ﬂ SCNSors m\py

Article
Fast Sparse Coding for Range Data Denoising with
Sparse Ridges Constraint

Zhi Gao *{/, Mingjie Lao !, Yongsheng Sang 2, Fei Wen 3, Bharath Ramesh !
and Ruifang Zhai *

1 Temasek Laboratories, National University of Singapore, 117411 Singapore;

tsllaom@nus.edu.sg (M.L.); tslrame@nus.edu.sg (B.R.)

College of Computer Science, Sichuan University, Chengdu 610065, China; sangys@scu.edu.cn

School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China;
wenfei@whu.edu.cn

College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; rfzhai@mail. hzau.edu.cn
*  Correspondence: gaozhinus@gmail.com; Tel.: +65-977-091-85

check for
Received: 16 March 2018; Accepted: 5 May 2018; Published: 6 May 2018 updates

Abstract: Light detection and ranging (LiDAR) sensors have been widely deployed on intelligent
systems such as unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs) to perform
localization, obstacle detection, and navigation tasks. Thus, research into range data processing
with competitive performance in terms of both accuracy and efficiency has attracted increasing
attention. Sparse coding has revolutionized signal processing and led to state-of-the-art performance
in a variety of applications. However, dictionary learning, which plays the central role in sparse
coding techniques, is computationally demanding, resulting in its limited applicability in real-time
systems. In this study, we propose sparse coding algorithms with a fixed pre-learned ridge dictionary
to realize range data denoising via leveraging the regularity of laser range measurements in man-made
environments. Experiments on both synthesized data and real data demonstrate that our method
obtains accuracy comparable to that of sophisticated sparse coding methods, but with much higher
computational efficiency.

Keywords: LiDAR; range data denoising; sparse coding; ridge constraint

1. Introduction

In addition to their increasing proliferation and the growing importance of their roles in numerous
applications (including 3D reconstruction and landscape surveying), light detection and ranging
(LiDAR) sensors have recently been widely deployed on intelligent systems such as unmanned ground
vehicles (UGVs) and unmanned aerial vehicles (UAVs) to perform localization, obstacle detection,
and navigation tasks. Consequently, research into range data processing with competitive performance
in terms of both accuracy and efficiency has attracted increasing attention. Despite the simplicity and
directness in obtaining 3D information, such range data often suffer from noise due to the reflectance
property of an object’s surfaces, or due to electrical and mechanical disturbances. Therefore, efficient
denoising for range data remains a critical problem.

Some range data denoising methods directly originate from their counterparts for images by
regarding the depth value of range data as intensity, and readers can refer to [1] for detailed discussions.
However, such methods typically cause artifacts of vertex drifting, which reduce the geometric
regularity [2,3]. Techniques designed specifically for range data (e.g., the 3D points cloud) can be
roughly classified into point-based [4,5] and mesh-based [6,7] methods. However, estimating normal
vectors from noisy data for mesh denoising appears to be a chicken-and-egg problem and remains
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an open topic [8,9]. In [10,11], range data and color images were fused for denoising, and promising
results were reported. However, the prerequisites of these methods only hold when expensive sensors
are applied or extra efforts are devoted to registering range data and images.

Sparse coding (SC) has revolutionized signal processing and led to state-of-the-art performance
in a variety of applications, including image or video denoising, inpainting [12,13], restoration [14],
and synthesis [15], face recognition [16], and anomaly detection [17]. These successes are mainly
due to the fact that signal (images or image patches) have naturally sparse representations with
respect to appropriate bases [18]. In recent years, such SC techniques have been applied to range
data [19,20] and obtained competitive results. However, dictionary learning, which plays the central
role in SC techniques, is computationally demanding, resulting in its limited applicability in real-time
systems [21,22].

Based on the work of [20], in which reflectance information was synergized with depth data to
facilitate the enforcement of adaptive sparsity constraint (therein, the depth and reflectance information
that are complementary to each other work together to estimate the informative level of each patch,
followed by adaptive dictionary learning which assigns more atoms to represent the patches with more
information), we propose SC algorithms without dictionary learning to realize range data denoising
via leveraging the regularity of laser range measurements in man-made environments. Specifically,
a second-order differential transformation is applied to extract ridges that can be reconstructed
and enhanced using a pre-learned ridge dictionary with sparsity constraint. Instead of performing
refinement on the coefficients and dictionary alternately and iteratively [12,14,19,20,22], our method
can achieve a one-step closed-form solution, resulting in much improved efficiency. Experiments on
both synthesized data and real data were conducted to verify the effectiveness of our method, together
with performance comparison against other state-of-the-art methods.

2. Our Method

2.1. Notation and Preliminaries

Matrices and vectors are shown in bold capital and bold lower-cased fonts, respectively. Sets are
denoted with calligraphic fonts (e.g., S), and their cardinality is denoted as |S|. For a vector x € R"™,
x[i] is the i-th entry, xs is the subvector of x corresponding to the entries with indices in S. We define

lomorm, |[xfly = Lo, x[i1% Gnorm, [[xli = Yioq,.w [x[i)]; Comorm, [[x[lo = |supp(x)]
(i.e., the number of nonzero elements). sign(x) is a sign vector with entries: sign(x[i]) = 1 if
x[i] > 0, sign(x[i]) = —1if x[i] < 0, and zero otherwise. Based on the sign operator, we define

the shrinkage operator:

Ta(x)li] = ()] - ). sign(x[i]) = max(|x{i]| - a,0)sign(x[i)).

For a matrix X € R™*" and an index set S, X5 is the submatrix containing only the rows of X with
indices in S. vec(X) denotes the column-wise vectorization of matrix X. Letters d and 7 in superscript
refer to the components related to the depth and reflectance information, respectively. Letters v and h
in subscript refer to the components related to the vertical and horizontal directions, respectively.

Ridge detection for range measurements. We first take a scan from a 2D laser scanner as an
example to introduce our operator of ridge detection and then extend the approach to 3D depth profiles.
In Figure 1, we plot the depth profile z € R" of a typical indoor environment, which is obtained using
a standard planar range finder measured with (known) discrete angles. Clearly, the profile is sufficiently
regular and contains a few corners. Considering three consecutive points at coordinates (x;_1,z;_1),
(x;,z;), and (x;;1,z;,1), there is a corner at i if Zﬂ:‘z # Z:i’: In the following, we assume that
x; —xj—1 = 1 for all i (this assumption comes without loss of generality since we can define it
at arbitrary resolution). Therefore, the corner detection for the 2D profile is to find those indices i
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such that z; 1 — 2z; + z;,1 # 0. To make the notation more compact, we introduce the second-order
difference operator:

1 -2 1 0 -0
0 1 -2 1 0 )

Doy = . . € Rn=2)xn, (1)
0 -~ 0 1 -21

Thus, a simple operation Dj,,; - z can detect corners. For a 3D depth profile Z € R"*¢, we estimate
the ridges of vertical and horizontal directions R, and Ry, respectively:

Ry, = Dypyy - Z € RU-2%C)

2
R, =Z D}, e R,

where the matrices D,y,,; and Dy, are the same as Dy,,; in Equation (1), but with suitable dimensions.
To combine the two equations of (2), we reformulate it as below:

vec(Ry,)
vec(Ry)

I ® Dvan
Dyopa @ Ir

-vec(Z) = Dy, - vec(Z). ©)]

Here, ® is the Kronecker product, and D, € R2(re—r=c)x(rc),

4 Zi

\
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Figure 1. Illustration of the depth profile of a 2D laser scan.

2.2. Adaptive SC and Its £y, {1 Solutions

For each patch #; (in the vectorized form) in the depth ridge map, we formulate the following
adaptive SC model:

min ||ry; — D - xpilly + |[rni — DL - %nill
XvirXhi (4)

st VI<i <N, ||xoilly < koir |1x4illo < knis

where r,; and ry; represent the patches from vertical and horizontal ridge maps, respectively. Dy is
the fixed pre-learned dictionary, as shown in Figure 2, which is obtained by applying the basic SC
algorithm [19] on 40 pre-selected ridge maps of man-made scenarios (here, we display our pre-learned
dictionary with the optimal setting of parameters as obtained in Section 3.1.1, namely the number of
dictionary atoms is 1024 and the size of each atom is 8 x 8). In [23], different dictionaries (including
off-the-shelf ones such as discrete cosine transform (DCT) basis, wavelets basis, and dictionaries
obtained via learning—either pre-learned or learned from the data itself) were tested for image
denoising. Although the dictionary learned from the data itself reported the best denoising accuracy,
it was also the most computationally demanding. In addition to our pre-learned dictionary, we also
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displayed the DCT dictionary, Gabor wavelets dictionary in Figure 2. The parameter tweaking
of such dictionaries and their denoising performance are discussed in Section 3.1.1. x,; and xy;
correspond to the sparse coefficient vectors. k;; and kj; are the given sparsity controlling parameters.
Instead of setting these parameters as constants for all patches, we set them adaptively according to
the informative level of each patch (see Section 3.1.1 for details) in a manner similar to that of [20].
Given k,; and ky;, the popular orthogonal-matching-pursuit (OMP) algorithm is applied to solve such
£y optimization problem. Moreover, the batch-OMP (BOMP) technique is exploited to further improve
the efficiency. As the problem of (4) is non-convex and NP-hard, we reformulate its relaxation as below:

min ||ry; — Dy - Xoil | + Avi |[%0i] |4
XoirXhi (5)
+ [|rni — DL - xpil |y + Api il |7 -

Here, A,; and Ay;, which balance the representation fidelity term and the sparsity penalty term,
are again estimated adaptively (see Section 3.1.1 for details). By stacking all the patches, we obtain
Equation (6):

N
min ||[ro1, -+, ton] = Dp - Xoll, + Y Ao | [x0illy
orh i=1
N ®)
+ [t orun] — Do Xl + Y A |12nil |1,
i=1

in which the neighboring patches are extracted with half-overlapping. To solve such ¢; optimization
problem, the least-absolute-shrinkage-and-selection-operator (LASSO) algorithm was proposed,
which has proven to find the global optimizer.

M

-

. |
WlI®
L] Ll

i
|

(b) (c)

Figure 2. Our pre-learned dictionary of ridge maps (a), discrete cosine transform (DCT) dictionary (or
say basis) (b), and Gabor wavelet dictionary (or say basis) (c).

Clearly, Equations (4)—-(6) differ from previous methods [12,14,19,20,22] in one aspect, which is
that Dy is fixed. Thus, X, and X}, can be obtained with a one-step closed-form solution instead of
performing refinement on the coefficients and dictionary alternately and iteratively, thus resulting in
much improved efficiency. With X, and X}, in hand, we reconstruct each patch #,; and #,;. When all
patches are processed, the average value is used for the locations occupied by multiple patches,
and then we obtain the refined ridge maps R, and Rj,. Next, we can recover Z by performing the
inverse operation of Equation (3). However, due to the dependency of the rows of D, the system is
under-determined. Therefore, we need to incorporate the boundary conditions to recover Z from its
refined second-order difference, as shown in Equation (7):
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ZN
Z)EC(Rh) _ [IN ONX(r-cN)] 'UEC(Z) — b
vh

D
vec(Ry) oh

A ] -vec(Z), (7)

where the available N boundary points are incorporated, and six boundary points are used in our work.
A more rigorous theoretical proof of the minimum necessary boundary points is out of the scope of
this work. Performing the inverse operation on (7), we can recover Z as Equation (8):

Al N
vec(Z) = | [ATDL] | 5 (AT DL, | | vec(Ry) | - ®)
oh vec(Ry)

Here, all the matrices A, Dy, their transposes, and their inverses can be pre-computed to
significantly reduce the overall processing time. We now summarize all previous operations as
Algorithm 1. In fact, our algorithm includes two versions of implementation: our-BOMP and
our-LASSO.

In Algorithm 2, the convergence criterion is well-defined as ||x||0 < k. In Algorithm 3,
the convergence criterion is that the relative update difference of x; is less than 1073.

Algorithm 1 Our Sparse Coding for Depth Data Denoising

Input: Depth map Z, dictionary D, parameters ky, ko, Ay, Aj;
Output: Restored Z of Equation (8);

: Estimate the ridge maps Ry and Ry as Equation (2);
Extract and vectorize ridge map patches r,;, 14, 1 <i < N;
//Line 5 & 7 apply different algorithms to estimate x;, xy;.
/ /Line 5 belongs to the version of our-BOMP.

Apply the Batch-OMP algorithm to solve Equation (4);
//Line 7 belongs to the version of our-LASSO.

Apply the LASSO algorithm to solve Equation (5);

Obtain the refined ridge maps R, and Ry, via reconstruction;
Recover Z via applying Equation (8).

R I U S i S A e

Algorithm 2 Batch-orthogonal-matching-pursuit [24] to solve: miny ||y — D - x||, s.t. ||x||, <k

Input: y,D,k;

Output: x;
. Initialization: x =0,r =y, S = {&};
: while stopping criterion not met do
.k =argmax, |d] - r|;

Gs =D.Dgs, G; = DLDy;

//Line 810btains Ggl using progressive Cholesky update.

xs = Gg Dgy;

the key updating function to estimate Ggl is:

-1, 1-1pTgq, 4T -1 1a-1pT
G, + EGlﬁ TDLdk”EleﬁGﬁ _EGcl D dy
—a% DG a

here, a = dld, — dD;G,'DLd,

r =y — Dsxs;

10: end while

1

2

3

4: ;

5 S= {k} + L;
6.

7

8

-1 _
Gs =

a

0
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Algorithm 3 Fast iterative shrinkage-thresholding algorithm (FISTA) [25] to solve LASSO problem:
minty ||y — D - x[|; + A [|x[,

Input: y,D, A;

Output: x;
1: Initialization: xg = 0, z; = xo, L = max(eig(D™D)), to =1,k = 0;
2: while not converged do
3 k=k+1;

4 grad(zy) = DDz, — DTy;

5.

6

7

xe = Ty (2 — £8rad(zy));
/ /see Section 2.1 for the definition of T, (x).

o=+ /1+4-12 ,)/2;

_ f—1—1 .
8 Zpy1 = Xk T (xk — x-1);

9: end while

3. Experiments and Analysis

We performed experiments on both synthesized data and actual data recorded using a laser
scanner. In the synthesized data experiments where the ground truth was available, the setting of
important parameters was investigated, followed by denoising evaluation. In the real data experiments,
the results are also demonstrated for visual assessment, in addition to the performance comparison.
Similar to [14,20], the peak signal-to-noise ratio (PSNR) value is employed to evaluate the performance.
Here, we clarify that our work is run on an ASUS Pro Notebook with a 2.4 GHz Intel Quad-Core
i7-4500U processor and 12 GB RAM executing MATLAB code in parallel.

3.1. Experiments on Synthesized Data

Similar to [20,26], we designed a scene of a square box having sides of one meter in a room,
as shown in Figure 3, where all information is known as the ground truth.

(@) (b)

@ (@

Figure 3. Synthesized data (of size 800 x 800 pixels) designed for experiments. (a) Reflectance image.
(b) Depth map. (c) Result of informative-level estimation. (d) Gaussian noise-corrupted depth data.
(e) Gaussian noise and outliers-corrupted depth data.
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3.1.1. Important Parameters

To achieve plausible performance in terms of both accuracy and efficiency, the following
parameters play the central role: the sparsity controlling parameters ky;, ky;, Ay, Api, dictionary
dimension d (which indicates that the patch size is Vid x\/d pixels), and its atom number np (r = "TD
is the redundancy of the dictionary).

Applying the same parameter tweaking strategy as that in [20], we recommend the sparsity
controlling parameters as shown in Table 1. For each patch P; (j = v or h, from vertical or horizontal
ridge maps, respectively), the parameters a,;, B, (or ap;, By;) are related to its informative-level
measurement (InM), which is estimated as below:

Vd Vd
Dep (Pv> = 22 Pg [irj] ’
i=1j=1
Vi Vi T i
Ror (P") = Y ) GradMag(P")[i], GradMag(P")[i ] = ¢ ey e, O
i=1j=1

Here, GradMag(P") is the gradient magnitude map of patch P, and o (-) is the sigmoid function
o(+) = ﬁp() For the input from (—o0, +0), the output of ¢(+) is in the range (0,1). In our work,
as the value of R,, cannot be negative, the output of 0(R.y) is in the range [0.5,1). The output
of exp(c(Ren(P")) — 0.5)) is in the range [1,e*%). With InM(P4), InM(P{) for all patches in hand,
we determine the sparsity controlling parameters via computing a,;, Byi, &pi, and Bj; as below:

[nM,;, = min{InM(P%), InM(P%)}, i=1,--- N,
[nMyax = max{InM(P%), InM(P&)}, i=1,--- N,
InMypax — InM(Pﬁl.)
InMyax — InM,,y,
InM(Pf) — InMyip
Pit = Mo — InMygy

aji = , j=vorh, (10)

j=uvorh.

In Table 1, the positions of a;; and B;; are exchanged in Our-BOMP and Our-LASSO because kj
and Aj; enforce the sparsity constraint in different manners to adaptively determine the number of
dictionary atoms permitted for the patches with different informative levels. For example, to assign
more atoms to represent the patch with more information, k;j; should increase to push up the sparsity
limit, whereas Aj; should decrease to penalize the sparsity constraint term to a lower degree.

In addition to kj;, Aj;, we tested different combinations of patch size and redundancy to find the
most reasonable settings of 4 and r. Specifically, Vd canbe 4, 8,16, or 24, and r can be 4, 8, 16, or 24.
Thus, a total of 16 combinations were tested. As shown in Figure 4a, dictionaries with redundancy 16
consistently achieved better denoising results than dictionaries with redundancy 4, 8, and 24, when
their patch sizes were the same. Figure 4b shows the computation time. Clearly, the time increased
dramatically with increasing patch size and redundancy. Taking both the denoising performance and
computation time into account, we conclude that the dictionary setting of v/d = 8 and r = 16 (namely
1024 atoms) can yield decent outputs, while allowing fast computation. Such parameters are used
throughout this paper, except where indicated. In Table 2, we further report the denoising result using
different fixed dictionaries: our pre-learned dictionary, DCT dictionary, and Gabor wavelets dictionary.
Clearly, the results using our pre-learned dictionary were better those using off-the-shelf ones.
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Table 1. Setting of sparsity controlling parameters. BOMP: batch orthogonal-matching-pursuit; LASSO:
least-absolute-shrinkage-and-selection-operator.

Our-BOMP Our-LASSO
Parameters
kviy kni Avir Ani
Max value kimax = 6 Amax = 2.2
Min value kpin =1 Ain = 0.2

k? = ‘szmin + .Bz';kmax /\; = ,B;‘;Amin + af Amax
kiq =& kmin =+ ,B,' Kuax /\i = ,Bl' /\min =+ o; Amax

*af, BY, txﬁ’, ﬁf’ are related to the informative estimation of each patch.

Adaptive value *

Table 2. Denoising results (peak signal-to-noise ratio (PSNR) value) using different dictionaries

(unit: dB).
Dictionary with Different Dimensions
Dictionary
r=10,vVd=8 r=16,vVd=8 r=16/d=16
DCT dictionary 32.26 32.37 32.17
Gabor Wavelet dictionary 32.46 32.58 32.92
Our pre-learned dictionary 32.86 33.75 33.81

o

® ©

j —+1

i

o
~

~

PSNR in dB

Computation Time in Seconds

4 6 8 10 12 14 16 18 20 22 24 4 6 8 10 12 14 16 18 20 22 24
Vd (pixel) Vd (pixel)
(a) (b)

Figure 4. (a) PSNR and (b) computation time with dictionaries of different combinations of patch size
and redundancy.

3.1.2. Denoising Results

The denoising results of our work on the synthesized data (see Figure 3d in which 100% dense
Gaussian noises with standard deviation of 0.02 m and gray-scale value 5 for range and reflectance
data respectively were added) are reported in Table 3, together with the comparison against available
competitive methods including Trilateral filter [26], Basic SC [19], and Adaptive SC [20]. Moreover,
in addition to the Gaussian noise, sparse outliers (5% of the total positions, which were randomly
distributed) were added to the scene, as shown in Figure 3e, and the denoising results are also reported
in Table 3. In addition to the PSNR criteria, the root mean square (RMS, with units of millimeters)
error indicating the difference between the recovered range data and the ground truth is also included,
since it can give readers a more direct indication of how well the contaminated range information
was restored by these methods. Moreover, the computational time of each method is also reported.
As shown in Table 3, our methods outperformed Trilateral filter, Basic SC, and obtained comparable
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results to Adaptive SC in terms of denoising accuracy (the best results were obtained by Adaptive SC
with PSNR = 33.83 and RMS = 1.98), while achieving significantly higher efficiency than Adaptive SC.
Moreover, Our-BOMP even worked slightly more efficiently than Our-LASSO, achieving the processing
speed of approximately 13 fps for the range image with resolution 800 x 800.

Table 3. Denoising results on the synthesized data. RMS: root mean square; SC: sparse coding.

Method Only Gaussian Noise Gaussian Noise and Outliers
etho
PSNR (dB) RMS (mm) Time*(s) PSNR(dB) RMS (mm) Time * (s)
Our-BOMP 33.72 2.06 0.08 33.28 2.14 0.09
Our-LASSO 33.78 2.04 0.12 33.35 2.12 0.15
Adaptive SC 33.83 1.98 227.38 33.71 2.04 239.62
Basic SC 33.17 2.17 153.62 33.02 2.56 172.38
Trilateral filter 32.37 2.49 0.04 32.12 2.67 0.06

* Time indicates the computation time for each method.

3.2. Denoising Data from Laser Scanner

This set of experiments used the Brown range image database [27] captured with a Riegl LMS-Z210
laser scanner, its field of view (FoV) is 80° vertically and 259° horizontally. We focused only on the
15 indoor scenes (e.g., classrooms and theatres). To deal with (and benefit from) such a large horizontal
FoV, similar to the multiple local projection method in [19], we partitioned the scene into several parts
with 80° FoV vertically and horizontally. Note that in the Brown range image database, the depth of
each measuring point is saved sequentially, left to right and up to down. Thus, the image location only
indicates the order of saving and it was necessary to perform local projection to obtain reasonable
images. The consecutive parts were half-overlapping along the horizontal direction, then each part
was projected to an image plane orientated to the center. Finally, the average of all the restored parts
was computed to restore the whole scene. In the following, the denoising results on such real data are
reported and discussed. Similar to Section 3.1, Gaussian noise was added to the depth and reflectance
data, and the results on three representative scenes are shown in Figure 5.

As can be observed in Figure 5, the results of Trilateral filter were good in the planar regions,
but contained a great deal of noise in the edge regions. Our method, Basic SC, and Adaptive SC are all
based on SC, and obtained consistent results in all regions. Moreover, the results of our method in
the third column were slightly worse than those of columns 1 and 2, because the curved structure of
the scene in the third column posed a greater challenge to our sparse ridge assumption. In Table 4,
the average denoising results on all 15 indoor scenes of the dataset are reported. Similar to the
results on the synthesized data, our method outperformed Trilateral filter and Basic SC consistently,
and obtained comparable results to those of Adaptive SC in terms of denoising accuracy, while achieving
significantly higher efficiency than Adaptive SC. Compared with the results in Table 3, the results of
Table 4 deteriorated as the structure of real scenes was more complex than the synthetic scene. Similar
to the previous section, in addition to the Gaussian noise, sparse outliers were added to the scene,
and the denoising results are also reported in Table 4.
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Figure 5. Results of denoising experiments on real data (see online version for details). The original
and noisy corrupted range images are shown in the first and second rows, respectively. The third
row depicts our intermediate results of informative level estimation. Rows 4 to 8 depict the results of
Our-BOMP, Our-LASSO, Adaptive SC, Basic SC, and Trilateral filter, respectively.
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Table 4. Denoising results on real data.

Method Only Gaussian Noise Gaussian Noise and Outliers
etho
PSNR (dB) RMS (mm) Time*(s) PSNR(dB) RMS (mm) Time * (s)
Our-BOMP 35.37 2.31 0.86 35.17 243 0.89
Our-LASSO 35.43 227 1.15 35.21 2.37 1.28
Adaptive SC 35.72 2.03 918.71 35.68 2.08 972.33
Basic SC 34.28 2.83 538.37 34.16 2.97 572.81
Trilateral filter 32.13 3.27 0.16 32.02 3.75 0.18

* Time indicates the computation time for each method.

4. Conclusions

In this study, based on our previous work [20], we propose SC-based algorithms in which
a pre-learned ridge dictionary is applied to realize range data denoising by leveraging the regularity
of laser range measurements in man-made environments. Experiments on both synthesized data and
real data demonstrate that our method obtained accuracies comparable to those of sophisticated SC
methods with much higher efficiency, achieving approximately 13 fps (for resolution of 800 x 800)
with the resource of a lightweight laptop computer. Therefore, our method can be applied for real-time
systems in man-made environments. Furthermore, we are trying to implement our method with
GPU acceleration, intending to further increase the efficiency and also save the precious payload for
unmanned systems, especially UAVs.
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