528 research outputs found

    Wavelets in Intelligent Transportation Systems: Data Compression and Incident Detection

    Full text link
    Research show that wavelets can be used efficiently in denoising and feature extraction of a given signal. This thesis discusses about intelligent transportation systems(ITS), its requirement and benefits. We explore use of wavelets in intelligent transportation systems for knowledge discovery, compression and incident detection. In the first section of thesis, we focus on the following problems related to traffic matrix: data compression, retrieval and visualization. We propose a methodology using wavelet transform for data visualization and compression of traffic data. Aim is to research on the wavelet compression technique for the traffic data, come up with the performance of various available wavelets and the best decomposition level in terms of compression ratio and data distortion. We further investigate use of Embedded Zero Tree (EZW) encoding and Set Partitioning in Hierarchical Trees (SPIHT) algorithm for compression of the traffic data. In the second section of thesis, we focus on regression model for dichotomous data, i.e. logistic regression. This model is suitable when the outcome can takes only limited number of values, in our case only two, presence or absence of an incident. We look into generalized linear model (gle) with binomial response and logit link function. We present a framework to use logistic regression for incident prediction in transportation systems. Further in the section, we investigate feature extraction using DWT, and effect of preprocessing of data on the performance of incident detection models. A hybrid logistic regression-wavelet model is proposed for traffic incident detection

    A Promising Wavelet Decomposition –NNARX Model to Predict Flood: Application to Kelantan River Flood

    Get PDF
    Flood is a major disaster that happens around the world. It has caused many casualties and massive destruction of property. Estimating the chance of a flood occurring depends on several factors, such as rainfall, the structure and the flow rate of the river. This research used the neural network autoregressive exogenous input (NNARX) model to predict floods. One of the research challenges was to develop accurate models and improve the forecasting model. This research aimed to improve the performance of the neural network model for flood prediction. A new technique was proposed for modelling nonlinear data of flood forecasting using the wavelet decomposition-NNARX approach. This paper discusses the process of identifying the parameters involved to make a forecast as the rainfall value requires the flow rate of the river and its water level. The original data were processed by wavelet decomposition and filtered to generate a new set of data for the NNARX prediction model where the process can be compared. This research compared the performance of the wavelet and the non-wavelet NNARX model. Experimental results showed that the proposed approach had better performance testing results in relation to its counterpart in terms of hourly forecast, with the mean square error (MSE) of 2.0491e-4 m2 compared to 6.1642e-4 m2, respectively. The proposed approach was also studied for long-term forecast up to 5 years, where the obtained MSE was higher, i.e., 0.0016 m2

    Dynamic non-linear system modelling using wavelet-based soft computing techniques

    Get PDF
    The enormous number of complex systems results in the necessity of high-level and cost-efficient modelling structures for the operators and system designers. Model-based approaches offer a very challenging way to integrate a priori knowledge into the procedure. Soft computing based models in particular, can successfully be applied in cases of highly nonlinear problems. A further reason for dealing with so called soft computational model based techniques is that in real-world cases, many times only partial, uncertain and/or inaccurate data is available. Wavelet-Based soft computing techniques are considered, as one of the latest trends in system identification/modelling. This thesis provides a comprehensive synopsis of the main wavelet-based approaches to model the non-linear dynamical systems in real world problems in conjunction with possible twists and novelties aiming for more accurate and less complex modelling structure. Initially, an on-line structure and parameter design has been considered in an adaptive Neuro- Fuzzy (NF) scheme. The problem of redundant membership functions and consequently fuzzy rules is circumvented by applying an adaptive structure. The growth of a special type of Fungus (Monascus ruber van Tieghem) is examined against several other approaches for further justification of the proposed methodology. By extending the line of research, two Morlet Wavelet Neural Network (WNN) structures have been introduced. Increasing the accuracy and decreasing the computational cost are both the primary targets of proposed novelties. Modifying the synoptic weights by replacing them with Linear Combination Weights (LCW) and also imposing a Hybrid Learning Algorithm (HLA) comprising of Gradient Descent (GD) and Recursive Least Square (RLS), are the tools utilised for the above challenges. These two models differ from the point of view of structure while they share the same HLA scheme. The second approach contains an additional Multiplication layer, plus its hidden layer contains several sub-WNNs for each input dimension. The practical superiority of these extensions is demonstrated by simulation and experimental results on real non-linear dynamic system; Listeria Monocytogenes survival curves in Ultra-High Temperature (UHT) whole milk, and consolidated with comprehensive comparison with other suggested schemes. At the next stage, the extended clustering-based fuzzy version of the proposed WNN schemes, is presented as the ultimate structure in this thesis. The proposed Fuzzy Wavelet Neural network (FWNN) benefitted from Gaussian Mixture Models (GMMs) clustering feature, updated by a modified Expectation-Maximization (EM) algorithm. One of the main aims of this thesis is to illustrate how the GMM-EM scheme could be used not only for detecting useful knowledge from the data by building accurate regression, but also for the identification of complex systems. The structure of FWNN is based on the basis of fuzzy rules including wavelet functions in the consequent parts of rules. In order to improve the function approximation accuracy and general capability of the FWNN system, an efficient hybrid learning approach is used to adjust the parameters of dilation, translation, weights, and membership. Extended Kalman Filter (EKF) is employed for wavelet parameters adjustment together with Weighted Least Square (WLS) which is dedicated for the Linear Combination Weights fine-tuning. The results of a real-world application of Short Time Load Forecasting (STLF) further re-enforced the plausibility of the above technique

    Another Vertical View: A Hierarchical Network for Heterogeneous Trajectory Prediction via Spectrums

    Full text link
    With the fast development of AI-related techniques, the applications of trajectory prediction are no longer limited to easier scenes and trajectories. More and more heterogeneous trajectories with different representation forms, such as 2D or 3D coordinates, 2D or 3D bounding boxes, and even high-dimensional human skeletons, need to be analyzed and forecasted. Among these heterogeneous trajectories, interactions between different elements within a frame of trajectory, which we call the ``Dimension-Wise Interactions'', would be more complex and challenging. However, most previous approaches focus mainly on a specific form of trajectories, which means these methods could not be used to forecast heterogeneous trajectories, not to mention the dimension-wise interaction. Besides, previous methods mostly treat trajectory prediction as a normal time sequence generation task, indicating that these methods may require more work to directly analyze agents' behaviors and social interactions at different temporal scales. In this paper, we bring a new ``view'' for trajectory prediction to model and forecast trajectories hierarchically according to different frequency portions from the spectral domain to learn to forecast trajectories by considering their frequency responses. Moreover, we try to expand the current trajectory prediction task by introducing the dimension MM from ``another view'', thus extending its application scenarios to heterogeneous trajectories vertically. Finally, we adopt the bilinear structure to fuse two factors, including the frequency response and the dimension-wise interaction, to forecast heterogeneous trajectories via spectrums hierarchically in a generic way. Experiments show that the proposed model outperforms most state-of-the-art methods on ETH-UCY, Stanford Drone Dataset and nuScenes with heterogeneous trajectories, including 2D coordinates, 2D and 3D bounding boxes

    An intelligent approach to quality of service for MPEG-4 video transmission in IEEE 802.15.1

    Get PDF
    Nowadays, wireless connectivity is becoming ubiquitous spreading to companies and in domestic areas. IEEE 802.15.1 commonly known as Bluetooth is high-quality, high-security, high-speed and low-cost radio signal technology. This wireless technology allows a maximum access range of 100 meters yet needs power as low as 1mW. Regrettably, IEEE 802.15.1 has a very limited bandwidth. This limitation can become a real problem If the user wishes to transmit a large amount of data in a very short time. The version 1.2 which is used in this project could only carry a maximum download rate of 724Kbps and an upload rate of 54Kbps In its asynchronous mode. But video needs a very large bandwidth to be transmitted with a sufficient level of quality. Video transmission over IEEE 802.15.1 networks would therefore be difficult to achieve, due to the limited bandwidth. Hence, a solution to transmit digital video with a sufficient quality of picture to arrive at the receiving end is required. A hybrid scheme has been developed in this thesis, comprises of a fuzzy logic set of rules and an artificial neural network algorithms. MPEG-4 video compression has been used in this work to optimise the transmission. This research further utilises an ‘added-buffer’ to prevent excessive data loss of MPEG-4 video over IEEE 802.15.1transmission and subsequently increase picture quality. The neural-fuzzy scheme regulates the output rate of the added-buffer to ensure that MPEG-4 video stream conforms to the traffic conditions of the IEEE 802.15.1 channel during the transmission period, that is to send more data when the bandwidth is not fully used and keep the data in the buffers if the bandwidth is overused. Computer simulation results confirm that intelligence techniques and added-buffer do improve quality of picture, reduce data loss and communication delay, as compared with conventional MPEG video transmission over IEEE 802.15.1

    Approaches for diagnosis and prognosis of asset condition: application to railway switch systems

    Get PDF
    This thesis presents a novel fault diagnosis and prognosis methodology which is applied to railway switches. To improve on existing fault diagnosis, energy-based thresholding wavelets (EBTW) are introduced. EBTW are used to decompose sensor measurement signals, and then to reconstruct them within a lower dimensional feature vector. The extracted features replace the original signals and are fed into a neural network classifier for fault diagnosis. Compared to existing wavelet-based feature extraction methods, the new EBTW method has the advantage of an intrinsic energy conservation property during the wavelet transform process. The EBTW method localises and redistributes the signal energy to realise an efficient feature extraction and dimension reduction. The presented diagnosis approach is validated using real-world switch data collected from the Guangzhou Metro in China. The results show that the proposed diagnosis approach can achieve 100% accuracy in identifying a railway switch overdriving fault with various severities, improving upon existing methods of conventional discrete wavelet transform (C-DWT) and soft-thresholding discrete wavelet transform (ST-DWT) by 8.33% and 16.67%, respectively. The presented prognosis approach is constructed based on traditional data-driven prognosis modelling. The concept of a remaining maintenance-free operating period (RMFOP) is introduced, which transforms the usefulness of sensor measurement data that is readily available from operations prior to failure. Useful features are then extracted from the original measurement data, and modelled using linear and exponential regression curve fitting models. By extracting key features, the original measurement data can be transformed into degradation signals that directly reflect the variations in each movement of a switch machine. The features are then fed into regression models to derive the probability distribution of switch residual life. To update the probability distribution from one operation to the next, Bayesian theory is incorporated into the models. The proposed RMFOP-based approach is validated using real-world electrical current sensor measurement data that were collected between January 2018 and February 2019 from multiple operational railway switches across Great Britain. The results show that the linear model and the exponential model can both provide residual life distributions with a satisfactory prediction accuracy. The exponential model demonstrates better predictions, the accuracy of which exceeds 95% when 90% life percentage has elapsed. By applying the RMFOP-based prognosis approach to operational data, the railway switch health condition that is affected by incipient overdriving failure is predicted

    Neuro-wavelet Model for price prediction in high-frequency data in the Mexican Stock market

    Get PDF
    With the availability of high frequency data and new techniques for the management of noise in signals, we revisit the question, can we predict financial asset prices? The present work proposes an algorithm for next-step log-return prediction. Data in frequencies from 1 to 15 minutes, for 25 high capitalization assets in the Mexican market were used. The model applied consists on a wavelet followed by a Long Short-Term Memory neural network (LSTM). Application of either wavelets or neural networks in finance are common, the novelty comes from the application of the particular architecture proposed. The results show that, on average, the proposed LSTM neuro-wavelet model outperforms both an ARIMA model and a benchmark dense neural network model. We conclude that, although further research (in other stock markets, at higher frequencies, etc.) is in order, given the ever increasing technical capacity of market participants, the inclusion of the LSTM neuro-wavelet model is a valuable addition to the market participant toolkit, and might pose an advantage to traditional predictive tools.Modelo de neuro-onda para predicción de precios en datos de alta frecuencia en el Mercado Bursátil MexicanoCon la disponibilidad de datos de alta frecuencia y nuevas técnicas para la filtración de señales, es pertinente preguntarse una vez más ¿podemos predecir los precios de los activos financieros? El presente trabajo propone un algoritmo para la predicción de retorno logarítmico del siguiente periodo. Se usan datos en frecuencias de 1 a 15 minutos, para 25 activos de alta capitalización en el mercado accionario mexicano. El modelo consiste en la aplicación de una wavelet seguida de una red neuronal de tipo Long Short-Term Memory (LSTM). En la literatura comúnmente se encuentra el uso de wavelets o de redes neuronales en aplicaciones financieras, la novedad de nuestro trabajo radica en la arquitectura particular que proponemos. Los resultados muestran que, en promedio, el modelo de neuro-wavelet propuesto supera tanto a un modelo ARIMA como a un modelo de red neuronal densa de referencia. Podemos concluir que, aunque más investigación es necesaria, dada la creciente capacidad técnica actual de los participantes del mercado, la inclusión del modelo LSTM neuro – wavelet al abanico de herramientas disponibles es de mucho valor, pues podría representar una ventaja sobre las herramientas predictivas tradicionales

    Advances in Robotics, Automation and Control

    Get PDF
    The book presents an excellent overview of the recent developments in the different areas of Robotics, Automation and Control. Through its 24 chapters, this book presents topics related to control and robot design; it also introduces new mathematical tools and techniques devoted to improve the system modeling and control. An important point is the use of rational agents and heuristic techniques to cope with the computational complexity required for controlling complex systems. Through this book, we also find navigation and vision algorithms, automatic handwritten comprehension and speech recognition systems that will be included in the next generation of productive systems developed by man

    Development of battery management system for hybrid electric propulsion system.

    Get PDF
    Because of the high overall efficiency and low emissions, Hybrid Electric Propulsion System (HEPS) have become an attractive research area. In this research, a parallel HEPS architecture is adopted and a Hardware test platform is constructed. As a relative new power source in powertrains, battery system plays an important role in HEPS. Hence, a Battery Management System (BMS) is investigated in this research. Battery pack State of Charge (SOC) is a key feedback value in HEPS control. In order to estimate SOC, firstly, an operation-classification adaptive battery model is proposed for Li-Po batteries. Considering the fact that model parameter accuracy is of importance in model-based system state estimation method, an event triggered Adaptive Genetic Algorithm (AGA) is applied for online parameter identification. Secondly, the Extended Kalman Filter (EKF) is applied for single battery cell SOC estimation. Finally, a fuzzy estimator is proposed for battery pack SOC estimation based on maximum/minimum cell voltages and SOC values. Experimental results show that the proposed AGA can effectively track battery parameter variation and SOC estimation error for single cell as well as for the battery pack are both less than 1%. Moreover, considering the Li-Po battery characteristics, a converter based battery cell balancing method is proposed. Simulation result shows that proposed balancing method can be effective in balancing battery cells. In addition, in relation to safety and reliability concerns, a Discrete Wavelet Transform (DWT) based battery circuit detection method is proposed and simulation results showing its feasibility are presented.PhD in Aerospac
    corecore