, including scene calibration and denoising, where

only one IR-based depth camera is used for motion capture,

(2) simultaneous marker detection and identification in 3D

space using adaptive thresholding with a novel depth recovery

method to map the object coordinates into camera space,

(3) person-centric model-based kinematics analysis, including

effective post-processing motion analysis algorithms.

We provide detailed algorithmic steps for the proposed

algorithms, making the proposed approach reproducible. The

paper is organized as follows. In Sec.II, the overall description

of the proposed framework is given followed by detailed

descriptions of the proposed optical motion capture system

and kinematics analysis algorithms in Secs. III and IV, respec-

tively. Sec.V presents our visualization tools and experimental

results, before concluding in Sec.VI.

II. OVERVIEW OF THE PROPOSED FRAMEWORK

The proposed framework comprises an optical motion cap-

ture system and kinematics analysis tools that enable sec-

ondary development for solution enhancement. The intercon-

nection among the underlying algorithms and key parameters

used in the algorithms listed in this section.

The optical motion capture system (described in Sec.III)

consists of a single depth camera (both IR and depth images

are used) that enables creating 3D optical motion reconstruc-

tion. It is designed to capture human motion in real time by

detecting retro-reflective markers attached to joints of interest,

and comprises three modules: (1) Data cleaning - for cleaning

IR and depth images (described in Sec.III-A). (2) Detection -

for tracking markers in image space (Sec.III-B). (3) Mapping

- for recovering the markers’ position in camera space through

the proposed cluster location algorithm (Sec.III-C).

The proposed kinematics analysis tools are developed as

an application solution that sits on the proposed motion

capture system, facilitating portable, indoor tele-rehabilitation

diagnosis, as demonstrated by our gait analysis application in

Sec.IV. Autonomously located markers attached to subject’s

joints during the straight-line walking exercise, are used to

automatically calculate gait associated parameters commonly

used for clinical assessment, such as joint angles, velocity,

movement patterns, gait cycle phase, step and stride length,

swing and stance phase, etc. [24]. In particular, the gait analy-

sis tools (Sec.IV) comprise: (1) Scene calibration (Sec.IV-A),

(2) Subject modelling (Sec.IV-B) for building a person-specific

body segmentation model, (3) Kinematics analysis module

(Sec.IV-C) for calculating gait analysis parameters based on

the proposed analytics.

Fig. 1. Overall proposed system structure diagram.

During processing of the IR images, we observed that

motion blur and light conditions strongly influence the speed

and accuracy of marker tracking. Moreover, since the retro-

reflective markers block the depth measurements from the

depth camera, the only way to recover the depth value for each

marker is to use their surrounding information. To address the

above problems, we proposed three algorithms: (1) Threshold

analysis (Alg.1) − extending previous work in [25] to solve

fast motion and camera noise during marker detection, (2)

Marker detection (Alg.2) − the idea is to improve the marker

centroid location accuracy and speed which are attached to

joints of interest, in image space, (3) Depth recovery and

mapping (Alg.3) − the 3D texture is partially missing in

the marker region and it is possible to use the point cloud

histograms for restoring the depth value of the marker centroid.

When looking at the point cloud histograms, we can get

a kernel that has higher weight inside according to their

Euclidean distance to the marker centroid and frequency of

occurrence.

Once the coordinates of the markers in 3D space have been

obtained above, the aim of the gait analysis application is to

label or associate the markers to joints on the human subject,

so that joint angles can be calculated during kinematics

analysis. In order to do so, the first step is Scene calibration
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(Alg.4) whose purpose is to map the physical measurements of

the physical experimental environment into a virtual environ-

ment, recreating a geometric relationship between the camera,

calibration markers, and walking start/end points. This enables

Marker labelling (Alg.5), where a person-centric subject model

is constructed to map the subjects physical dimensions to

virtual 3D space building a geometric relationship among

markers on the body and hence markers can be accurately

labelled as belonging to the foot joint, hip, etc. Once all the

markers have been labelled, kinematics analysis commences

in Gait event detection (Alg.6) by examining the relative

trajectories of knee, ankle, and heel markers to the floor

(obtained during scene calibration and marker labelling) to

find inflection points and local peaks for gait events detection

without pre-smoothing the data, in order to get the best

accuracy, including addressing occluded markers.

Table I lists key parameters used in the six proposed

algorithms, and which values were observed to give the best

results when trading accuracy and execution time. Note that

we observed that changes in the values of the parameters result

in small changes in the accuracy of results and execution time.

These pre-set values were selected based on the MS Kinect

2 sensor, a walking line distance to the camera of 2.5m-3m

and sensor height of about 0.8m from the floor, resulting in

an approximate 4m walking line. If the camera sensor and the

latter distances are changed, a standard calibration procedure

(e.g., [7], [26]) can be used to find optimal values for D0, D1

and D2.

III. OPTICAL MOTION CAPTURE SYSTEM

The task of the proposed optical motion capture system is

to simultaneously track multiple retro-reflective markers using

a single IR depth camera, irrespective of the overlying motion

analysis application. Retro-reflective materials were chosen

since they introduce high intensity regions into IR images

and blank holes into depth images. Therefore, the markers

are detected on IR images, after which the marker location is

recovered in the depth image and mapped to camera space via

the following key steps: (1) Data cleaning - cleaning invalid

data and reducing sensor noise, (2) Marker detection - detect-

ing markers in IR image space using connected component

algorithm [27] with scene dependent adaptive thresholds, (3)

3D marker location - recovering marker depth values using our

novel cluster location algorithm (in Sec.III-C) and mapping

depth space coordinates to the camera space using the depth-

map projection method of [28]. We elaborate each of these

steps in the following subsections.

A. Data cleaning

The primary source of noise affecting the captured IR

images is from the camera lens of either IR transmitters or

receivers and interfering sources such as metallic materials,

retro-reflective materials, etc. Reflective materials other than

markers will influence the measurements and constitute inter-

ference while recovering depth values. Fig.2 shows the noise,

originating from the imaging sensor and reflective material,

typically encountered in an acquired frame.

TABLE I
PARAMETERS USED IN THE PROPOSED ALGORITHMS

Param. Alg. Description How is it set?

S 1, 4
Captured infrared
image sequence

Measured by the sensor

w

1

Blob detection
threshold

Initialised in Alg.4 and
updated in Alg.1

rb Blob base radius Calculated by Alg.4

n Number of markers
used

Application specific
(12 in the experiments)

b
Scan window
length of the
previous frames

3 frames (heuristically)

Sd

2

Captured current
infrared image

Measured by the sensor

Dd

Captured current
depth image

Measured by the sensor

(p, q)

3,5

Marker centroid
coordinates

Calculated by Alg.2rm Marker radius

rr Marker region
radius

W

3

Max-Min width 50 mm (heuristically)

D0 Recovery resolution 2 pixels (heuristically)

D1

Depth resolution
(Sensor accuracy)

5 mm (heuristically)

D2 Distance resolution 0.5 mm (heuristically)

m Cluster mode Application specific

C 4
Number of
calibration markers

Application specific

γ

6

Level resolution 0.05 (heuristically)

ξ Range left clip rate 0.03 (heuristically)

φ Range right clip
rate

0.03 (heuristically)

τ
Local range length
boundary

3 (heuristically)

Fig. 2. Noise from the sensor (yellow) and reflective material (red)

Approaches for denoising include depth map denoising, ei-

ther spatially with, e.g., adaptive total variation [29], nonlocal

graph-based transform with group sparsity [30] and layer-

based depth correction and completion [31], or temporally

with, e.g., parametric model-based nonlocal means [32] and

joint-bilateral filter [33]. Such data cleaning approaches would

potentially preserve sharp edges without over-smoothing, and

improve the accuracy of marker tracking. However, since

we are aiming for near real-time applications, we use a

simpler, intuitive and less complex, but effective approach

based on Kalman filtering [34]. Namely, since we can detect
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initial locations of interfering materials in the first frame and

corresponding pixel values, it is easy to predict their next state

using Kalman filter, and exclude them from further processing.

B. Detection

After cleaning the frame from unwanted noise, IR images

are converted to binary format in order to detect and identify

markers via blob detection on a frame-by-frame basis. Since

all retro-reflective marker regions have clearly distingushable

pixel values in IR images from surounding regions, blob

detection is a natural object detection choice.

There are several approaches to detect and identify blobs,

such as matched filters / template matching [25], watershed

detection [35], structure tensor analysis followed by hypothesis

testing of gradient directions [36], [37], scale-space analysis

[38]. All these approaches are limited by their sensitivity to

noise, structure restriction and complexity [39]. In previous

related work [25], a concentric cycle-based method (template

matching) is proposed to perform the shape fitting test for

each potential blob in order to locate all markers in image

space (2D); however, this method is time consuming and

requires expertise to determine associated parameters for the

shape fitter and the kernel cluster filter, and cannot locate the

center of the marker correctly when motion blur occurs and

the marker is out of the sagittal plane, which leads to center

deviation on those markers with circular distributed IR values.

To solve this problem and satisfy our real-time processing

constraints, an enhanced heuristic IR analysis algorithm is

proposed in Alg.1, where the threshold value is adaptively

acquired for blob detection in the next frame. A sequence

of b previous IR images and an initial threshold for blob

detection w and blob base radius rb, obtained by Alg.4 during

the scene calibration process (which is application and scene

dependent), are fed to Alg.1. Note that the initial threshold w
in Alg.1 has little influence on the accuracy of the adaptive IR

threshold. As expected, the further away the value of w from

the optimal value, the higher the number of iterations to find

a suitable threshold, resulting in longer execution time. Note

that we stop iterating when the number of detected blobs f
reaches convergence, i.e., the value of f between iterations is

unchanged.

The main idea behind Alg.1 is to first assign w, for the

current frame Sd to that used in one of the b previous frames,

which results in the number of blobs in Sd closest to the actual

number of markers n present in the scene. If this threshold

detects more than n blobs (that is, some detected blobs are not

markers), w is calculated by averaging the pixels from the n
most significant blobs weighted by the their radius. Otherwise,

if some markers were missed, a weighted average is taken over

all detected blobs in the current and b previous frames.

After blob detection threshold is set, we use the connected

component labelling algorithm [27], a classic blob extraction

method used to detected connected regions in a binary image,

to detect markers from the located blobs. Then, for each

detected marker we find a centroid, radius and region radius

using simple pixel-based geometry. The overall proposed

algorithm is detailed in Alg.2.

Algorithm 1: Adaptive blob detection threshold setting for

the next frame

Input: Captured image sequence from the sensor, S;

Initial blob detection threshold, w from Alg.4;

Blob base radius, rb from Alg.4;

Number of markers used, n;

Scan window of b previous frames

Sd−b, . . . , Sd−1, with their blob detection

thresholds ej , j = d− b, . . . , d− 1;

Output: Blob detection threshold for the next frame, ed;

1 acquire next IR frame Sd from S;

2 set ed = ej∗ , where j∗ = argminj=d−b,...,d−1 |n− fj |,
where fj is the number of blobs detected in Frame Sd

when blob threshold ej from Frame Sj is used;

3 set f as the number of detected blobs when ed is used

on Frame Sd;

4 order the detected blobs into the descending order of the

blob radius: id1, . . . , i
d
n, . . . , i

d
f , where d denotes the

frame number;

5 set Jd
q , q = 1, . . . , f as a matrix of all IR pixel values in

Blob idq , kdq their mean value, ldq and udq as radius and

blob region radius of Blob idq in Sd, respectively;

6 if f > n then

7 calculate new ed by averaging IR pixel values from

Jd
1 , . . . , J

d
n weighted by ld1 , . . . , l

d
n;

8 else if f < n then

9 set h0 by averaging IR pixel values from Jd
1 , . . . , J

d
f

weighted by ld1/rb, . . . , l
d
f/rb

10 set h1 by averaging IR pixel values from

Jq
1 , q = d− b, . . . , d− 1 weighted by eq/w

11 set h2 by averaging blob radius from uq1,
q = d− b, . . . , d− 1 weighted by eq/w
ed ⇐ (h0 ∗f/n+h1 ∗h2/rb+w)/(f/n+h2/rb+1);

12 if flast 6= fcurrent 6= n then

13 add Sd to scan window when using ed and goto 4;

14 return ed;

C. 3D marker location

Once all blobs have been detected as valid markers, the next

step is to obtain the coordinates of the markers in 3D space.

In general, a depth camera has intrinsic parameters to perform

spatial mapping from image space to camera space.

The depth-map projection method of [28] is adopted to

acquire undistorted camera space coordinates of the tracked

markers after marker centroids have been located. However,

depth information within the marker region is empty due to

the retro-reflective nature of the attached markers. Therefore,

we propose to recover the sensitive pixels around each marker

region in the depth images in Alg.3 by calculating image

histograms with respect to pixel intensity (Steps 21 to 28 in

Alg.3) and distance to the marker centroid in IR images (Steps

29-32). The algorithm is executed for each detected marker.

The following parameters are assigned heuristically to improve

the recovery accuracy and are constant for all frames: Max-

Min width, W = 50, recovery resolution, D0 = 2, histogram
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Algorithm 2: Marker Detection

Input: Captured IR image frame, Sd;

IR blob detection threshold, ed obtained by Alg.1;

Output: Marker centroid, (p, q)
1
, . . . , (p, q)n where n is

the number of detected markers;

Marker radius, rm1
, . . . , rmn

;

Marker region radius, rr1 , . . . , rrn ;

1 Use connected component labelling [27] on Sd with ed
for IR-to-binary image conversion and obtain labelled

markers M1, . . . ,Mn;

2 foreach marker Mi in M1, . . . ,Mn do

3 set ̺ as the number of pixels in Mi;

4 set g as the sum of all IR pixel values in Mi;

5 set v = g − ̺ ∗ ed as normalized sum of IR values;

6 let (pi, qi) = (0, 0), rmi
= 0, rri = 0 be Mi’s

centroid, radius and region radius, respectively;

foreach pixel Px,y in Mi do

7 pi = pi + x ∗ Px,y/v; qi = qi + y ∗ Px,y/v;

8 foreach pixel Px,y in Mi with coordinates (x, y) do

9 set pixel distance l =
√

((x− pi)2 + (y − qi)2);
10 rmi

= rmi
+ l ∗ Px,y/v;

11 if rmi
> rri then rri = rmi

;

12 return (p, q)
1
, . . . , (p, q)n, rm1

, . . . , rmn
, rr1 , . . . , rrn ;

depth resolution, D1 = 5, histogram distance resolution,

D2 = 0.5.

Alg.3 tackles the problem of partial occlusion: the input

to the algorithm is a cluster mode variable, m that can take

3 possible discrete values: (1) Normal - no occlusion of the

marker, (2) Top - occlusion present at the top of the marker,

(3) Bottom - occlusion at the bottom of the marker. Partial

occlusion takes place on markers attached to the anterior

superior iliac spine (ASIS), posterior superior iliac spine

(PSIS), hip and femur during arm swing. Those markers are in

the bottom mode, while heel, toe, shoulder markers are in the

top mode and the remaining markers are always in the normal

mode in Alg.3 since they are never occluded. The proposed

algorithm recovers depth information for each labelled marker

independently even when partial occlusion occurs.

IV. GAIT ANALYSIS APPLICATION

This section describes the proposed application-specific

algorithms that interface with our motion capture system (see

Sec.III). The proposed gait analysis application, comprising

scene dependent calibration, person-centric modelling, and

kinematics analysis, enables autonomous, high-accuracy pro-

cessing of gait associated data. Each of the three algorithms

are explained next.

A. Straight-line Walking Scene Calibration

The purpose of scene calibration is to collect scene dimen-

sions to build a geometric relationship between the camera,

calibration markers, and walking start/end points.

A typical straight-line walking exercise scene captured by

the camera, is represented as a virtual trapezoidal cylindrical

Algorithm 3: 3D marker Location

Input: Captured depth image frame, Dd;

Marker centroid, (p, q), Marker radius rm and

region radius rr obtained by Alg.2;

Max-Min width, W ;

Recovery resolution, D0;

Depth resolution, D1;

Distance resolution, D2;

Cluster mode, m [defined in Sec. III-C];

Output: Marker position in frame Dd, (x, y, z);
1 acquire depth values V d at rectangle region of

{left:p− rr −D0, top: q − rr −D0, right: p+ rr +D0,

bottom: q + rr +D0} in Dd;

2 order pixels in V d in the increasing order

vd(1), . . . , vd(N), and set κ = 0 and z = 0;

3 set Λ0 = vd(1) +W ;

4 set V0 as a vector of all depth values in V d smaller than

Λ0 and the remaining values as V2 , and set V1 = V0;

5 if sizeof(V0) > 2 then

6 let κ = κ+ 1, V0 = V d \ V0 and goto 5;

7 else if sizeof (V0) = 1 then

8 set Λ1 = vd(N) +W ; set V1 as all depth values in

V d smaller than Λ1 and the remaining values as V2;

goto 6 when sizeof(V2) >sizeof(V1) + κ, otherwise

goto 13;

9 else

10 if m = normal then

11 set T0 =min(V0) and T1 = T0 +W ;

12 else if m =top then

13 set T0 =min(V1) and T1 = T0 +W ;

14 else if m =bottom then

15 set T1 =max(V2) and T0 = T1 −W ;

16 set H0 as the histogram of pixels in V d that fall between

T0 and T1, with depth resolution D1;

17 foreach bin h in H0 do

18 if sizeof(h) <min((r +D0)
2, d2/sizeof(H0) +D0)

then

19 if sizeof(h) <min(D0,sizeof(vd)/sizeof(H0))
then

20 remove h from H0;

21 foreach h in H0 do

22 histogram all pixels in h w.r.t their distance to

centroid (p, q), with bin resolution D2;

23 set ǫ(h) as the mean value of the bin in h that has

the highest count;

24 foreach h in H0 do

25 set z = z + ǫ(h)∗sizeof(h)/sizeof(H0);

26 return (x, y, z) mapped from (p, q, z) using [28];

model in Fig.3. The plane defined by 4 optical (calibration)

markers, shown as blue dots in Fig.3, placed on the ground

is perpendicular to the plane defined by the camera and

the ground. An example of an IR image captured during
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Fig. 3. Virtual straight walking exercise scene [25].

the calibration is shown in Fig.4, where the start and end

of walking are shown as red dots. Previous experiments, as

validated using a method of [26], showed that a walking line

distance of 2.5 − 3m to the camera and the sensor height of

0.8m from the floor result in an approximate 4m walking line.

Fig. 4. Scene calibration: Calibration markers in green are labelled (sagittal
view). Walking line is defined between the start and end points, shown in red.

The overall walking scene calibration process is summarized

in Alg.4. C = 4 calibration markers are placed on the

ground one-by-one. The scene calibration process continu-

ously searches and analyzes the status of the calibration marker

plane in relation to the camera to ensure perpendicularity,

and reports marker status as: (1) Uninitialized - stop mode,

(2) Move Left/Right - camera needs to be moved to the left

or right, (3) Tilt Down/Up, (4) Pan Left/Right, (5) Replace

Markers - critical noise detected or marker placement error,

(6) Done - calibration completed. Steps 12-15 perform manual

adjustment of the camera pose.

Threshold w for blob detection (used in Alg.1) is calculated

by first forming a histogram of edge pixels for each detected

blob, and then finding the minimum (over all four marker

blobs) of the largest histogram bin (Step 12). Alg.4 relies on

subtracting the background to label the calibration markers and

calls Alg.2, with updated w set to the minimal pixel value in

the detected blob, to obtain the calibration marker’s centroid

and corresponding blob radius. Base blob radius rb is set as

the mean radius of all calibration markers. Alg.4 determines

the start and end points of the walking exercise, which are

then physically marked on the floor using a tape.

Algorithm 4: Gait Analysis Walking Scene Calibration

Input: Captured IR image sequence from the sensor, S;

Number of calibration markers, C;

Output: Blob centroids, (p, q, z)
1
, . . . , (p, q, z)C ;

Start and end walking point, (r, s)
0
, (r, s)

1
;

Initial IR blob threshold, w;

Blob base radius, rb;

Walking line length, L;

1 set the number of labelled markers c = 0;

2 while c ≤ C do

3 repeat acquire the next IR image from S;

4 apply frame subtraction detection;

5 until no significant motion detected;

6 apply frame subtraction detection using as

background the previous frame with no motion

detected;

7 if blob detected then

8 update markers’ state using marker labelling

(call Alg.2 with ed set to the min IR value in

the marker blob), and let c = c+ 1;

9 calculate a histogram of edge pixel values for each blob,

and set w as the minimum, over all blobs, of the most

significant bin.

10 check diagonal connection condition for

(p, q, z)
1
, . . . , (p, q, z)C mapped using normal mode

Alg.3 with current depth image from S;

11 if connection is intersectant then

12 report plane status defined by (p, q)
1
, . . . , (p, q)C

relative to camera;

13 else

14 report critical error and goto 1;

15 adjust camera’s pose according to the reported status;

16 set rb =mean{r1, . . . , rC}, where {r1, . . . , rC} are

obtained by Alg.2 called in Step 8 above;

17 def start/end points (r, s)
0
, (r, s)

1
relative to center of

(p, q)
1
, . . . , (p, q)C during streaming with guideline tool;

18 calculate the distance between (r, s)
0

and (r, s)
1

in

camera space as L;

19 return IR base threshold w, blob base radius, rb walking

line length L and visualize start and end points

(r, s)
0
, (r, s)

1
in IR/RGB stream.

B. Model

Following calibration of the experimental environment, a

unique complete subject model for sagittal gait analysis is

constructed for every individual subject by physically mea-

suring the subject standing at the location shown as X in

Fig.3, specifically measuring H0∗, H7∗, and W3∗ to W9∗

(as shown in Fig.5) after all markers have been mapped in 3D

space. The model is clustered into three parts: upper body, limb

and foot models shown in Fig.5. For each frame, the model

comprises the following: (i) position of all detected markers,

(2) geometric relationship between markers, (3) virtual lines

L13-L16 relative to the marker positions.

Each marker is labelled by examining all potential marker
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Fig. 5. Sagittal Model. 12 visible markers are marked with green circles. 2
partial invisible markers are shown in circle outlines. ‘R’ (‘L’) denotes right
(left) marker. For example, RPSIS is the right posterior superior iliac spine
marker [25].

groups for upper body, limb and foot models using Alg.5,

scanning each IR frame from left-top to right-bottom. In

particular, the shoulder (SHO) marker is first chosen as the

top marker in the first frame that shows the subject in the

sagittal plane and is labelled within the region around virtual

line L12, predicted by Kalman filtering [34] using the marker

position in the previous frames and its velocity. Then, all

relevant distances (see Fig.5) are updated using the subject

model of the previous/reference frame in order to solve model

matching errors due to complete occlusion occurences on hip

and femur markers. Once geometric relationships (distances,

locations) relative to virtual lines L12− L16 are determined,

geometric relationships between all marker combinations will

be checked. For example, the upper body model marker group

should satisfy D0 > D1 > D2, XLPSIS < XRPSIS <
XRHIP < XRASIS < XLASIS , and the ankle marker of

the foot model should be inside the triangle region defined

by tibial, toe, heel markers. Potential clusters are formed by

calculating the distances between the markers in the cluster

and comparing them with the updated distances W3∗ to W9∗.

Since the geometric location relationship of the limb model

markers is changing along the Y axis during leg swing, we

select six markers on the bottom of the model along the Y

axis and determine the two heel and toe markers attached to

the occluded body side, by their relative position to the knee

and other visible markers. Finally, the marker name/position is

determined by comparing the distances between the markers

in each cluster relative to the updated distances W3∗ to W9∗

for each validated marker cluster across the three sub-models.

C. Kinematics Analysis

Once all the markers have been labelled, kinematics analysis

commences, closely following the relative joint angle and gait

cycle definitions from [24]. The relative trajectories of knee,

Algorithm 5: Marker Labelling

Input: From Alg.2:

Centroids for n markers, (p, q)
1
, . . . , (p, q)n;

Markers’ radius, rm1
, . . . , rmn

;

Markers’ region radius, rr1 , . . . , rrn ;

Marker positions in the previous frame, F ;

Output: Labelled/named markers

1 predict SHO marker from F using Kalman Filter [34];

2 if SHO not found then

3 set centroid of the predicted region as SHO marker

with radius and region radius as in F ;

4 calculate all W ’s and L’s values shown in Fig.5 using

the current model (see Subsection IV-B);

5 order all markers in the region of L12 and L13 by

X-coordinate;

6 determine the most-likely marker cluster for upper body

based on D0, D1, D2 (see Subsection IV-B);

7 order markers under L13 by Y, and X afterwards.

8 divide lower limb markers into two clusters by

evaluating 6 markers nearest to the ground by testing all

possible clusters for the triangle foot model.

9 combine markers on the other side of the body into the

triangle foot model in the upper limb region according

to Y-coordinates;

10 determine the other side’s foot position by checking its

relative position with knee and foot marker;

11 map labelled (p, q)
1
, . . . , (p, q)n using Alg.3 with

rm1
, . . . , rmn

and rr1 , . . . , rrn ;

12 return labelled/named markers;

ankle, and heel markers to the floor are examined to detect the

following gait phases: initial contact, loading response, mid

stance, terminal stance, pre-swing, initial swing, mid swing

and terminal swing.

If a marker is occluded (full marker occlusion happens

occasionally on the hip and femur markers), we adopt the 2nd

or 4th cubic Bezier curve interpolation [40] according to the

occlusion length. The same curve interpolation is also used

for marker trajectory resampling (from 30 fps to 100 fps) to

obtain more samples for measuring gait associated data (and

also for benchmarking with the 100fps gold standard VICON).

We measure step and stride length, stance and swing phase

based on the resampled trajectories of heel, ankle, knee and

hip markers as explained next.

Fig. 6. Heel Horizontal Axis [25] Fig. 7. Heel Vertical Axis [25]

1) Step and Stride Length: This task can be simplified

into extracting stable values, where the heel marker trajectory
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Fig. 8. Multi-view tracker snapshot.

horizontal axis value does not change over a window of frames

(see an example in Fig.6, where ψ0, ψ1, ψ2 denote three

windows with no change detected using window matching

between the inflection points). These points correspond to heel

strikes to the floor. Once the left and right heel’s horizontal

stable values are found, the step and stride length can be

calculated using the adjacent stable values over time, i.e., as

ψi+1 − ψi.

2) Gait Phases Detection: Gait events of heel strike and

toe off are used to measure the stance and swing duration

using heel marker trajectory vertical axis values. An example

is shown in Fig.7, where η0, η1, η2, η3 denote inflection

points, and ρ0, ρ1 local extremum, D2 via our proposed

global gradient filtering algorithm, Alg.6, instead of using an

averaging filter as in [25]. The proposed algorithm quantizes

the heel marker vertical axis trajectory and then searches each

quantization region between the inflection points from the

global minimum to the maximum by iteratively regrouping the

scanned points. We heuristically set the quantization step-size

(level resolution), γ = 0.05, the range left and right clip rate,

ξ = φ = 0.33, and the local range length boundary, τ = 3
for extracting the inflection points and local peaks in order

to obtain the relative time of heel strike and toe off through

angle variation between the floor line and the line from toe to

heel. A boolean variable ‘locked’ is used in Alg.6 as a flag

for each range between two consecutive inflection points. For

a given range p, in Step 18, min(p) and max(p)’s lock levels

denote the (local) minima (maxima) below (above) range p.

V. VISUALIZATION & RESULTS

The proposed framework is demonstrated using an MS

Kinect v2 sensor [11], though other sensors can be used, e.g.,

commercially available MS Kinect v1 [41], Intel RealSense

R200 [13], SoftKinetic DepthSense Cameras [12]. The MS

Kinect v2 sensor outputs 16-bit 512x424 pixel resolution of

IR and depth images at 30fps. A user-friendly interface to the

proposed underlying framework is designed for the proposed

gait analysis application. It supports the following features:

(1) Real-time camera/scene calibration. (2) Real-time subject

modeling for frontal and sagittal plane. (3) Recording of IR

and depth images using MS Kinect SDK v2.0 [11]. (4) Multi-

view tracking and 3D trajectory reconstruction. (5) Kinematics

analysis using customized function scripts. (6) Rehabilitation

diagnostics interface using local or cloud database.

Algorithm 6: Inflection Points Searching

Input: Vertical coordinate of heel marker trajectory T
(e.g., see y-axis on Fig.7)

Level resolution, γ;

Range left clip rate, ξ;

Range right clip rate, φ;

Local range length boundary, τ ;

Output: Inflection points ηs;
Local peaks ρs;

1 quantize T using a step size γ into quantization levels Ω;

2 def range pool P as an empty set;

3 set σ = min(T )
4 for k = min(Ω) to max(Ω) do

5 find all ranges, i.e., differences between two values

in T that fall within the quantization bin k and are

smaller than σ; foreach found range f = [fl, fr] do

6 set locked(fl) = false, locked(fr) = false;

7 if f insides P then

8 set T = T \ f and goto 5;

9 if locked(fl) == true or locked(fr) == true then

10 update P with f ;

11 else

12 if fl’s rate change < ξ then

13 set locked(fl) = true and goto 6;

14 if fr’s rate change < φ then

15 set locked(fr) = true and goto 6;

16 foreach p in P do

17 if (locked(pl) == true and locked(pr) == true) or

p is start or end range with one side locked then

18 if length(p) > τ and min(p’s lock

levels) < 2 ∗max(p’s lock levels)−p’s initial

local peak then

19 return p’s boundary values as inflection

points η and initial local peak as

relevant local peak;

Fig.8 shows the snapshot of the software, which shows

how convenient it is to access the recorded experiments by

selecting the tracker tool. Users can also view the automatic

reconstruction process within our multimedia application or

manually playback the whole experiment. Autonomous analy-

sis is performed and gait associated parameters are generated

afterwards. These data (including joint angles, movement

patterns, gait phases, step and stride length, swing and stance

duration) can be easily accessed within the analyzer toolbox.

For the rehabilitation application, a diagnostics interface is

developed to report the patient’s condition.

The proposed gait analysis application, and inherently the

proposed framework and its six algorithms, was tested using

92 independent experiments with 14 subjects (11 males and

3 females), including 9 stroke survivors, and 25633 frames.

Knee angle α, step length ζ, stride length ξ, stance and swing

duration were measured as illustrated in Fig.9.
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Fig. 9. Knee angle, step and stride length.

Evaluation of our proposed adaptive threshold analysis

algorithm, Alg. 1, on an Intel i7-4710HQ 2.5GHz CPU, Win-

dows10 OS, implemented by Visual C++, against the static-

threshold marker detection algorithm of [25], [42] indicates

higher detection accuracy as shown in Table II. However, it

introduces an extra preprocessing step which increases the

processing time by roughly 1ms per frame. In addition, the

speed of Alg.1 depends on the physical distance between

the marker and the sensor, which influences the size of the

search region for the marker in IR image. This distance

is dependent on subject body dimensions and their walking

direction. However, as will be shown next, the proposed blob

detection threshold analysis algorithm simplifies the following

processing steps, making the overall processing faster.

TABLE II
PERFORMANCE OF THE PROPOSED DYNAMIC VS STATIC THRESHOLDING

FOR MARKER DETECTION, SHOWING PERCENTAGE OF SUCCESSFULLY

DETECTED MARKERS AND MEAN EXECUTION TIME PER FRAME.

Algorithms Detected (%) Time (ms/frame)

Static Threshold [25] 91.44± 3.52 0.15± 0.04
Adaptive Threshold 98.08± 1.08 1.21± 0.33

The performance of the proposed marker identification

algorithm, Alg.2, is evaluated for each marker using recall

rate of marker centroid’s distance error (within error reference

β = 0.5, 1.5, 2.5), that is, the average number of frames where

the distance between the detected marker centroid and its true

position is within β. Fig.10 shows the recall rate increments

of 8 experiments for 12 markers using our proposed algorithm

and the algorithm of [25] when β = 0.5 pixel. It can be

seen that the recall rate has been improved by about 3∼9%

especially for those markers that are attached to feet (ankle,

toe, heel, another foot’s toe and heel) where out-of-plane,

motion blur are most likely to occur.

Fig. 10. Recall Rate Increments when β = 0.5 for 8 of experiments. Top
boundary of each incremental rectangle is the recall rate using the proposed
algorithm and bottom boundary is the one using the algorithm of [25].

Averaged results over all experiments and all markers are

shown in Tab.III. It can be seen that the proposed Alg.2

significantly outperforms the previous approach in terms of

both accuracy and the overall execution time.

TABLE III
PERFORMANCE OF THE PROPOSED ALGORITHM TO LOCATE CENTER OF A

MARKER AVERAGED OVER ALL MARKERS AND 92 EXPERIMENTS.

Characteristics Proposed Previous [25]

Aver. callback (%), β = 0.5 95.86± 1.64 88.12± 2.61
Aver. callback (%), β = 1.5 97.32± 1.75 90.84± 2.67
Aver. callback (%), β = 2.5 98.04± 1.73 92.10± 2.45

Time (ms/frame) 7.72± 1.16 117.53± 17.94

Evaluation of accuracy of detecting gait events is performed

by manually selecting the key frames and examining (with

expert knowledge) the whole IR image sequence with corre-

sponding static point clouds captured during the experiments,

which are used as reference (i.e., ground truth), for validating

the step and stride length, stance and swing duration. In

order to evaluate the performance of swing phase detection,

results were averaged to obtain the mean percentage error and

percentage standard deviation in Table IV. It can be seen from

the table, that the mean and standard deviation of the error are

very small and slightly decreased with the proposed system

compared to that of [25], attributed to the proposed Alg.6.

TABLE IV
PERFORMANCE OF THE TWO METHODS FOR MEASURING STEP AND

STRIDE LENGTH, AND STANCE AND SWING PHASE

Metric Step Stride Stance Swing

Mean(%) [25] 1.06 1.16 1.81 1.12

Std(%) [25] 5.31 4.72 5.78 4.24

Mean(%) 0.98 1.08 1.73 1.09

Std(%) 4.12 4.23 4.56 3.56

The evaluation of the overall proposed system using VICON

as a benchmark is discussed next. 5 subjects were simul-

taneously recorded using VICON and the proposed motion

capture system. Each subject walked from left to right and

back 8 times, hence a total of 40 experiments are used for

comparison. The knee angle results for 4 experiments from 4

different subjects are shown in Fig.11. It can be seen that the

angles from the proposed system are well within the 5 degree

acceptable error margin compared to VICON.

Fig. 11. Knee angle comparison with VICON.

The knee angle measurement performance is next evaluated
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by calculating root-mean-square error (RMSE) for each of the

40 experiments between the proposed framework and VICON.

This is compared with the RMSE calculated from the system

of [25] with VICON. The RMSE results are shown in Fig.12

as RMSE per experiment, where the effect of the algorithmic

improvements over the previous system is clearly illustrated

by reduced RMSE for all 40 experiments. Lower RMSE for

the proposed system is attributed to the adaptive thresholding

and the improved marker detection/labelling method. The

maximum RMSE with the proposed system was under 6

degrees. Note that VICON returns joint trajectories instead

of marker trajectories, thus a potential error comes from the

misalignment between marker positions and actual joints.

Fig. 12. Knee angle RMSE over 40 experiments.

Fig.13 shows two examples of knee joint angle during

three walking cycles for two stroke survivors obtained by the

proposed system. Comparing these results with those of the

4 healthy subjects shown in Fig.11, the effect of stroke is

noticeable indicating movement abnormalities unique to each

individual. This clearly shows the need for a person-centric

framework, as proposed in this paper.

Fig. 13. Knee angle for two stroke survivors.

VI. CONCLUSIONS

A novel framework is proposed for motion assessment

using a single depth camera based on simultaneous marker

detection and identification in 3D space and model-based

kinematics analysis. Both the optical motion capture system

and gait analysis application are evaluated over close to

100 sequences, involving 9 stroke survivors and 5 healthy

subjects, and benchmarked against the 12 camera state-of-

the-art VICON system. In contrast to VICON and similar

industrial standards, the proposed framework, which supports

a portable sensor for capturing experiments, is suitable for tele-

rehabilitation programs through our visualization, presentation

and rehabilitation interfaces built in our proposed application.

Validation results indicate high accuracy for sagittal plane gait

analysis, which makes the system practical in clinical tests for

different rehabilitation studies. Furthermore, our application-

specific results clearly show the need for a person-centric

framework, as proposed in this paper.

In the proposed framework, algorithms associated with

optical motion capture are generic to any application while

only Algs. 4, 6 and 5 are application specific, Hence, only

the latter three need modification for different rehabilitation

exercises that require motion analysis. While the results are

presented for the rehabilitation walking exercise in the sagittal

plane view only, the overall framework has also been tested

for frontal view motion analysis (see for example [6] for

assessing upper limb movement), where the same markers can

be attached on both sides of the body and a frontal view model

pre-configured similar to Fig. 5.

Future work comprises testing the framework performance

using different depth cameras [13] and improving depth map

recovery.
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