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ABSTRACT 
 

 

This thesis presents a novel fault diagnosis and prognosis methodology which is applied to 

railway switches. To improve on existing fault diagnosis, energy-based thresholding wavelets 

(EBTW) are introduced. EBTW are used to decompose sensor measurement signals, and then 

to reconstruct them within a lower dimensional feature vector. The extracted features replace 

the original signals and are fed into a neural network classifier for fault diagnosis. Compared 

to existing wavelet-based feature extraction methods, the new EBTW method has the advantage 

of an intrinsic energy conservation property during the wavelet transform process. The EBTW 

method localises and redistributes the signal energy to realise an efficient feature extraction and 

dimension reduction. 

 

The presented diagnosis approach is validated using real-world switch data collected from the 

Guangzhou Metro in China. The results show that the proposed diagnosis approach can achieve 

100% accuracy in identifying a railway switch overdriving fault with various severities, 

improving upon existing methods of conventional discrete wavelet transform (C-DWT) and 

soft-thresholding discrete wavelet transform (ST-DWT) by 8.33% and 16.67%, respectively. 

 

The presented prognosis approach is constructed based on traditional data-driven prognosis 

modelling. The concept of a remaining maintenance-free operating period (RMFOP) is 

introduced, which transforms the usefulness of sensor measurement data that is readily 

available from operations prior to failure. Useful features are then extracted from the original 

measurement data, and modelled using linear and exponential regression curve fitting models. 

By extracting key features, the original measurement data can be transformed into degradation 



signals that directly reflect the variations in each movement of a switch machine. The features 

are then fed into regression models to derive the probability distribution of switch residual life. 

To update the probability distribution from one operation to the next, Bayesian theory is 

incorporated into the models.  

 

The proposed RMFOP-based approach is validated using real-world electrical current sensor 

measurement data that were collected between January 2018 and February 2019 from multiple 

operational railway switches across Great Britain. The results show that the linear model and 

the exponential model can both provide residual life distributions with a satisfactory prediction 

accuracy. The exponential model demonstrates better predictions, the accuracy of which 

exceeds 95% when 90% life percentage has elapsed. By applying the RMFOP-based prognosis 

approach to operational data, the railway switch health condition that is affected by incipient 

overdriving failure is predicted.  
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CHAPTER 1  
 

 

INTRODUCTION 
 

 

The railway transportation system has been under huge pressure to facilitate 

increased passenger volumes with higher reliability, lower costs and higher 

speed. In order to enhance the overall system performance, effective 

management of inspection, maintenance and renewal of the relevant railway 

assets has great significance. According to an annual assessment report from 

Office of Rail and Road (ORR), the network-wide reliability across Great Britain 

reduced in 2019-20 [1]. Typically, the number of failures in electrically powered 

assets, such as switches and level crossings, has increased with more negative 

impacts on normal train operations. For example, in 2018-19, train delays caused 

by asset failures accounted for over half of the total delay minutes in Great 

Britain [2]. A railway switch system, which directs the coming train onto the 

correct tracks at railway junctions, is a key railway asset. Current inspection and 

maintenance strategies could be improved by investigating more timely and 
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effective condition monitoring methods. In the following sections, the precise 

research problem is defined.  

 

1.1 Research Problem Definition 

1.1.1 Application Background: Railway Switch System 

A railway switch, or (set of) points is a mechanism that can divert trains from one 

track to another by driving a moving rail at a railway junction. The switch is 

composed of a pair of linked tapering rails, known as points (switch rails), 

situated between the diverging outer rails (stock rails), as illustrated in Fig. 1.1 

[3]. The points can be moved laterally in either of two directions (i.e., normal-to-

reverse or reverse-to-normal) within a few seconds, to direct the arriving trains 

towards the correct track. Historically, it would require a human operator to 

move the points from one position to another, and there still remain some hand-

controlled switches. Most switches are now driven remotely by actuators, called 

point machines. Railway switches are categorized into electro-mechanical, 

electro-hydraulic and electro-pneumatic types based on their distinct power 

operations. Among the three, the electro-mechanical and electro-hydraulic 

powered point machines are applied more commonly. 
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Fig. 1.1 Railway switch in an operational railway environment 

At present, visual inspections of switches are carried out periodically by 

experienced personnel. Some mechanical measurement tools are normally 

carried to identify faults in railway switches. Reactive maintenance is then 

employed based on the inspection results. However, it cannot be denied that the 

possibility of human error always exists during normal inspections. Faults and 

failures may also happen between inspections. Thus, a balance needs to be 

found on inspection frequency. Failure to plan and carry out inspection 

frequently enough has the potential to cause severe consequences. Too 

frequent inspections are costly and give increased exposure to risk to the staff 

carrying them out. For example, the Grayrigg derailment was a fatal railway 

accident that happened on 23 February 2007 [4]. The scheduled inspection on 

18 February 2007 did not take place and switch faults had gone undetected. 

From this point of view, the construction of effective condition monitoring 
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techniques that are applicable to railway switches is an essential part of the 

whole procedure, which can dramatically affect the switch maintenance quality 

and the overall railway capability to perform at high capacity. 

 

1.1.2 Research Topic: Condition Monitoring and Fault Analysis 

Condition monitoring techniques are commonly used on rotating equipment 

such as gearboxes and bearings, and other equipment including pumps, electric 

motors, compressors and presses [5]. Accelerometers are usually installed to 

measure the bearing casing vibrations [6]. Eddy-current sensors are also applied 

to measure radial displacement of the shaft [7]. Interpreting and analysing these 

sensor signals requires specialized experience and knowledge [8]. In other words, 

the developed condition monitoring algorithms are specifically tailored to the 

applications [9]. The research methods can significantly vary by machine type, 

from the selection of measurement sensors, the understanding of signal features, 

to the construction of analysis models [10].  

 

A railway switch is an industrial reciprocating machine, and there is still a lack of 

comprehensive condition monitoring methodologies for this type of machine. 

Therefore, this research is focused on investigating the potential of condition 

monitoring techniques as a feasible approach to addressing the important 



 5 

problem of railway switch fault/failure analysis. When performing advanced 

condition monitoring techniques on railway switches, the system state can be 

evaluated more precisely. Maintenance activities can be scheduled more 

efficiently with an enhanced system reliability, and the delay caused by 

unexpected maintenance intervention will be mitigated and track availability can 

be improved. 

 

An asset management framework based on the ISO55000 series is used by 

Network Rail to continuously improve efficiency and reliability of operational 

railway assets [11]. The stages in the asset management framework are mainly 

composed of establishing proper objectives and standards, planning delivery 

strategies, executing planned work, and improving current performance, as 

demonstrated in Table 1-1. Condition monitoring techniques normally appear at 

the final stage to support improvement of the planned work by means of 

measuring and analysing system performance. 
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Table 1-1: Asset Management Framework Adjusted From [11] 

 Framework Stage 

Plan 1-Organizational Objectives and Strategy 

2-Rules and Standards 

3-Annual Delivery Plan 

Do 4-Detailed Delivery Schedules 

5-Execution of Work 

Review 6-Performance Analysis and Improvement 

 

Condition monitoring is defined as the process of measuring specific machine 

parameters that can reflect the machine health condition, in order to identify 

the signs of any abnormal changes that could indicate an impending fault/failure. 

It is a major step in scheduling predictive maintenance, which is the type of 

maintenance based on knowledge of what fault or failure might happen and 

therefore what maintenance intervention should be planned to terminate or 

slow down the development of such faults or failures. The lifetime of a 

monitored machine is also generally extended as the result of proper 

maintenance, preventing development into severe functional failures. In other 

words, effective condition monitoring brings decreased maintenance costs, 

decreased downtime, extended asset lifetime and enhanced reliability. 
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Historically, data collection for condition monitoring has been carried out at 

discrete intervals and undertaken manually by trained individuals, who are 

responsible for taking a periodic condition check while a machine is still 

operating without obvious faults. The collected data can only give a snapshot of 

the machine status at the time of collection. More recently, with the rapid 

development of measurement sensors and wireless transmission, condition 

monitoring has employed the digital measurement of machine parameters 

through wirelessly transmitted machine-mounted sensors. A remote condition 

monitoring system can receive and display the sensor signals continuously. 

Advanced condition monitoring systems for some applications can even 

automatically pre-process and analyse multiple types of received sensor data, in 

order to accurately detect, diagnose and give a prognosis of machine 

fault/failure performance. In terms of machinery condition monitoring, fault and 

failure indicate two distinct machine health conditions. A failure implies the 

incapability of a machine to implement what is supposed to, while a fault means 

the potential for failure at a point when it may be possible to prevent the failure 

with an intervention. 

 

Fig. 1.2 shows a data processing flowchart of the type needed to implement 

condition monitoring effectively. It can be seen that machine condition 
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assessment is divided into five distinct, layered processing blocks [12]. The Data 

Collection block combines the outputs from a sensor/transducer and represents 

them digitally as a physical quantity (i.e., temperature, humidity, time period, 

current supply and voltage supply). The Fault Detection block searches for 

abnormalities whenever new data are obtained. An alert or alarm may be raised 

when faults are identified. The Fault Diagnosis block determines the nature of 

the fault and rates the current health of the machine considering all state 

information. The Fault Prognosis block predicts future failures and remaining 

useful life (RUL) based on current and past health condition, as well as on 

projected usage frequencies and maintenance records. The Advisory 

Generation block provides recommended actions to extend the equipment 

useful life. Since the information flow goes sequentially from data collection to 

advisory generation, each processing block requires reliable outputs from the 

earlier processing blocks. In addition, extra information is obtained from/sent to 

external systems. Information displays are also essential in that the data from 

distinct processing blocks are converted to a format that represents clearly the 

information for making corrective-action decisions, such as the fault/failure type, 

an estimation of the severity, a prediction of the condition and, eventually, 

suggested operations. 



 9 

 

Fig. 1.2 Data processing flowchart 

Among the five layered processing blocks, the first four blocks (i.e., data 

collection, fault detection, fault diagnosis and fault prognosis) are technology 

focused, requiring signal processing, meaningful descriptor derivations and 

effective modelling constructions from the raw measurements. Among these 

four, data collection and fault detection are excluded from this research scope 

because they have been well developed in both research and practice, the 

techniques of which are relatively mature compared with fault diagnosis and 

prognosis [13]. Therefore, the focus of this research is to enhance the present 

fault diagnosis and prognosis techniques with respect to the diagnosis reliability 

and quality, as well as the predictions of health condition and potential 

faults/failures for a real-world railway switch application. 
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Fault diagnosis evaluates the machine current health condition and determines 

the actual fault type by assessing the monitored sensor information [14]. 

Diagnosis approaches can be classified into three categories. These are: 1) 

statistical approaches, 2) artificial intelligence (AI) approaches, and 3) physical 

approaches. Statistical approaches aim to recognize, differentiate and put 

measurement data sets into categories (i.e., corresponding to fault types) based 

on their similarities [15]. The data within the same category are more similar 

(e.g., smaller distance or denser data space) to each other, than to those in other 

categories. Artificial intelligence approaches have become more popular in 

recent years. They are a type of computational model used to mimic the human 

brain structure [16]. Typically, multiple processing units are connected to each 

other in a complex layered configuration, in order to express the non-linear 

relationships between the multi-input and multi-output systems. Another type 

of machine diagnosis method is model-based physical approaches, which use 

specifically built mathematical models of the monitored device and vary 

significantly for different machine types [17]. Model-based approaches generate 

and evaluate residuals with respect to their physical structures. A residual is an 

indicative index of machine faults, which shows an anomalous deviation from 

the ideal behaviour. 
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Compared with diagnosis, the capability in prognosis is relatively immature. 

Fault prognosis aims to estimate the future changes in machine health condition 

over time and derive the RUL based on the observations from current and past 

histories, such as the machine usage frequencies and maintenance records [18]. 

Prognosis models can be divided into three categories. These are: 1) data-driven 

models, 2) physics-based models, and 3) knowledge-based models. Data-driven 

models use run-to-failure data to establish an artificial intelligence or statistical 

model, which can accommodate the degradation process and estimate a 

system’s residual life [19]. Usually, the degradation patterns are extracted from 

original data with calculated confidence intervals. Physics-based models 

incorporate mathematical expressions that are used to describe the machine 

physical degradation behaviours from first principles [20]. Knowledge-based 

models give the residual life predictions by matching a newly observed situation 

with failure events that were defined previously in a databank [21]. A databank 

is a series of rules that experts use to describe the encountered experience of 

failures. 

 

Fault diagnosis is concerned with detection and identification when the faults 

have occurred. Prognosis, however, focuses on predicting faults before they 
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happen. The reason for investigating both diagnosis and prognosis together in 

the area of condition monitoring is that each cannot completely replace the 

other in real life applications. Instead, diagnosis and prognosis can work as 

complementary tools for each other, in order to improve condition monitoring 

effectiveness and provide better maintenance support since there will always 

exist some sudden faults that cannot be well predicted. Under these 

circumstances, fault diagnosis can be implemented to give comprehensive 

decision support. The diagnosis information can also be regarded as useful 

feedback for system redesign. 

 

The methods described in both diagnosis and prognosis have their own 

advantages and disadvantages in practice. There is no agreement on a 

universally recognized best approach owing to the variations in accessible data 

amount, applicable experiment scenarios and model parameter assumptions. 

This research considers the benefits and limitations of different method 

categories, followed by investigating solutions to improve fault diagnosis and 

fault prognosis capability for a real-world railway switch application. 

 

The scope of this research is to investigate and improve fault diagnosis and fault 

prognosis methodologies that are applicable to the condition monitoring of a 
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real-world railway switch system. As mentioned earlier in Section 1.1.2, current 

condition monitoring diagnosis literature is categorized into statistical 

approaches, AI approaches, and other approaches. Among these three types of 

methods, AI diagnosis methods have been selected for further deep 

investigation owing to their properties of modelling real-world complex systems 

without detailed requirements of physical understanding of the system 

behaviour, which can be difficult to determine in defects for assets such as 

switches that work in a range of scenarios and environmental conditions. 

Subsequently, among the three prognosis models described in Section 1.1.2 (i.e., 

data-driven models, physics-based models and knowledge-based models), data-

driven prognosis models are selected for exploration for this application. 

 

1.2 Research Aims & Objectives 

The aim of this research is to investigate and improve current fault diagnosis and 

failure prognosis techniques in terms of the performance (i.e., reliability and 

quality of diagnosis, and prediction of failures) and the applicability to a real-

world system, that is, a railway switch system. 

 

The objectives of this research are as follows: 

1. To categorize the established literature on machine fault diagnosis and fault 
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prognosis, in order to identify the potential type of methods that may be 

applicable to the condition monitoring of a real-world railway switch system; 

 

2. To investigate the effectiveness and sensitivity of the installed sensors to 

machine faults by comparing the sensor data collected from various 

measurement devices in a real-world railway switch system; 

 

3. To propose a fault diagnosis methodology and validate its effectiveness in 

terms of the diagnosis performance, such as the computation complexity and 

decision accuracy, using sensor data collected from real-world railway switches 

for comparison with some established diagnosis techniques; 

 

4. To propose a fault prognosis technique that is applicable to railway switches 

in practice using real-world rather than idealized lab data, and prove its capability 

compared to existing fault prognosis methods; 

 

5. To determine the applicability of and recommend the generalization of the 

proposed methodologies beyond the railway switch case. 
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1.3 Case Studies 

The proposed diagnosis and prognosis methodologies are validated using two 

separately collected sets of data from railway switches. Dataset 1 includes 

condition monitoring data from different fault types and can be used for 

diagnosis in AI modelling. Dataset 2 consists of continuous degradation data and 

will be utilized for prognosis in data-driven modelling. The applicability of the 

proposed methods is explored by assessing their mathematical principles, 

approximation assumptions and applicable scenarios. The analysis outcomes 

contribute to making more intelligent and precise fault detection, identification 

and prediction for the application of a railway switch system. Compared with the 

traditional reactive ‘go-and-fix’ schemes, condition-based maintenance can be 

scheduled and conducted in a proactive way. 

 

1.4 List of Publications 

A list of publications related to this research is listed below: 

 

Journal papers: 

1. Chen, Q., Nicholson, G., Ye, J., Zhao, Y. and Roberts, C., 2020. Estimating 

Residual Life Distributions of Complex Operational Systems Using a Remaining 
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Maintenance Free Operating Period (RMFOP)-Based 

Methodology. Sensors, 20(19), p.5504; DOI: 10.3390/s20195504 

 

2. Chen, Q., Nicholson, G., Roberts, C., Ye, J. and Zhao, Y., 2020. Improved Fault 

Diagnosis of Railway Switch System Using Energy-Based Thresholding Wavelets 

(EBTW) and Neural Networks. IEEE Transactions on Instrumentation and 

Measurement, 70, pp.1-12; DOI: 10.1109/TIM.2020.3029365 

 

 

Conference proceedings: 

3. Chen, Q., Nicholson, G., Ye, J. and Roberts, C., 2020, May. Fault Diagnosis Using 

Discrete Wavelet Transform (DWT) and Artificial Neural Network (ANN) for A 

Railway Switch. In 2020 Prognostics and Health Management Conference (PHM-

Besançon) (pp. 67-71). IEEE; DOI: 10.1109/PHM-Besancon49106.2020.00018 

 

1.5 Structure of the Thesis 

The remainder of this thesis is organized as follows: 

Chapter 2 introduces the state-of-the-art diagnosis and prognosis literature 

based on their categorizations. The challenges and limitations are also 

introduced by comparing the approaches within each category. 

https://doi.org/10.3390/s20195504
https://doi.org/10.1109/TIM.2020.3029365
https://doi.org/10.1109/PHM-Besancon49106.2020.00018
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Chapter 3 demonstrates the operational setup of the railway switch system. The 

selected measurement sensors for data collection, as well as the dataset 

descriptions are explained in this chapter. 

 

Chapter 4 describes in detail the newly proposed methodologies for improving 

the current AI diagnosis modelling and data-driven prognosis modelling. 

 

Chapter 5 presents the performance results obtained from every methodology 

discussed in Chapter 4 by manipulating the data sets described in Chapter 3. 

 

Chapter 6 provides a conclusion based on the research presented in this thesis 

and discusses possible directions for related future work. 
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CHAPTER 2  
 

 

LITERATURE REVIEW 

 

 

The scope of this research is to explore and enhance fault diagnosis and 

prognosis methods that are applicable to condition monitoring of real-world 

railway switches. Currently, switch inspections are conducted at intervals based 

on different track categories defined by the traffic speed and equivalent tonnage 

using the line. For example, visual inspections of switches and crossings are 

conducted every week and the maximum permitted interval between two 

adjacent inspections is 8 days, except for non-strengthened switches and 

crossings in some specific track categories. Routine periodic maintenance is then 

carried out, such as repairing fasteners in sections and greasing the fasteners 

and joint bolts, as well as replacing defective rails, welding and polishing rails 

and repairing joint damage, etc. However, there always exists the possibility of 

human error during both the inspection and maintenance process. Extreme 

weather and intense traffic flow might also increase the risk of accidents. 
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There are more than twenty failure modes that have been identified for a railway 

switch system [22]. The most frequently failed components are the motor, slide 

chair and drive rod. The failures related to the motor are mainly due to its inner 

components, such as worn brushes. The slide-chair-related issues mainly come 

from contaminated, dried or defective working conditions. Problems associated 

with the drive rod happen most frequently among the three, occupying 40% of 

failure reports across Great Britain [22]. The common failures are mis-

adjustment and defective physical structures. Except for the aforementioned 

motor, slide chair and drive rod in Britain, other sub-components including 

heaters, cables and relays may also create switch failures. This research is 

focused on the problems associated with the switch drive rod only. 

 

An enormous amount of fault diagnosis and prognosis literature has already 

been published, but with very limited discussion on the application scenarios of 

railway switches. In other words, most published research methods are not 

directly applicable to the railway switch related problems considered as part of 

this research. Therefore, this chapter aims to present a comprehensive literature 

review of current fault diagnosis and fault prognosis methods that are developed 

for various engineering applications. These modelling methods are categorized 

and the advantages and disadvantages of the methods in each category are 
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discussed and compared, in order to find the most appropriate method category 

that can potentially solve the proposed research problem of railway switch 

health monitoring. 

 

2.1 Fault Diagnosis 

Fault diagnosis aims to detect machine abnormalities and to identify the fault 

type based on analysis of the machine’s health monitoring data. Condition-based 

monitoring with diagnosis results helps schedule relevant maintenance activities 

once an abnormality has been identified, the application of which to railway 

switches can prevent the progression of faults to failures during normal train 

operations. 

 

Based on this review of relevant research articles, there is almost no consensus 

in the diagnosis field as to which model type can potentially show the best 

performance for a specified application, here that is railway switch systems, in 

terms of diagnosis quality and accuracy. Generally speaking, diagnosis models 

are categorized into three types, which are: 

 

1. Statistical approaches, 

2. Artificial intelligence (AI) approaches, and 
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3. Physical approaches. 

 

A categorization chart is shown in Fig. 2.1, consisting of a hierarchy of diagnosis 

models considering the model complexity, cost, accuracy, and the range of 

applicability. Among the three types of approaches, statistical approaches are 

considered to have the lowest relative implementation costs, with the largest 

range of applicability in engineering. However, the diagnosis accuracy of these 

approaches is inferior to that of physical approaches. AI approaches are situated 

in the middle of aforementioned two approach types with moderate model 

complexity and mathematics requirement. The different methods listed in each 

category will be discussed in detail in the following subsections (i.e., Sections 

2.1.1-2.1.3). 

 

Fig. 2.1 Diagnosis models hierarchy 



 22 

2.1.1 Statistical Approaches 

Statistical approaches are a common method for fault diagnosis to determine 

whether a specific fault exists or not under known conditions.  

 

A Bayesian Network (BN) is one of the earliest applications of statistics principles 

to diagnosis analysis, which classifies machine health monitoring data (fault-free 

and faulty) by applying probabilistic graphical modelling that can deal with 

different uncertainty problems considering probabilistic information 

presentation and inference [23]. In recent research, some advances beyond 

traditional BNs to achieve an improved performance have been made. A 

Dynamic Bayesian Network (DBN) is demonstrated to have an increased 

capability in fault diagnosis and prognosis by incorporating information from 

multiple sources, with its successful applications to hydraulic actuator system 

[24] and offshore drilling [25]. An Object-Oriented Bayesian Network (OOBN) 

also demonstrates its superiority over traditional static BNs by introducing 

hierarchical representations [26] [27]. Although Bayesian techniques can 

precisely model multivariate and noisy processes, the measurement noise and 

the whole process are assumed to follow Gaussian distributions, which is difficult 

to achieve for a real-world machine with a variety of correlated parameters and 

unknown distributions. 
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The nearest neighbour algorithm is another conventional tool in classifying 

machine faults, which assigns an observation to the health condition most 

common among its nearest neighbours [28]. In this algorithm, the number of 

nearest neighbours and distance measures can be tuned for optimized results. 

For example, a fault diagnosis algorithm was developed for photovoltaic systems 

based on nearest neighbours algorithms, which achieved a high validation 

accuracy in classifying four common faults including line-line fault and bypass 

diode fault [28]. Also, a nearest neighbour based Dissolved Gas Analysis (DGA) 

was investigated for insulating oil faults in power transformers [29]. It should be 

noted that the nearest neighbour algorithms may not achieve a reliable outcome 

when applied to a complex industrial system exposed to noisy and variable 

working environments. 

 

A method called Support Vector Machine (SVM) is normally applied to solve fault 

classification problems by searching for suitable decision boundaries that allow 

the data to be split into different sets, with each set belonging to a distinct fault 

category [30]. A decision boundary is a curve splitting the historical data into 

various areas corresponding to different known fault states. A suitable boundary 

curve helps to map unknown data into the correct data space. As a result of its 
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superior performance in the case of small data size, SVM has been widely 

employed to machinery fault diagnosis in rolling element bearings [31], 

induction motors [32], turbines [33], and power systems [34]. When considering 

its applicability to railway switch machines proposed in this research, it may not 

be the best choice if dealing with large noisy data sets. 

 

The Hidden Markov Model (HMM) can also be used for fault classification. It is a 

stochastic method for modelling signals evolving through a number of discrete 

states. These states are assumed to be hidden and responsible for generating 

observations. Fault diagnosis is achieved by characterizing the hidden states 

from observations [35]. Its combination with Principal Component Analysis (PCA) 

has been applied for fault diagnosis of wind energy converter systems [36]. 

Another combination with wavelet packet decomposition was used for fault 

diagnosis of rolling bearings [37]. The combination of HMMs with other 

techniques, such as the aforementioned PCA and wavelet packets, can provide 

relatively accurate results while compensating for the weakness of intensive 

computation if using HMMs alone. 
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2.1.2 Artificial Intelligence (AI) Approaches 

With the rapid development of smart sensory techniques over the past two 

decades, huge amounts of data can be automatically collected in a short period 

of time. Compared with many traditional statistical approaches, AI approaches 

have recently gained more attention in solving machine diagnosis problems, and 

have demonstrated an enhanced capability in improving data quality, reducing 

data redundancy and boosting analysis efficiency. 

 

Artificial Neural Networks (ANNs) are the most common AI technique, which 

contain a complex configuration with multiple layers of data processing units 

enabling modelling of the non-linear relationship between multiple inputs and 

multiple outputs [38]. A Feed-Forward Neural Network (FFNN) with a 

backpropagation algorithm is the most common type of ANN used for machine 

fault diagnosis, with successful application to railway switches [39], voltage 

source inverters [40] and bearings [41]. A Cascade Correlation Neural Network 

(CCNN) requires no initialization of network construction; therefore, it is more 

suitable for on-line diagnosis compared with the traditional FFNN. An application 

of CCNN to bearing fault diagnosis shows that minimal network construction is 

required to achieve a satisfactory accuracy [42]. Other neural networks that are 

applicable to machine fault diagnosis include recurrent neural networks [43], 
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generative adversarial networks [44], and convolutional neural networks [45]. In 

terms of a concrete fault diagnosis problem, ANN variants show significant 

superiority in modelling complex, non-linear systems without the requirement 

of physical understanding of system behaviours. In other words, their strong 

applicability facilitates use in real-world complex problems without limitations 

on the input data type and application scenarios. In addition, user-friendly 

computer software is available for modelling, which reduces the difficulty of 

implementation. 

 

Unlike neural networks that automatically learn knowledge from training 

observed data with known input and output pairs, fuzzy logic can make full use 

of domain expert knowledge to solve machine diagnosis problems more robustly. 

In other words, the uncertainties in domain expert knowledge can be measured 

qualitatively using fuzzy logic methods. An example of utilizing fuzzy logic for 

machine diagnosis was shown for dissolved gas analysis of various transformer 

incipient faults [46]. A more recent application of fuzzy logic is the combination 

with other techniques. An adaptive neural-fuzzy inference system (ANFIS) is a 

popular method incorporating fuzzy logic with neural networks, which has been 

employed for fault diagnosis in planetary gears [47], power transformers [48] 

and induction motors [49]. When modelling noisy and imprecise inputs, fuzzy 
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logic often gains an advantage in transferring imprecise inputs to precise rules 

using domain expert knowledge. As such, other algorithms combined with fuzzy 

logic could give more reliable outcomes. 

 

In addition, evolutionary algorithms such as genetic algorithms, which mimic the 

biological evolution progression of a population to achieve probabilistic searches 

of some combinations, have also shown some merits in specific applications [50, 

51]. However, the key objective function within the genetic algorithm is not easy 

to design, especially for some application areas that have not been studied in 

depth, such as the railway switches proposed in this research. 

 

2.1.3 Physical Approaches 

In addition to the aforementioned statistical approaches in Section 2.1.1, and 

the AI approaches in Section 2.1.2, another type of solution for machine fault 

diagnosis is physical approaches. These approaches are built upon physics-based 

mathematical models of the specified machine faults. Specifically, the residual, 

which is an indicative signal of the presence of machine faults, is first generated 

from machine observations by utilizing a Kalman filter, parameter estimation, 

parity relations, or other residual generation approaches. These residuals are 

then evaluated to arrive at fault identification. For example, the fault diagnosis 
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problem was considered for a linear drive system that is subject to system noise 

[52]. To solve this problem, a Kalman-filter-based residual generator was 

designed, and a fault-tolerant control method was used to accommodate the 

specific failure types. Also, a combination of an adaptive Kalman filter with a 

joint-state parameter estimation was considered for actuator fault diagnosis in 

analysing lateral dynamics of a remotely piloted aircraft [53]. Some published 

literature applied the residuals principle to detect and diagnose railway switch 

faults, demonstrating the applicability of physics-based fault diagnosis 

approaches to real-world railway switches [54-56]. One advantage of physics-

based approaches is that they require less performance data than AI approaches, 

which may be difficult to collect. Performance data in physics-based modelling 

is used for model validation, whereas it is central to the effectiveness of the 

whole approach in AI methods. 

 

2.1.4 Challenges in Diagnosis Modelling 

The added value of this fault diagnosis literature review is summarized in Table 

2-1, which discusses the advantages and disadvantages of the diagnosis methods 

in each category, with an emphasis on the possibility and existing challenges in 

being applied to real-world railway switch machines.  
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The comparisons summarized in Table 2-1 indicate that AI approaches are most 

likely to be successfully applied to railway switches because of their capability to 

model practical systems with complex structures and working principles by 

learning automatically from a large amount of monitoring data. Therefore, in 

order to solve the proposed condition monitoring problem for real-world railway 

switches, AI diagnosis approaches have been selected to be investigated further. 

In the next chapters (i.e., Chapters 3, 4 and 5), data collection, method 

exploration, and result analysis will be successively carried out around the topic 

of AI-based fault diagnosis for the railway switch fault diagnosis application. 
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Table 2-1: Summary of fault diagnosis literature review 
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2.2 Fault Prognosis 

In addition to fault diagnosis, fault prognosis is another major concern in 

condition monitoring and condition-based maintenance. Fault prognosis 

involves forecasting the future health condition of the current machine of 

interest by exploring the continuous changes in machine health descriptors from 

the present until a defined fault threshold condition is reached. The outcome 

from prognosis is the time left before a fault occurs, which is usually called 

Remaining Useful Life (RUL). As such, condition-based maintenance with RUL 

estimations could contribute to more effective decision making on operational 

and maintenance activities, resulting in improved Mean Time To Repair (MTTR) 

and the associated costs, for example, in its application to railway switch systems. 

 

Similar to fault diagnosis, the approaches to fault prognosis fall into three main 

categories. There is little agreement on which category provides the most 

effective prognosis models overall. The categories are: 

1. Knowledge-based approaches, 

2. Data-driven approaches, and 

3. Physics-based approaches. 
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Fig. 2.2 shows a hierarchy of the three modelling types with respect to the range 

of applicability, model complexity, cost and accuracy. Among the three types of 

prognosis approaches, knowledge-based approaches are the most affordable 

with the widest range of applicability. At the same time, the prediction accuracy 

of knowledge-based approaches is the lowest, followed by data-driven 

approaches. Physics-based approaches are the most accurate of the 

aforementioned two approach types; they have the highest level of model 

complexity. In the following three subsections (i.e., Sections 2.2.1, 2.2.2 and 

2.2.3), the common methods belonging to each category are discussed in detail, 

with the purpose of identifying the most appropriate model type that can be 

potentially applicable to the specified field of railway switch health monitoring. 

 

Fig. 2.2 Prognosis models hierarchy 
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2.2.1 Knowledge-Based Approaches 

Knowledge-based approaches derive the machine’s residual life by comparing 

the similarity between an observed condition with a databank of previously 

defined events. Expert systems and fuzzy systems are the main two methods 

within this category.  

 

An expert system contains the accumulated professional knowledge in a specific 

area and formulates it as exact IF-THEN rules in a software program. An effective 

fault prognosis system was established to predict several typical faults of railway 

track circuits by developing a complete and accurate expert system [21]. Another 

expert system was combined with neural networks to predict the residual life 

distributions of gearboxes [57]. Although expert system methods are easy to 

understand and implement, the issue of ‘combinatorial explosion’ happens 

when the machine behaviour and the corresponding prediction results are 

described in great detail [57]. That is, the increased numbers of system inputs 

and the desired outputs cause the number of possible combinations to increase 

dramatically. One rule is required for each combination, which makes it difficult 

to check throughout and manually for consistency. It becomes even more 

difficult to implement on a real-world system, because all formulated rules need 
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to be updated by incorporating working environment related parameters as new 

inputs. 

 

Fuzzy systems, serving as another type of knowledge-based approaches, can 

overcome the aforementioned combination problem in expert systems by 

allowing empirically derived, but intentionally inexact IF-THEN statements to 

address these problems. As such, one fuzzy rule can substitute a great number 

of traditional rules. Successful applications of fuzzy system for RUL prediction 

include a set of boiler tubes [58], plant equipment [59], and wind turbine pitch 

[60]. Similar to expert systems, a sufficient amount of expert knowledge of the 

underlying fault process is compulsory for fuzzy systems, which is not easy to 

achieve for real-world complex systems. 

 

Note that some approaches introduced in the fault diagnosis sections (i.e., 

Sections 2.1.1 - 2.1.3) can also be used for prognosis, such as the aforementioned 

fuzzy systems, because fault prognosis is related to and depends highly on fault 

diagnosis. In addition to several common approaches that are applicable for both 

diagnosis and prognosis, the following subsections (i.e., Section 2.2.2-2.2.3) will 

also introduce some methods that are only suitable for prognosis. 
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2.2.2 Data-Driven Approaches 

Data-driven approaches determine the machine’s RUL based on a mathematical 

expression that has been obtained from observation data instead of from 

physical knowledge of the fault progression.  

 

Trend extrapolation serves as the simplest approach in this category, which 

defines a monotonic, single-parameter fault progression trend. The variable 

parameter that is directly related to collected data is plotted against time, and 

the residual life is found when the parameter curve reaches a pre-established 

alarm threshold. Note that measurement noise and variations in working 

conditions could significantly affect prediction results in trend extrapolation. An 

improved exponential trend analysis was proposed for rolling element bearings, 

which utilizes particle filters to reduce the random errors of the stochastic 

process, so as to increase the prediction accuracy [61]. In addition to the 

exponential function, many other distributions can also be applied to model fault 

progression, including Normal, Lognormal and Weibull functions. A Weibull 

trend analysis was specifically presented for RUL predictions of bearings exposed 

to different operating conditions [62]. Normal functions have demonstrated 

their superiority in modelling gradual and monotonic deteriorations in bearings 

[63]. As a result of its superior ability to model complex systems and relatively 
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low requirements for physical knowledge, the trend extrapolation approach 

shows high potential to be applicable to the proposed railway switch problem. 

 

Hidden Markov models (HMMs) can model multiple practical fault scenarios 

without the precondition of monotonic behaviour. It has been successfully 

applied to fault prediction in power transformers [64] and bearings [65]. More 

recent research makes full use of the characteristics of state-based analysis in 

HMMs, but improves their overall performance including computation 

complexity and result consistency. For example, a simple state-based prognostic 

model (SSBP) was proposed to forecast the residual life of a railway switch 

system, demonstrating an improved prediction accuracy compared with 

traditional HMMs [66]. Another technique called state-based prognostics with 

state duration information (SBPD) that incorporates the time duration spent in 

each transition state demonstrated its effectiveness for the same application 

[67]. Based on the literature that has been listed in previous sections (i.e., 

Sections 2.2.1 - 2.2.2), it can be found that fault prognosis methodologies have 

been widely developed for a variety of engineering applications, especially for 

rolling element bearings working in an idealized lab environment. Two of the few 

published studies that are directly related to railway switch fault prognosis [66, 

67], which means that, in addition to the aforementioned trend extrapolation, 
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HMMs is another method type that is potentially applicable to the proposed 

problem. 

 

Compared with the several types of artificial neural networks introduced in 

Section 2.1.2 for fault diagnosis, the types of applicable networks for fault 

forecasting are quite different. Three types of network structures have been 

explored for machine prognosis, which are recurrent neural networks, time 

delay neural networks, and long short-term memory neural networks. The 

common point of these three methods is that the temporal information that 

reflects the continuous changes of fault progression is ‘stored’ by the network in 

a particular form, in order to deal with time-variant forecasting problems. The 

term time-variant is used to describe a system property when a time advance or 

time delay in system input changes not only the system output in time, but also 

the system performance and other parameters. Some specific applications using 

the above three types of methods can be individually found for aircraft turbofan 

engine [68], for cracked aluminum sheet [69], and for a battery system [70]. By 

training a large number of data, artificial neural networks tend to obtain a good 

prediction accuracy. The characteristic of modelling complex systems without 

expert knowledge also makes it possible to be applicable to the proposed 

research problem. 
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2.2.3 Physics-Based Approaches 

The final type of solution for machinery fault prognosis is physics-based 

approaches. This type of approach requires a comprehensive understanding of 

the system performance in response to fault progression, at both microscopic 

and macroscopic levels. This allows a quantitative description of the system 

performance based on first principles. For example, crack progression 

behaviours in different materials are commonly analysed using physical 

approaches [71] [72].  

 

2.2.4 Challenges in Prognosis Modelling 

The added value of this fault prognosis literature review is summarized in Table 

2-2, which compares the advantages and disadvantages of prognosis approaches 

introduced in earlier sections (i.e., Sections 2.2.1-2.2.3). Their applicability for 

real-world railway switches is also discussed. 

 

According to Table 2-2, the types of knowledge-based approaches and physics-

based approaches both require detailed understanding of the fault mechanism 

for a specific application. In contrast, data-driven approaches are a generic type 

of model that can predict RUL of a complex system without relevant physical 
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knowledge. By learning automatically from a large amount of data, data-driven 

approaches tend to achieve satisfactory prognosis results. In terms of the 

proposed condition monitoring problem for real-world railway switches, 

comprehensive knowledge of system operations and external conditions are not 

easy to obtain. As such, data-driven approaches show the highest potential to 

be applied to railway switches and therefore will be further explored in this 

research. The next few chapters (i.e., Chapters 3, 4 and 5) are concerned with 

the topic of data-driven fault prognosis, with respect to data collection, method 

exploration, and result analysis processes, respectively. 
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Table 2-2: Summary of this fault prognosis literature review 
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CHAPTER 3  
 

 

EXPERIMENTAL SETUP & DATA 
COLLECTION 

 

 

This chapter first introduces the increasing requirement for railway 

transportation availability expected to be delivered by improved asset 

management and condition monitoring strategies, so as to accommodate and 

serve more efficiently the increasing number of rail passengers in Great Britain. 

A railway switch system has been chosen as the experimental basis for validation 

of the condition monitoring algorithms proposed in this research, because of the 

significant role it plays in traffic flow by shifting the train’s moving direction and 

ensuring safe transfer between tracks. Subsequently, it is presented in terms of 

its physical structure and the sensor measurements used for monitoring its 

health status. Finally, at the end of this chapter, the data collection process is 

described. Two sets of data (named Dataset 1 and Dataset 2) are individually 

collected for diagnosis and prognosis, respectively. More detailed explanation of 
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the data type, data volume, and precautions when collecting the data is provided 

in the following subsections (i.e., Section 3.2.1-3.2.2). 

 

3.1 Railways and Switch System 

3.1.1 Railway Transportation 

Railway transportation has become increasingly in demand in recent years, 

because of the ability to efficiently and cost effectively move freight and 

passengers whilst avoiding the congestion inherent with road traffic. However, 

as the number of passengers increases year by year, the requirements for 

railway operation and asset management have also increased. Condition 

monitoring, serving as a crucial stage in railway asset management, has great 

significance in enhancing the reliability and availability of the whole system. 

Common assets in an operational railway include tracks, signals, stations, bridges, 

tunnels, switches and level crossings. Among these assets, electrically powered 

assets, such as railway switches, have caused an increased number of incidents 

during 2019-20 across Great Britain, with more faults influences normal 

operations [1]. From this point of view, an improved management and condition 

monitoring over these asset components is urgently needed, in respect of the 

optimization of inspection, maintenance and renewal strategies, the extension 
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of long-term usage cycles, and the reduction of management costs over the long-

term. 

 

The railway switch is a key asset category that diverts a train from one line to 

another, as shown in Fig. 3.1 [73]. At the same time, switches are also a priority 

risk area for railway operations because they create the potential for serious 

accidents. Due to the important role the switch plays in changing a train’s moving 

direction and ensuring safe transfer between tracks, an efficient management in 

respect of inspection, maintenance, and renewal can positively affect railway 

operations whilst reducing the risks of serious incidents [74].  

 

Fig. 3.1 An operational railway switch [75] 

Preventive and predictive maintenance techniques for railway switches have the 

potential to reduce asset faults and failures, leading to a reduction in costs and 
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disturbances caused by unplanned maintenance interventions. Therefore, the 

deployment of condition-based maintenance on railway switch systems shows 

great importance in enhancing the dependability of an overall railway network. 

 

3.1.2 Switch Instrumentation and Measurement 

Trains can move between tracks with the help of a railway switch that moves the 

rails to the needed position before they pass. Since being patented in 1832, the 

mechanical structure of railway switches has remained virtually unchanged. 

However, different types of point operating equipment (POE) have been used, 

and the relevant operation and control strategies have been developed 

throughout the decades [76]. 

 

A schematic of a railway switch system is shown in Fig. 3.2, and a corresponding 

practical system diagram is shown Fig. 3.3. It can be seen that a switch is a 

complicated piece of electromechanical equipment consisting of stock rails, 

switch rails, stretcher bar, slide chairs, drive and detection rods. The operation 

of a railway switch can be divided into four phases: inrush, unlock, move and 

lock. Switch rails are locked in position after each movement; the first two 

phases of a switch operation are to increase the electric power supply to the 

switch motor and unlock it from its current position, respectively. Subsequently, 
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the drive rod that is connected to an actuator will move the switch rails to the 

correct position and lock them.  

 

Generally speaking, the key features of POE are actuation, locking and detection. 

Actuation delivers the mechanical force to move the switch rail from one place 

to another. Locking of the switch rail ensures that it maintains in its final position 

after actuating successfully. Detection provides confirmation to the signalling 

system that the position of the switch is safe for train passages. In practice, there 

are many types of POE. The main categories are external or in-bearer, and single 

or multiple machine [76]. The type of POE applied in this research is an external 

single switch, which describes an external actuator box mounted on a trackside 

frame that is fixed to the bearers, and a single machine sufficient for switch 

actuation. 

 

The railway switch is a piece of reciprocal equipment that can be moved in either 

of two directions (normal-to-reverse and reverse-to-normal). The actuator is 

also called a point machine (shown in Fig. 3.2) and can be categorized into 

electric (DC or AC), hydraulic and pneumatic based on its power supply type. The 

overall operation duration is only a few seconds and the data to be used in 

condition-based monitoring are collected during this period. The size of data sets 
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depends on the time duration of each switch movement, as well as the 

frequency of the movements. 

 

Fig. 3.2 Schematic of a railway switch system adjusted from [77] 

 

Fig. 3.3 A practical switch system 

Before starting the data collection process for the purposes of validating the 

algorithms proposed in this work, an analysis of the suitability of various sensors 
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under different failure modes has been conducted. It was found that a large 

proportion of service affecting failures are caused by the ‘Out of Adjustment’ 

fault type. Failures attributed to the mechanical drive rods ranked within the top 

three between 2015 and 17 [76]. Most failure modes cause a more difficult drive 

rod movement, resulting in an increased required force, change in motor voltage 

and current to supply the required power, and a reduced moving speed. 

 

While considering the approximate cost, reliability, robustness, and fault 

sensitivity, as listed in Table 3-1, the force sensor, current sensor and voltage 

sensor were chosen to be applied in this study. The proximity sensor that detects 

the distance of movement of the switch rail is insufficiently robust for practical 

applications. 
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Table 3-1: Comparison of sensors for railway switch application [78] 

Sensor 

Type 

Approx. 

Cost (£) 

Reliability Robustness Sensitivity to 

faults 

Force 350 Reliable High High 

Current 25 Reliable High Moderate 

Voltage 45 Reliable Moderate Moderate 

Proximity 15 Reliable for short 

distance 

Low Low 

 

Fig. 3.4 shows an experimental setup for data collection from different sensors 

in a DC point machine. The point machine shown in Fig. 3.4 is of ZD6 type, which 

is powered by a DC motor. It can be seen that there are many inner components 

within a point machine, such as the motor, gearbox, circuit controller, and the 

drive and detection rods that are connected to the switch rails shown in Fig. 3.3. 

A load pin is installed as the force sensor applied to monitor the load cells within 

the drive rod during the switch movement. The force sensor provides a range of 

-50,000 N to +50,000 N analogue output measuring the force in compression and 

tension. A DC current sensor installed in the circuit controller is used to measure 

the changes in motor current. The current sensor outputs an analogue current 

value in the range of -10A to +10A. Similarly, a DC voltage sensor in the circuit 
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controller is applied to measure the changes in motor voltage during its 

operation. The voltage sensor is capable of measuring in the range of -250V to 

+250V. 

 

Fig. 3.4 Experimental setup for data collection from a DC point machine 

 

3.2 Data Collection 

In order to validate the proposed condition monitoring algorithms, a group of in-

service switch systems were selected from which to collect sensor data. An 

embedded data acquisition system was designed, and all the sensor data were 

collected and transmitted to a remote PC via a LABVIEW program. Note that the 

switch machines instrumented were from an operational system, rather than an 

idealized laboratory instrument. Specifically, in terms of the data collection 

process, more considerations are present in the case of practical railway 
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switches. For example, the data collection process must not affect normal 

railway operations, and the safety of staff carrying them out must be ensured. 

In contrast, an instrument working in the laboratory environment is free from 

those limitations and the data collection is rather straightforward to implement. 

More specific explanation will be given for the scenarios for both diagnosis and 

prognosis in the following subsections (i.e., Section 3.2.1-3.2.2). 

 

3.2.1 Dataset 1 for Diagnosis 

In this research, a drive rod overdriving failure mode with varying severities is 

considered, which corresponds to 9% of switch failures in Great Britain [79]. 

Overdriving is a state in which the force between the switch rail and the stock 

rail is beyond the ideal range. Considering that the development of a natural 

overdriving failure in a switch system may take years, overdriving conditions with 

incremental severities were simulated to obtain statistically sufficient data sets. 

 

As shown in Fig. 3.5, the switch rails are moved by the lateral driving force of the 

driving rod. The driving force actuates the switch rail through the locking nut and 

the arm fixed on the switch rails. When manually fastening the locking nut on 

the right-hand side of the arm, it generates a lateral offset to the left via the 

screw thread. As such, the original distance between the right locking nut and 
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the arm is shortened. When the driving rod is actuated to move laterally from 

right to left, the right locking nut touches the arm sooner due to the shortened 

travel distance. The switch rails linked to the arm are then actuated and transit 

to the locking position earlier, while the point machine is still producing the 

driving force. The redundant actuation power will cause a greater force between 

the switch rail and the stock rail, and overdriving occurs. 

 

Specifically, one hexagonal screw nut has six faces. By fastening the hexagonal 

screw nut mounted on the drive rod one side (one face) at a time, one level of 

overdriving severity can be simulated.  

 

Fig. 3.5 Principles of the simulation of overdriving fault 
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A total of eight overdriving severities, which are ‘fault free’, ‘overdriving 3 faces’, 

‘overdriving 6 faces’, ‘overdriving 7 faces’, ‘overdriving 8 faces’, ’overdriving 9 

faces’, ‘overdriving 10 faces’, ‘overdriving 11 faces’ can then be sequentially 

simulated and obtained. Specifically, 20 sets of data, with each composed of 

force, electrical current and voltage signals, were collected for each overdriving 

severity. As such, a total of 160 data sets were obtained during the switch 

normal-to-reverse movements.  

 

3.2.2 Dataset 2 for Prognosis 

Unlike Dataset 1 that was collected separately from discrete faulty conditions, 

Dataset 2 was collected during a continuous period. By monitoring and analysing 

the machine condition over a continuous operational period, a prediction of 

remaining useful life can potentially be achieved. After comparing the cost and 

fault sensitivity, as shown earlier in Table 3-1, the electrical current sensors were 

chosen to collect prognosis-related condition monitoring in-service data due to 

the characteristics of low-cost, high reliability, high robustness, and high 

sensitivity to faults. From January 2018 to February 2019, 50 groups of current 

data were collected from 50 electro-hydraulic switch machines, with each data 

group recording a specific switch’s every movement. Note that the railway 

switches are a type of practical operational system that must not be permitted 
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to run to a failure state, wherever possible. In other words, the collected 50 

groups of data contain the progression of faults rather than failures. As 

introduced in Section 1.1.2, the difference between fault and failure is that the 

machine with a fault can still achieve what is supposed to, but in a degraded 

mode, while the machine with a failure means the incapability to complete what 

is supposed to. 

 

A summary of applied point machine type, sensor type, applicable scenario and 

data description is demonstrated in Table 3-2 for dataset 1 and dataset 2. In the 

next chapter, the methodology of fault diagnosis and prognosis will be proposed, 

followed by results analysis of implementing the methodology towards the two 

datasets. 
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Table 3-2: A summary of dataset 1 and dataset 2 

 POE Category Actuation 

Type 

Sensors 

Used 

Applicable 

Scenario 

Data Description 

Dataset 

1 

Style-63 point 

machines from a 

Chinese railway 

Electro-

mechanical 

Force, 

current, 

voltage 

Overdriving 

fault 

diagnosis 

160 sets collected 

separately from 8 

discrete fault 

severities 

Dataset 

2 

Clamplock point 

machines from a 

British railway 

Electro-

hydraulic 

Current Overdriving 

fault 

prognosis 

50 groups of 

degradation data 

collected over a 

continuous 

operational period 
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CHAPTER 4  
 

 

METHODOLOGY 
 

 

In order to begin addressing the research challenges identified in Section 1.1, the 

condition monitoring methodologies developed and presented in this chapter 

are focused on the application of data science signal processing techniques to 

the sensor information from previously conducted experiments. Therefore, this 

chapter is organised around two topics: 1) AI-based diagnosis modelling, and 2) 

data-driven prognosis modelling. These were selected based on the outcomes of 

Chapter 2. 

 

4.1 AI Diagnosis Modelling 

4.1.1 Challenges in State of the Art 

Fault diagnosis is concerned with the detection of machine abnormalities and 

identification of the failure mode, by analysing a machine’s health monitoring 

data. As discussed in Chapter 2, AI-based diagnosis methods are found to be 

potentially applicable to railway switches owing to their ability to model practical 
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and complex problems. The following research will be developed around the 

topic of AI-based diagnosis models. 

 

Within the area of artificial intelligence, machine fault diagnosis can be treated 

as a classification problem [80]. Specifically, a diagnosis model is established by 

feeding pre-processed sample datasets into a defined network architecture, 

which is normally composed of layers of data processing units that are capable 

of mapping the complex non-linear relationship between the network input and 

output [80]. The sample datasets are called training datasets, each of which is 

composed of a pair of input data and the corresponding expected output data 

points [14]. After training using training datasets, an inferred function for 

mapping the newly encountered data (i.e., test data) is generated and the fault 

category for these test samples can be determined [14]. 

 

Feature extraction plays an extremely important role in solving problems of 

classification, the quality of which can dramatically affect the overall diagnosis 

performance [81]. Feature extraction begins with an initial measurement 

dataset and generates derived values (features) expected to be non-redundant 

and informative. It is regarded as a dimension reduction process because the 
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initial measurement datasets are shrunk to a more manageable size, facilitating 

the subsequent model training and testing procedures [81]. 

 

When performing analysis of a dataset, extracting the features from the time 

domain is the simplest and most intuitive, since the analysis is directly based on 

the time waveform itself. Common time-domain features include mean, 

variance, root mean square, kurtosis and skewness. Qualitative trend analysis 

(QTA) is one common technique to deal with time-domain datasets, the 

waveforms of which are partitioned and assigned distinct shapes. Specifically, a 

group of datasets collected in transmission lines were transformed using QTA 

into a sequence of episodes representing qualitative and quantitative properties, 

before feeding into Bayesian classifiers [82]. Also, a variety of time-domain 

features can be extracted and combined for a comprehensive assessment of the 

machine faults, as seen in [83]. 

 

Compared with the aforementioned time-domain features, time-frequency 

features have gained more attention in recent years because they can more 

directly demonstrate the changes in signal frequency components with time. A 

comprehensive review of current time-frequency methods is presented in [84], 

which mainly covers pseudo-Wigner-Ville distributions, short-time Fourier 
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transforms and wavelet transforms. Among them, wavelet transforms show the 

highest capability owing to their characteristics of concise mathematical 

expressions and robustness, with successful applications to fault diagnosis of a 

variety of engineering equipment such as rolling element bearings [85] and gears 

[86].  

 

A conventional discrete wavelet transform (C-DWT) was used for fault diagnosis 

of railway switch systems, which derives the scaling coefficients at an 

appropriate decomposition level as feature inputs for a diagnosis model [87]. 

However, the disadvantages of poor noise sensitivity and limited applicability to 

sensors make it quite difficult to implement in practical situations. In contrast, 

the soft-thresholding discrete wavelet transform (ST-DWT) can effectively 

reduce noise within sampled datasets by applying the soft-thresholding method 

to wavelet coefficients at a certain decomposition level [88, 89]. However, the 

characteristics of poor adaptability may result in an inefficient feature extraction 

when applied to a specific industrial application, because the computed 

threshold in ST-DWT is a non-adjustable parameter with lack of a physical 

meaning. 
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It can be seen that the two aforementioned traditional wavelet-based methods 

(i.e., C-DWT and ST-DWT) are not comprehensive measurement approaches. The 

application of the inherent energy conservation characteristics within a wavelet 

transform could potentially make the feature extraction process more efficient, 

as will be seen in the newly proposed energy-based thresholding wavelets 

(EBTW) methodology in the following Section 4.1.2. 

 

4.1.2 Proposed Diagnosis Methodology: Energy-Based Thresholding 

Wavelets (EBTW) and Neural Networks 

The proposed diagnosis methodology is summarised in Fig. 4.1. First, fault-free 

and faulty signals are collected from a data acquisition system. Subsequently, 

the features are extracted from the original signals, using the proposed EBTW 

method in three steps. These features are then treated as the input to a 2-layer 

convolutional neural network (CNN) for model training and testing. The eventual 

diagnosis performance depends on the proportion of the test data that are 

correctly classified between fault-free and three faulty levels. 
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Fig. 4.1 Flowchart of the EBTW diagnosis methodology 

 

4.1.2.1 Feature Extraction 

The definition of a wavelet transform, as well as the property of energy 

conservation is first explained in this subsection. Subsequently, the details of the 

proposed EBTW methodology are described in three individual steps. 

 

The continuous wavelet transform of a signal 𝑓(𝑡)  is calculated by 

implementing a convolution of the signal itself with a scaled and translated 

wavelet basis function [90]: 

 𝐹(𝑎, 𝑏)  = ∫ 𝑓(𝑡)𝜓(𝑎,𝑏)
∗ (𝑡)𝑑𝑡

∞

−∞

   (4.1) 
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where 𝜓(𝑎,𝑏)
∗ (𝑡)  represents the complex conjugate (*) of a wavelet basis 

function 𝜓(𝑡) at scale 𝑎 and translation 𝑏. The specific representation of a 

wavelet basis function is shown as [90]: 

 𝜓𝑎,𝑏(𝑡) = 𝑎
−1/2𝜓 (

𝑡 − 𝑏

𝑎
) (4.2) 

The scale parameter 𝑎  is used to adjust the signal resolution. An increasing 

value of 𝑎 will generate a more stretched-out signal with fewer details but lasts 

the increasing duration in time domain. The translation parameter 𝑏  is to 

adjust the location of the wavelet basis function across the time length of the 

signal. By dilating and translating the wavelet basis function 𝜓(𝑎,𝑏), a series of 

daughter wavelets are generated and form a wavelet family. For the purpose of 

processing efficiently by computers, discretization is required to take discrete 

samples from the original continuous signals. A discrete wavelet transform (DWT) 

is introduced for discrete-time signal processing, which states [90]: 

 𝜓𝑚,𝑛(𝑡) = 2
−𝑚/2𝜓(

𝑡−𝑛∙2𝑚

2𝑚
). (4.3) 

𝑎 = 2𝑚  and 𝑏 = 𝑛 ∙ 2𝑚 . 𝜓𝑚,𝑛(𝑡)  is a discretised representation of the 

wavelet basis function specified in Equation (4.2). The original signal 𝑓(𝑡) is 

then reconstructed as [90]: 

 𝑓(𝑡) =∑ ∑ 𝜓𝑚,𝑛(𝑡)𝑑𝑚,𝑛
∞

𝑛=−∞

∞

𝑚=−∞
 (4.4) 

 
𝑑𝑚,𝑛 = ∫ 𝑓(𝑡)

∞

−∞

𝜓(𝑚,𝑛)
∗ (𝑡)𝑑𝑡 

(4.5) 
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where {𝑑𝑚,𝑛} are referred to as the wavelet coefficients. Another group of 

coefficients called scaling coefficients are generated from a wavelet basis 

function, 𝜑(𝑡), that is orthogonal to 𝜓(𝑡) [90]: 

 𝑠𝑚,𝑛 = ∫ 𝑓(𝑡)
∞

−∞

𝜑(𝑚,𝑛)
∗ (𝑡)𝑑𝑡 (4.6) 

 𝜑𝑚,𝑛(𝑡) = 2
−𝑚/2𝜑 (

𝑡 − 𝑛 ∙ 2𝑚

2𝑚
)  (4.7) 

where {𝑠𝑚,𝑛}  are the scaling coefficients at 𝑚 th order. The wavelet basis 

function 𝜑(𝑡)  is also called the scaling function that achieves the 

approximations of the original signal 𝑓(𝑡) in multiple resolutions. Additionally, 

the wavelet coefficients and scaling coefficients can be calculated iteratively for 

a higher (𝑚 + 1)th order by decomposing the scaling coefficient at the 𝑚th 

order [90]: 

 𝑑𝑚+1,𝑛 =∑ ℎ(𝑗 − 2𝑛)𝑠𝑚,𝑛
∞

𝑗=−∞
 (4.8) 

 
𝑠𝑚+1,𝑛 =∑ 𝑙(𝑗 − 2𝑛)𝑠𝑚,𝑛

∞

𝑗=−∞
 

(4.9) 

where ℎ  and 𝑙  individually represent the high-pass and low-pass filter 

coefficients that are both obtained from the wavelet basis 𝜓(𝑡). It can be seen 

that the wavelet coefficients {𝑑𝑚,𝑛}  represent the fluctuation or running 

difference within the higher-frequency components. The scaling coefficients 

{𝑠𝑚,𝑛}  represent the trend or running average within the lower-frequency 
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components of the original signal. The lengths of the wavelet coefficients and 

scaling coefficients are both half of the original. 

 

In comparison with the two traditional wavelet-based methodologies (i.e., C-

DWT and ST-DWT) that were introduced in Section 4.1.1, the newly proposed 

EBTW method could potentially achieve a more efficient feature extraction by 

applying the inherent energy conservation characteristics within a wavelet 

transform.  

 

An 𝑚-level wavelet transform of the signal 𝒙 is represented as: 

 𝒙 ⟼ (𝒔𝑚|𝒅𝑚|𝒅𝑚−1|⋯ |𝒅1). (4.10) 

𝒙 is a 𝑁- length signal represented as: 

 𝒙 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑁). (4.11) 

Thus, the energy 𝜀 of signal 𝒙 can be calculated as: 

 𝜀𝒙 = 𝑥1
2 + 𝑥2

2 +⋯+ 𝑥𝑁
2 . (4.12) 

According to the energy conservation property, the energy among the transform 

coefficients is equal to the energy within the original signal. This yields: 

 𝜀(𝒔𝑚|𝒅𝑚|𝒅𝑚−1|⋯|𝒅1) = 𝜀𝒙. (4.13) 

The newly proposed energy-based thresholding wavelet (EBTW) methodology 

takes advantage of the energy conservation property during the wavelet 
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transform process. By localizing and redistributing the energy within the original 

signal, EBTW could potentially achieve an efficient dimension reduction and 

feature extraction. A summary of its implementation steps is shown below. 

 

Step 1: Perform a DWT on the collected sensor data with a certain wavelet type. 

In order to investigate the best performance, comprehensive experimental 

results from using different wavelet functions, such as the near symmetric 

‘Coiflet’ wavelet, discrete ‘Haar’ wavelet and continuous ‘Daubechies’ wavelet, 

should be used and compared. The ‘Haar’ wavelet function that serves as the 

fundamental prototype for all other wavelet families is chosen as a 

demonstration case to study in this research. 

 

Step 2: Obtain the cumulative energy map by rearranging the transform 

coefficients. The absolute values of the coefficients obtained from the DWT are 

sorted in descending order as: 

 𝑒1 ≥ 𝑒2 ≥ ⋯ ≥ 𝑒𝑀  (4.14) 

where 𝑒1 and 𝑒𝑀  signify the greatest and the smallest absolute values of the 

transform coefficients, respectively. As such, the cumulative energy map can be 

obtained by following: 

 (
𝑒1
2

𝜀𝒙
,
𝑒1
2 + 𝑒2

2

𝜀𝒙
,
𝑒1
2 + 𝑒2

2 + 𝑒3
2

𝜀𝒙
, ⋯ ,1) (4.15) 
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Equation (4.15) tells that if the energy map quickly reaches its maximum value 

of unity, most of the signal energy is expected to be distributed on a small 

portion of coefficients with larger absolute values, which allows the following 

thresholding technique to become potentially efficient. 

 

Step 3: Determine the energy percentage to be conserved within the signal, 

labelled as 𝜂 , and calculate the corresponding wavelet threshold 𝑒𝑡ℎ . 

Specifically, the wavelet threshold 𝑒𝑡ℎ is calculated indirectly by assessing the 

first value of 𝑒𝑗  that can make the energy percentage to be conserved exceed 

the selected value 𝜂: 

 
∑ 𝑒𝑗

2𝑡ℎ−1
𝑗=1

𝜀𝒙
≤ 𝜂 (4.16) 

where: 

 
𝑒1
2 + 𝑒2

2 + 𝑒3
2 +⋯+ 𝑒𝑡ℎ−1

2 + 𝑒𝑡ℎ
2

𝜀𝒙
= 𝜂   (0 ≤ 𝜂 ≤ 1) (4.17) 

Subsequently, retain those coefficients that have greater absolute values than 

threshold 𝑒𝑡ℎ and assign all others to be zero: 

 𝑒𝑗 = {
𝑠𝑔𝑛(𝑒𝑗)|𝑒𝑗|,          |𝑒𝑗| ≥ 𝑒𝑡ℎ
0,                            |𝑒𝑗| < 𝑒𝑡ℎ

 (4.18) 

where 𝑗 = 1, 2,⋯ ,𝑀 and sgn() is the sign function.  
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As such, the original transform coefficients obtained from a DWT have been 

rearranged and thresholded based on the analysis of the signal energy 

distribution. The surviving coefficients are regarded as the extracted feature 

components to feed into the following fault diagnosis algorithms. Note that the 

basis of this new thresholding method of extracting wavelet coefficients is to 

determine the value of the wavelet threshold. The main novelty of the proposed 

method is that the determination of the wavelet threshold is transformed to the 

determination of energy percentage to be conserved within the signal. This 

allows the relevant experts in a specified area to physically understand and 

adjust the feature components generated from the proposed method. The 

general principle of determining a proper energy conservation percentage is to 

find its lowest value that can still retain an acceptable level of waveform 

resolution. A high energy conservation percentage ensures the waveform will be 

reconstructed to a high resolution, but requires a large computation time. On 

the other hand, a low energy percentage brings about an efficient dimension 

reduction, at the expense of waveform resolution and diagnosis accuracy. 

Therefore, there always exists a trade-off between retained signal resolution and 

computation time. 
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In order to validate the proposed EBTW method and demonstrate its enhanced 

capability over existing methods, a comparison between EBTW and two mature 

methods (i.e., C-DWT and ST-DWT) is implemented under various classifiers, and 

will be shown in the following Section 4.1.2.2. 

 

4.1.2.2 Diagnosis and Classification 

The fast development of neural networks and deep learning over the past two 

decades has seen their increasing application in the area of fault diagnosis. As a 

type of machine learning, deep learning methods have an extended architecture 

with several hidden layers of processing units. This allows the network to 

automatically learn the complex linear or non-linear relationship between input 

and expected output, so as to correctly recognize the fault patterns. Deep 

learning can usually realize a rather satisfactory diagnosis accuracy in 

comparison with some traditional classifiers. 

 

The application of a generative adversarial network (GAN) to solving the fault 

diagnosis problem within analogue circuits has been explored and validated [91]. 

Another deep learning algorithm called the convolutional neural network (CNN) 

was applied to address gearbox fault diagnosis problems by learning and 

classifying frequency-domain features extracted from vibration signals [92]. A 
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comprehensive review of AI-based machine health management methodologies 

discusses the recent trend and potential restrictions in deep learning diagnosis 

[93]. However, the adaptive ability of these algorithms for a real-world 

engineering application still needs to be further investigated using field data, 

instead of idealized lab-collected data. 

 

A convolutional neural network (CNN) that serves as an efficient and powerful 

deep learning approach for solving fault classification problems is introduced 

here in detail. A CNN is a type of feed-forward neural network, which consists of 

four different layer types, named the convolutional layer, pooling layer, fully 

connected layer, and softmax layer. First of all, the original datasets or the 

extracted features are treated as the input to the convolutional layer, which 

calculates and adds the convolution results of each input with various kernels. 

Each kernel is composed of one bias vector and one weight matrix. The 

summation results are then transformed using a non-linear activation function. 

A pooling layer always follows every convolutional layer, the aim of which is to 

down sample and reduce data dimension. The fully connected layer works the 

same way as in a regular neural network, connecting all its neurons to every 

output from the former layer. The softmax layer is usually the final layer used to 
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calculate the probabilities of every input being classified in every category and 

decide the predicted category for the given input.  

 

To seek the model type that can achieve the best diagnosis performance, a 

comparison is conducted for a variety of machine learning algorithms of both 

modern and conventional approach types. Modern neural networks include the 

aforementioned CNNs, shallow neural networks and deep neural networks. 

Conventional machine learning algorithms including k-nearest neighbours (kNNs) 

and support vector machines (SVMs) are also applied in this research for 

measuring diagnosis accuracy and efficiency.  

 

The architecture and related parameters of each classifier need to be adjusted 

for the best outcomes. Specifically, ten neighbours and a cosine distance matrix 

are adopted for the kNN in this research. A Gaussian kernel function is applied 

to the SVM. A shallow neural network (shallow NN) with one hidden layer of two 

neurons, a deep neural network (deep NN) with three hidden layers separately 

containing one neuron, two neurons and two neurons, as well as a one-

dimensional CNN (1-D CNN) with two layers are applied in this research.  
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4.2 Data-Driven Prognosis Modelling 

4.2.1 Challenges in State of the Art 

Fault prognosis is used to determine the future health condition of a current 

machine of interest, by means of analysing the continuous changes within the 

machine health descriptor from the present to a pre-defined fault threshold. As 

discussed previously in Chapter 2, data-driven prognosis approaches are 

considered to have the highest potential for application to railway switch 

prognosis. The proposed Remaining Maintenance-free Operating Period 

(RMFOP)-based prognosis methodology is established upon the traditional data-

driven models. 

 

In terms of modern asset management regulations in Great Britain’s (GB) railway 

industry, prognostics and health management (PHM) is normally carried out to 

maintain and manage the reliability of the machines that are affected by faults 

and failures. With the increasing requirement for a more efficient condition 

monitoring and asset management, prognosis information that is mainly 

obtained from staff knowledge and experience cannot achieve the targets of 

prognosis for high infrastructure safety and dependability. Expert practitioner 

knowledge is difficult to accumulate and can be imprecise, especially for 

integrated systems exposed to complicated working conditions. 
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At the same time, a large number of condition monitoring models have been 

explored in recent years to predict the asset condition [94-96], but there are still 

very few practical implementations in industry as a result of data shortages and 

comprehensive methodologies. The problem of insufficient data is caused by the 

fact that operational systems are not allowed to run to failure and faults are 

normally fixed before progressing to serious functional failures. This poses a 

serious challenge of collecting the complete run-to-failure degradation data that 

are required by most prognosis methods. In addition to the problem of data 

collection, those well-developed methodologies usually contain specific 

mathematical simplifications and assumptions that are very difficult to hold for 

real industry implementations. The two aforementioned problems would both 

increase the level of risk for a practical industry to train particular prediction 

models.  

 

A new prognosis methodology is designed to collect and process degradation 

data in terms of the operational systems in real world, and presented in the 

following Section 4.2.2. The statistical properties of an individual complex 

system among a population of the same machine type, and its residual life 
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distributions will be explored in the proposed method. Again, the methodology’s 

effectiveness is fully assessed using railway switch applications. 

 

4.2.2 Proposed Prognosis Methodology: Remaining Maintenance-

Free Operating Period (RMFOP)-Based Degradation Modelling 

A new perspective on the traditional prognosis definition is put forward, with 

respect to the remaining maintenance free operating period. Next, two 

regression models, which are the exponential model and the linear model, are 

described and applied. An explicit summary of the methodology is then 

presented. 

 

4.2.2.1 Prognosis Definition and Data Preparation 

In order to address the challenge of a shortage of proper data, three types of 

approach are proposed in the published literature. The first approach is to 

artificially create a group of continuous degradation paths by fitting discrete data 

collected from levels of fault severities into a continuous model. Many time-

series processing techniques, such as autoregressive moving average and long 

short-term memory network, can subsequently be applied for residual life 

predictions. However, it becomes quite challenging to validate whether the 

selected models and parameters follow the natural degradation patterns, since 
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the continuous data were generated unnaturally without properly validating its 

similarity to real-world degradation.  

 

In the second approach, a piece of vulnerable equipment is built to substitute 

original ones for experimental data collection. Although the complete lifecycle 

data is easier to collect in this means of accelerated failure progression, it is less 

likely to be applicable for railway switches with complex electromechanical 

structures. 

 

The third solution is to build mathematical models that can simulate the real-life 

physical degradation process. With respect to a railway switch system, both its 

inner components, such as the static rails, movable rails, and the switch motor, 

as well as the outer environment, such as train loads and extreme weather 

conditions, should all be considered. Compared with the two aforementioned 

methods, it generates continuous data waveforms following the natural 

propagation. Significant expert knowledge about the system behaviour is a pre-

requisite for their development. 

 

The problem of data shortages is addressed in this methodology, by considering 

a different time point at which to achieve a forecast. Unlike in most published 
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research, which predicts the time from which a machine cannot achieve its 

expected behaviour as a result of a functional failure, a new time period called 

the remaining maintenance-free operating period (RMFOP) is proposed here. It 

defines the residual time gap of a machine that operates normally without 

maintenance intervention activities. Therefore, the prediction results will be 

able to show the remaining suggested operating duration. As such, obtaining a 

sufficient amount of prognosis data is no longer hard to achieve because the 

data during normal operations is much easier to collect when compared to full 

run-to-failure data. Note that fault prognosis rather than failure prognosis is 

usually a more reasonable consideration for real-world systems since most of 

them must not be permitted to run to failure, wherever possible. 

 

4.2.2.2 Model Selection 

As discussed in Section 2.2.1-2.2.4 of the fault prognosis literature review, data-

driven approaches are demonstrated to have the highest potential to be 

applicable to railway switches. Common data-driven methods include trend 

extrapolation, hidden Markov models, and dynamic neural networks. Among 

them, trend extrapolation models are introduced and employed in this study for 

two reasons. First of all, the required regression analysis within the trend 
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extrapolation is simple. Second, different regression functions can be chosen 

from to describe the fault progression trend.  

 

In this research, the linear model and the exponential model are applied to 

describe the monotonically increasing, incipient fault progression. Regression 

models are concerned with the establishment of parametric progression paths 

considering the random effects within the collected condition monitoring data. 

A threshold needs to be set to indicate the occurrence of an asset fault when the 

monitored data exceeds the threshold. It is assumed that the assets from a 

population of the same type share identical degradation patterns. However, due 

to the varying usage frequency and the environment, the behaviour of the 

population merely provides some references and cannot accurately indicate the 

health condition of each individual asset. The following two models take 

advantage of Bayesian theory. The stochastic distributions of model parameters 

derived from a known group of progression paths will be later updated for each 

individual monitored asset. 

 

Model 1: Linear model 

A linear model can be mathematically represented as [97]: 

 𝑦(𝑡𝑖) = 𝜃𝑡𝑖 + 𝑐 + 𝜀(𝑡𝑖)   (4.19) 
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where 𝑦(𝑡𝑖) signifies the degradation signal at time 𝑡𝑖. On the right-hand side 

of Equation (4.19), 𝜃 is a Gaussian distributed random coefficient with a prior 

mean 𝜇𝜃  and a prior variance 𝜎𝜃
2 . Equivalently, 𝜋(𝜃)~𝑁(𝜇𝜃 , 𝜎𝜃

2) .  𝑐  is a 

constant indicating the machine initial state. 𝜀(𝑡𝑖) represents the noise within 

the signal, which is assumed to follow independent and identically distributed 

(i.i.d.) 𝑁(0, 𝜎2). Bayesian theory is then applied to update the distribution of 𝜃. 

This yields [97]: 

 𝑝(𝜃|𝑦1, ⋯ , 𝑦𝑘) = 𝜋(𝜃)𝑝(𝑦1, ⋯ , 𝑦𝑘|𝜃) (4.20) 

where 𝑦𝑘  is the degradation signal at time 𝑡(𝑘), or equivalently, 𝑦𝑘 = 𝑦(𝑡𝑘). 

Equation (4.20) shows that by observing the continuous degradation signals 

from initial time 𝑡1  until   the current time 𝑡𝑘 , the posterior probability of 

variable 𝜃  can be obtained. Subsequently, the posterior mean �̃�𝜃  and 

posterior variance �̃�𝜃
2 can be separately calculated as [97]: 

 �̃�𝜃 =
𝑠𝑢𝑚2 ∙ 𝜎𝜃

2 + 𝜇𝜃𝜎
2

𝑠𝑢𝑚1 ∙ 𝜎𝜃
2 + 𝜎2

 (4.21) 

 
�̃�𝜃
2 =

𝜎𝜃
2𝜎2

𝑠𝑢𝑚1 ∙ 𝜎𝜃
2 + 𝜎2

 
(4.22) 

where 𝑠𝑢𝑚1 = ∑ (𝑡𝑗
2)𝑘

𝑗=1  and 𝑠𝑢𝑚2 = ∑ {(𝑦𝑗 − 𝑐)𝑡𝑗}
𝑘
𝑗=1 . Assuming that the 

continuous observations from the initial time to current time 𝑡𝑘  have been 

obtained, the probability of residual life 𝑇𝑅 not exceeding the time 𝑡 is equal 
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to the probability of the degradation signal being greater than the threshold 𝐷 

at a future time 𝑡 [97]: 

 

𝑃(𝑇𝑅 ≤ 𝑡|𝑦1, ⋯ , 𝑦𝑘)

= 𝑃(𝑦(𝑡𝑘 + 𝑡) ≥ 𝐷|𝑦1, ⋯ , 𝑦𝑘) 

=

𝜙

(

 𝑐 + �̃�𝜃𝑡 − 𝐷

√�̃�𝜃
2𝑡2 + 𝜎2

)

 − 𝜙 (
𝑐 − 𝐷
𝜎 )

1 − 𝜙 (
𝑐 − 𝐷
𝜎 )

 

(4.23) 

where 𝜙(∙) represents the cumulative distribution function (cdf) of a normal 

distribution. Eventually, in order to obtain the probability density function (pdf) 

of residual life, Equation (4.23) is differentiated with respect to 𝑡 . A more 

detailed derivation process has been previously published [97]. 

 

Model 2: Exponential model 

The exponential degradation model can be mathematically represented as [97]: 

 𝑦(𝑡𝑖) = 𝑐 ∙ exp (𝜃𝑡𝑖 + 𝜀(𝑡𝑖) −
𝜎2

2
) (4.24) 

where 𝑐  is a constant. Variable 𝜃  follows a prior distribution 𝜋(𝜃) with a 

Gaussian mean 𝜇𝜃  and variance 𝜎𝜃
2 . 𝜀(𝑡𝑖)  represents the noise term 

following i.i.d. 𝑁(0, 𝜎2). Usually, a logarithm is performed upon exponential 

equations to simplify calculations. After taking a logarithm on both sides on 

Equation (4.24), this generates [97]: 
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 𝑥𝑖 = (𝑙𝑛𝑐 −
𝜎2

2
) +  𝜃𝑡𝑖 + 𝜀(𝑡𝑖) (4.25) 

Similarly, Equation (4.20) is also applied here upon the logarithm amplitude 𝑥𝑖  

to update the posterior distributions of parameter 𝜃. This generates [97]: 

 �̃�𝜃 =
∑ {(𝑦𝑗 − 𝑙𝑛𝑐 +

𝜎2

2 )𝑡𝑗}
𝑘
𝑗=1 ∙ 𝜎𝜃

2 + 𝜇𝜃𝜎
2

∑ (𝑡𝑗
2)𝑘

𝑗=1 ∙ 𝜎𝜃
2 + 𝜎2

 (4.26) 

 
�̃�𝜃
2 =

𝜎𝜃
2𝜎2

∑ (𝑡𝑗
2)𝑘

𝑗=1 ∙ 𝜎𝜃
2 + 𝜎2

 
(4.27) 

Note that Gaussian distribution is assumed in both models above because of its 

capability of modelling a monotonic degradation process, which is suitable for 

the single incipient fault prognosis problem considered in this research. Other 

distribution functions including Weibull and lognormal can also be applied for 

modelling failure progression. The best choice of the distribution function relies 

on knowing the noise level and operating conditions. 

 

4.2.2.3 Summary of the Methodology 

A summary of the proposed RMFOP-based methodology is presented below in 

10 individual steps: 

Step 1: Collect N groups of condition monitoring data with each group from a 

specific machine of the same type. Each data group is a time series, describing 

the changes of a machine’s sensor data over a continuous, maintenance-



 79 

included operating period. Note that the term “continuous” refers to the 

temporal relevance between adjacent data points, instead of the uninterrupted 

time in a narrow sense. 

 

Step 2: Extract a proper type of “characteristic pattern” from the monitored data. 

Specifically, the data in each group is transformed into one specific characteristic 

pattern, which can directly illustrate a machine’s degradation progression. 

Therefore, the characteristic patterns are also called “degradation signals”. 

Common degradation signals are the minimum value, maximum value, mean, 

variance, slope, etc. The selected type of degradation signal will be validated in 

the experiment section: in the case of an undesirable prediction accuracy, 

another degradation signal will be considered for replacement. In addition, a 

maintenance threshold for the selected degradation signal must have been 

carefully selected by industry experts and can be referred to. 

 

Step 3: Visualize the machine’s degradation process by extracting and plotting 

the degradation signals over the operating period for each data group. As stated 

in Section 4.2.2.1, the proposed methodology predicts the remaining period a 

machine can operate without maintenance interventions. The complete 
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degradation signals between two adjacent maintenance records are considered 

as one “degradation path” describing the process from fault-free to faulty.  

 

Step 4: Normalize the degradation paths and apply to a degradation model, 

which is either linear or exponential. The linear model is suggested to be applied 

first for its simplicity. Specifically, 𝑀  out of 𝑁  ( 𝑀 < 𝑁 ) normalized 

degradation paths are treated as the prior knowledge to decide the values of the 

constant and the prior distribution of the stochastic parameter, as demonstrated 

in Equation (4.19). Among the 𝑀 paths, fit each path with the linear equation 

and obtain the intersection and slope for each path. The average intersection 

value calculated among these 𝑀 paths is assigned to constant 𝑐 in Equation 

(4.19). The mean and variance of slope values are individually assigned to prior 

mean 𝜇𝜃 and prior variance 𝜎𝜃
2 of parameter 𝜃. The variance of error term 

𝜎2 is obtained from a sequence of initial observations of the degradation path 

with the greatest fluctuation level. Normalization is a common pre-processing 

technique to re-scale data to be centred around zero and fluctuated within a unit. 

 

Step 5: The prior distributions derived from the 𝑀  paths are used as the 

population-wide properties known for the set of monitored machines. Among 

the residual (𝑁 − 𝑀) machines, the RMFOP will be independently estimated 
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for each individual. For instance, the 𝑖th degradation path is selected from the 

(𝑁 −𝑀) paths. Once the observation duration ranges from the beginning to for 

example 10% of life accomplished, the parameter posterior distributions are 

updated specifically for the 𝑖th machine using Equation (4.21) and Equation 

(4.22). Equation (4.23) is then used to calculate the cdf and pdf of the 𝑖 th 

machine’s remaining operating period. 

 

Step 6: Repeat Step 5 for the 𝑖th machine as more observation times become 

available. In this case, 30%, 50%, 70%, and 90% are used as the examples 

of life accomplished percentages. The updated RMFOP distributions for the 𝑖th 

machine under various life accomplished percentages can then be achieved. The 

life accomplished percentage is calculated as the ratio of elapsed degradation 

time until the observation time point to the total degradation time. For example, 

a machine degrading from fault-free to failure takes 100 days. 10%  life 

accomplished percentage means the first 10 days of monitored data are 

collected for RMFOP predictions. Likewise, the numbers of 30%, 50%, 70%, 

and 90%  separately represent using the first 30, 50, 70, and 90 days of 

monitored data for predictions. 
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Step 7: For each residual (𝑁 − 𝑀 − 1) machines, repeat Step 5 and Step 6. As 

such, the individual specific RMFOPs are estimated. 

 

Step 8: Analyze all (𝑁 −𝑀) validation machines at different life accomplished 

percentages and plot the prediction errors with 95% confidence interval. A 

conclusion can be made about whether the linear model is suitable for the 

degradation path modelling. 

 

Step 9: Select another model (i.e., exponential model) and work through Step 4 

to Step 8. Unlike the statistics in the linear model that are directly calculated 

from the amplitude of degradation signals, the statistics in the exponential 

model are calculated from the logarithm amplitude of degradation signals. 

 

Step 10: Generate models without the Bayesian updating technique in both the 

linear and exponential model cases and proceed through Step 4 to Step 9. A 

comparison between models with updating technique and models without 

updating technique can be used to further evaluate the effectiveness of the 

incorporated Bayesian theory. A final conclusion about the most appropriate 

degradation model is then made for the application. 
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As a summary, fault diagnosis and prognosis methodology has been presented 

throughout in this chapter. The challenges in state of the art were discussed. The 

proposed diagnosis and prognosis approaches were explained in theories. In the 

following Chapter 5, a proof of the concept of the proposed methodology will be 

designed and implemented to railway switch machines. The experimental results 

will be demonstrated and analysed. 
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CHAPTER 5  
 

 

RESULTS 
 

 

From the methodologies that have been proposed in Chapter 4, the experiments 

designed for proof of concept are implemented. The experimental results are 

demonstrated in this chapter. Section 5.1 is focused on the diagnosis 

methodology using EBTW and neural networks. Section 5.2 is concerned with 

the prognosis methodology using RMFOP-based degradation modelling. 

 

5.1 AI-Based Diagnosis Methodology: EBTW and Neural Networks 

In order to evaluate the diagnosis methodology proposed in Section 4.1, a group 

of railway switch systems operating on the Xiliang section of Guangzhou Metro 

in China were selected from which to collect sensor data. An embedded data 

acquisition system was developed. The sampling rate was set to be 20 kHz. 160 

data sets were collected during the movements of the point machine in the 

normal-to-reverse direction. Specifically, real-world overdriving fault conditions 

are imitated by 8 simulated fault conditions with incrementally increasing 
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severities, which are termed “fault free”, “overdriving 3 faces”, “overdriving 6 

faces”, “overdriving 7 faces”, “overdriving 8 faces”, “overdriving 9 faces”, 

“overdriving 10 faces”, and “overdriving 11 faces”. Twenty sets of data, with 

each consisted of current, voltage, and force signals, were obtained for each 

fault condition. In addition to the applied current, voltage and force sensors, a 

displacement sensor is also a common option to monitor railway POE health 

conditions. The reason that a displacement sensor is not available in this 

experiment is that the selection of suitable sensors is limited as a result of the 

harsh railway environment. 

 

Before showing the detailed implementation results of the proposed 

methodology, the operational characteristics of a general POE system is 

described. Original measurement data collected from multiple sensors under 

both fault-free and faulty conditions are demonstrated and explained. Fig. 5.1 

shows that under the fault-free condition, a sharply increased electrical current 

waveform is observed between 0 and 1.3 sec. This is due to the switch motor 

providing the mechanical drive to move the switch rails from one place to 

another. Subsequently, during the period 1.3-3.2 sec, a smooth current 

waveform is captured, which supplies a constant current value of approximate 

0.7 A. After 3.2 seconds, an evident difference is observed between the fault-
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free and faulty conditions. The waveform from the fault-free condition instantly 

drops to approximately zero current amplitude, while the waveform from the 

faulty condition shows a large current increase, indicating that more electrical 

power is required to lock the switch rail in its final position after successful 

actuation. 

 

Fig. 5.1 Original electrical current measurements under fault-free and faulty 

conditions 

Likewise, changes in motor voltage signals can be observed in Fig. 5.2. The 

simulated overdriving fault condition makes the movement of drive rods harder 

and therefore causes a reduced rod speed and an increased movement duration 

from 3.6 sec to 4.1 sec, as seen in Fig. 5.2. 
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Fig. 5.2 Original electrical voltage measurements under fault-free and faulty 

conditions 

Fig. 5.3 shows the different force sensor behaviours under the conditions of 

fault-free and faulty. An increased required force is observed when the POE is in 

faulty condition, which matches the expectation of drive rod overdriving 

consequences. 

 

Fig. 5.3 Original force measurements under fault-free and faulty conditions 
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In the following Section 5.1.1, the EBTW-based feature extraction method will 

be implemented. The original sensor signals will be decomposed and 

reconstructed. A parameter selection process will be carried out to determine 

the values of some key parameters during the signal transformation process by 

assessing the resolutions of the reconstructed waveforms. 

 

5.1.1 EBTW and Parameter Selection 

As described in Section 4.1.2, three individual steps are required to implement 

the EBTW diagnosis methodology. In Step 1, a discrete wavelet transform (DWT) 

needs to be applied to the collected sensor data with a pre-defined 

decomposition level. There are two key points worth noting. First, different 

decomposition levels will have a significant influence on the decomposition 

efficiency and diagnosis accuracy. A process of parameter selection is required 

to decide the most desirable decomposition level. Second, among the three 

types of sensor data (i.e., current, voltage, and force), current data are selected 

for detailed demonstration here. The first reason is that the current data shows 

distinctive waveforms under various fault conditions, which makes it possible to 

extract effective features for fault classification and diagnosis. The second 

reason comes from the concern of practical applicability for real industrial 

application. Current sensors are considered the most cost-effective, 
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straightforward and non-invasive means of measuring railway switch health 

condition; refer to Table 3-1. For comprehensiveness of this research, the 

diagnosis results obtained from current data are later compared with those from 

voltage and force data, as will be seen in Section 5.1.2. 

 

Fig. 5.4 shows the “Haar” transform of an “Overdriving 6 faces” example current 

signal. In this figure, the decomposition level is set to be 9, which indicates that 

the original signal is decomposed at the 9th order of resolution. The results 

demonstrate that most coefficient amplitudes are approximated as zero. As a 

result, the subsequent steps regarding signal compression and feature 

extraction may become more efficient. As different decomposition levels will 

influence the compression efficiency and diagnosis performance, a comparison 

is made to identify the most suitable decomposition level, as will be seen later 

in this subsection of 5.1.1. 
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Fig. 5.4 9-level “Haar” transform of “Overdriving 6 faces” fault condition 

current signal 

 

Step 2 of the methodology is to analyse the energy distribution within the signal 

by observing the cumulative energy map. As demonstrated in Fig. 5.5, the energy 

map reaches its maximum of unity very quickly. Finally, in Step 3, the energy 

percentage to be conserved is determined, and the thresholding technique is 

applied to the re-ordered coefficients. Fig. 5.6 shows the reconstructed current 

waveforms when setting the conserved energy percentage to be 99.99%.  
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Fig. 5.5 Energy map of the “Haar” transform 

 

It can be observed in Fig. 5.6 that there are four operation phases, which are 

labelled “inrush”, “unlock”, “move” and “lock”. The four curves separately 

represent the current signals of different fault severities. When the switch rails 

are moved out of alignment by turning faces of the adjustment nut, the current 

curves show distinctive peaks in the “lock” phase. The movement duration is also 

extended. The force between the switch rails and the stock rails is above the 

ideal range, and the system suffers an overdriving failure at 11 faces. The four 

current curves are all smooth without evident noise.  
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Fig. 5.6 Reconstructed current waveforms with 99.99% energy (dimension 

reduction ratio = 156:1) 

 

The dimension reduction ratio is calculated as the ratio of original data 

dimension to the extracted feature dimension. In this case, the initial data 

dimension of 86,000 is reduced to 548 in feature dimension, indicating a large 

reduction ratio of 86000:548 ~ 156:1 with respect to current signals. 

 

The reconstructed voltage waveforms shown in Fig. 5.7 also demonstrate a 

prolonged movement duration due to the overdriven switch. The dimension 

reduction ratio, with respect to voltage signals, is calculated as 86,000:517 ~ 

166:1. This indicates the capability of dimension reduction for current signals 

and voltage signals is comparable while the performance on voltage signals is 

slightly better. 
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Fig. 5.7 Reconstructed voltage waveforms with 99.99% energy (dimension 

reduction ratio = 166:1) 

 

The results of the force sensor signals’ decomposition and reconstruction are 

shown in Fig. 5.8. It can be seen that a larger driving rod force is required in the 

case of a more severe overdriving condition during the locking phase. The force 

signal dimension ratio is the greatest among the three common types of sensor 

with 199-dimension feature replacing 86000-dimension original data. The 

corresponding dimension reduction ratio is thus calculated to be 86000:199 ~ 

432:1.  
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Fig. 5.8 Reconstructed force waveforms with 99.99% energy (dimension 

reduction ratio = 432:1) 

 

Additionally, a parameter selection process is required in order to find the 

optimal combination of energy conservation ratio and decomposition level. The 

waveforms reconstructed from EBTW decomposition are first plotted against 

various energy conservation ratios, as shown in Fig. 5.9(a)-(d). It can be seen that 

in this example of reconstructed “Overdriving 6 faces” current waveforms, the 

results are compared based on the energy conservation ratio changing from 

99.99%, 95%, 90% to 85%. 
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 (a)                         (b) 

 

   (c)                          (d) 

Fig. 5.9 Comparisons of reconstructed “Overdrive 6 faces” current waveforms 

with different energy conservation ratios. (a)Conserve 99.99%. (b)Conserve 

95%. (c)Conserve 90%. (d)Conserve 85% 

 

As is demonstrated in Fig. 5.9(a), the waveform that conserves 99.99% of the 

original signal energy maintains the most useful characteristics while effectively 

filtering out the noise components. The peak current in the locking phase, as well 

as the steady current in moving phase, are clearly captured. As the energy ratio 

decreases to 95% in Fig. 5.9(b) and to 90% in Fig. 5.9(c), some loss of signal is 

observed in the moving phase. Based on expert knowledge, it is known that the 

overdriving fault with different severities is usually identified through the peak 
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in locking phase. In the cases of 95% and 90% of energy conservation ratio, the 

peak values during the locking engagement are both well preserved. 

Nevertheless, as the ratio drops below 85%, as shown in Fig. 5.9(d), the 

reconstructed current waveform remains at zero for over one second. The 

continuous loss of signal might be mis-identified as another fault or failure type. 

From this perspective, the ratio of 90% is taken forward since it preserves an 

acceptable signal resolution that limits the possibility of mistaking fault or 

failures, at the same time, benefiting from an efficient signal compression. 

 

Subsequently, a comparison between various decomposition levels is 

investigated, as shown in Fig. 5.10(a)-(d). According to Eq. 8 and Eq. 9 of the 

methodology shown in Section 4.1.2.1, the length of scaling coefficients will 

decrease as the decomposition level increases. At the same time, the wavelet 

coefficients from more levels will be retained and used for signal reconstruction. 

Since no evident loss of resolution can be captured from the reconstructed 

signals at a low level (level 1 - level 7), a discussion on the influence of 

decomposition level begins at level 8. Fig. 5.10(a)-(d) individually demonstrate 

the reconstructed current waveforms at decomposition level 8, level 9, level 10 

and level 11. 
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    (a)                            (b) 

 

  (c)                           (d) 

Fig. 5.10 Comparisons of reconstructed “Overdrive 6 faces” current 

waveforms with different decomposition levels. (a)Level 8. (b)Level 9. (c)Level 

10. (d)Level 11 

As shown in Fig. 5.10(a)-(d), the reconstructed waveform shows a reduced signal 

resolution as the decomposition level increases. Clear peaks when the power 

switches on and lock engages can be seen in the case of level 8 and level 9. As 

soon as the decomposition level reaches 10, the peak value can longer be 

observed for fault identification. Thus, the level of decomposition is set to be 9 

in this case study. Similar comparisons are also conducted on current waveforms 

from the other fault, which all end up with the same conclusions. 
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In summary, the application of the EBTW methodology can effectively remove 

the noise within raw data sets. The extracted features can well represent the 

original signals by preserving the key characteristics for fault identification, with 

a much lower data dimension. A combination of energy conservation ratio of 90% 

and wavelet decomposition level at 9 is selected in this case to optimize the 

computation complexity and signal reconstruction resolution. In the following 

research, comparison results of the EBTW methodology and two well-developed 

methods (i.e., C-DWT and ST-DWT) are presented, with respect to dimension 

reduction ratio and diagnosis accuracy (%). 

 

5.1.2 Fault Diagnosis and Comparison Results 

In Experiment 1, data from three fault severities (“Fault free”, “Overdriving 6 

faces”, and “Overdriving 11 faces”) is used for fault diagnosis. The results will 

give an indication of the system performance on distinguishing between normal, 

faulty and failure conditions. However, in practice, an accurate identification of 

merely three health conditions cannot meet the diagnosis requirement for high 

reliability and safety of infrastructure. In Experiment 2, one more fault severity 

(“Overdriving 9 faces”) is included to test the system robustness. As a 

complementary experiment, the focus of Experiment 3 is a cluster number 
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sensitivity analysis conducted considering that the continuous degradation data 

in the real world needs to be first clustered into discrete and observable states. 

Therefore, Experiment 3 discusses a practical issue when applying the EBTW 

methodology. 

 

Experiment 1 (Fault Diagnosis for “Fault free”, “Overdriving 6 faces” and 

“Overdriving 11 faces”): 

In experiment 1, 60 data sets with each composed of current sensor signals were 

used. Among the 60 data sets, 20 sets come from “Fault free” state, another 20 

sets come from “Overdriving 6 faces” state, and the remaining 20 sets belong to 

“Overdriving 11 faces” state. In order to train and test the proposed 

methodology, 48 out of 60 data sets (i.e., 80%) were picked randomly as training 

sets and the remaining 12 out of 60 sets (i.e., 20%) were for testing. 

 

The results of feature dimension and classification accuracy using current sensor 

signals from three health conditions are shown in Table 5-1. It can be seen that 

a comprehensive comparison is made against 5 different classifiers (kNN, SVM, 

shallow NN, deep NN, and 1-D CNN) working under 3 distinct feature extraction 

techniques (ST-DWT, C-DWT and the proposed EBTW). The dimension reduction 

ratio (DRR) is shown as the result of the original data dimension divided by the 
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dimension of the features. Thus, a higher DRR represents a more efficient 

process of feature extraction, which will benefit from a shorter computation 

duration for a fault classifier. The accuracy (%) shown in the following tables (i.e., 

Table 5-1 to Table 5-5) indicates the percentage of features that are correctly 

classified. Less corrupting noise within the extracted features leads to a higher 

diagnosis accuracy. In order to investigate the feature extraction technique that 

could demonstrate the best diagnosis performance, a comparison of DRR and 

diagnosis accuracy (%) is conducted between ST-DWT, C-DWT, and the newly 

proposed EBTW. The fundamental theories and implementation steps of using 

ST-DWT [89] and C-DWT [87] are provided. 
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Table 5-1: Comparison of feature dimension and classification accuracy using 

electrical current signals from 3 health states 

 

As shown in Table 5-1, the DRR is greatest with respect to EBTW methodology, 

followed by C-DWT and ST-DWT. When analyzing the diagnosis accuracy of a 

fault classifier using various feature extraction techniques, the classifier 

combined with the EBTW method always shows the best result. Additionally, it 

is found that the shallow NN and the deep NN both demonstrate an 

unsatisfactory accuracy of below 90%. In contrast, two traditional machine 

learning methods (i.e., kNN and SVM) both have a superior performance 

demonstrating an accuracy of 90% and above. The performance of the 1-D CNN 

is the best, which achieves a 100% diagnosis accuracy by employing the EBTW 

features. 
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Deep learning techniques can sometimes be implemented without incorporating 

hand-tuned features for fault diagnosis problems. In other words, no feature 

extraction process is required, and the deep learning network is capable of 

dealing with raw data directly. Table 5-2 shows an investigation of neural 

network classification accuracy without feature extraction. 

Table 5-2: Comparison of neural network classification accuracy without 

feature extractions 

 

In Table 5-2, the three listed neural-network-based fault classifiers can all 

achieve fault diagnosis at a reasonable level. Nevertheless, in comparison with 

the accuracy shown in Table 5-1 among the EBTW rows, an evident superiority 

can be observed in the case of the EBTW-supplemented methodology. This 

strongly demonstrates the importance of the role the EBTW method plays in 

feature extraction and fault diagnosis. 

 

Compared with ST-DWT and C-DWT, EBTW has demonstrated to possess the 

most efficient dimension reduction and the most accurate diagnosis results. In 

the following Experiment 2, the data from one more intermediate faulty 
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condition is supplemented to validate the robustness of the established 

diagnosis system. 

 

Experiment 2 (Fault Diagnosis for “Fault free”, “Overdriving 6 faces”, 

“Overdriving 9 faces” and “Overdriving 11 faces”): 

One intermediate faulty condition between “Overdriving 6 faces” and 

“Overdriving 11 faces” was added in this experiment, by adding 20 more data 

sets of “Overdriving 9 faces” to those used in Experiment 1. As such, 80 data sets 

with each containing 20 data sets from 4 fault conditions were applied in this 

case. The 80 data sets were randomly divided into 64 sets (80%) and 16 sets (20%) 

for training and testing purposes, respectively. The significance of adding one 

more faulty condition that is closer to a failure state instead of a fault-free state 

is that a diagnosis system is expected to be more sensitive to a more severe 

faulty condition in reality. Specifically, more concentration needs to be focused 

on a system when it is close to failure. Detailed diagnosis information and 

accurate decision support should be provided, which assists the scheduling of 

maintenance work more accurately and provides a higher chance of preventing 

railway switch failures. 

 



 104 

In Table 5-3, a comparison of DRR and classification accuracy is presented using 

current sensor signals for 4 health conditions. In comparison with ST-DWT and 

C-DWT, the EBTW methodology enjoys the most efficient feature dimension 

reduction and achieves the highest diagnosis accuracy.  

Table 5-3: Comparison of feature dimension and classification accuracy using 

electrical current signals from 4 health states 

 

As a result of effective noise removal and feature extraction in EBTW, its 

combination with kNN, deep NN, and 1-D CNN all reach an accuracy of 100%. 

This further implies that the proposed EBTW method not only works as an 

effective fault diagnosis scheme but also surpasses the previously developed ST-

DWT and C-DWT in terms of computation speed and diagnosis accuracy. The 

same conclusions are also drawn for the voltage sensor signals shown in Table 

5-4 and force sensor signals shown in Table 5-5. 
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Table 5-4: Comparison of feature dimension and classification accuracy using 

electrical voltage signals from 4 health states 

 

Table 5-5: Comparison of feature dimension and classification accuracy using 

force signals from 4 health states 

 

When analyzing the performance of EBTW for different sensor types, it can be 

observed that the current sensor and voltage sensor demonstrate comparable 
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fault sensitivities, while the DRR results are slightly better for the current sensor. 

In contrast, the force sensor demonstrates the highest fault sensitivity because 

its DRR and diagnosis accuracy are both high, no matter which method it uses. 

The best result is found when using force sensor signals with the EBTW 

technique, the feature dimension of which has reduced from 86,000 to 70. 

 

Experiment 3 (Cluster Number Sensitivity Analysis): 

In the previous two experiments, “well-labelled” data from various health 

conditions were used. However, this is quite difficult to achieve for a practical 

application. More specifically, observing the health conditions the machine goes 

through and knowing the total number of conditions are two huge challenges 

facing health state diagnosis for complex operational systems. For example, in 

the case of a railway switch system, it becomes very challenging to classify an 

incipient overdriving fault with levels of severities in real life. Therefore, 

Experiment 3 serves as a supplement discussing this practical issue when 

applying the proposed methodology. Clustering and cluster validity index (CVI) 

are used in this experiment to explore the total number of health conditions and 

the data sets belonging to real health conditions. CVI is used in this case to decide 

the optimal cluster number (health conditions) since the real cluster number 
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indicating the real number of degradation levels for a railway switch is unknown 

in practical application. 

 

In Experiment 3, the total number of data sets is expanded to 160 containing 20 

data sets from each of the 8 health conditions. The 160 data sets with 

incremental overdriving fault severities can also be regarded as an incipient fault 

progression process. Feature extraction is required before clustering using k-

means. Subsequently, several CVIs, i.e., Davies-Bouldin (DB), Duun, Calinski-

Harabasz (CH) and Silhouette, were applied to decide the appropriate cluster 

number. Previous work has provided the definitions and full calculation methods 

in [98]. Among them, the results of the CH index were taken forward as the most 

robust choice for the data used in this experiment. A higher value of the CH index 

indicates a good cluster because it represents a larger separation among the 

different clusters, as well as a smaller separation between the points in a single 

cluster. The cluster number that corresponds to the maximum CH value is 

decided to be the optimal. Fig. 5.11 shows the CH index results against different 

number of clusters changing from 2 to 10 in k-means. 



 108 

 

Fig. 5.11 Evaluation of number of clusters in k-means method 

As shown in Fig. 5.11, the maximum CH index value appears at 8 number of 

clusters, for all 3 sensor types. The most distinctive peak is captured for the force 

sensor, followed by current sensor and voltage sensor. As such, the real incipient 

overdriving fault progression is estimated to be modelled with 8 health 

conditions. By setting the cluster number to be 8 in k-means, each simulated 

health condition has been grouped into one cluster with 100% accuracy. 

Alternatively, each clustered data group is now represented as real and 

distinctive fault conditions, rather than simulated fault severities. The 

aforementioned EBTW-CNN classification method can then be used for 

detection and diagnosis, which will identify the system’s real health condition. 

As such, not only is the current situation within the overall fault degradation 

process well understood, but also a future study of fault prognosis and RUL 

estimations can be prepared for. 
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As a summary, a condition monitoring system for railway switch fault diagnosis 

has been presented. Three simulated overdriving fault severities were 

considered in Experiment 1, the results of which demonstrate that EBTW 

surpassed the two traditional feature extraction methods in terms of dimension 

reduction ratio and diagnosis accuracy. Among the five fault classifiers, 1-D CNN 

demonstrated the best diagnosis performance. An additional faulty condition 

was considered in Experiment 2, from which the same conclusion is drawn. The 

comparison of fault sensitivity among various sensor types shows that the force 

sensor indicates the highest sensitivity with the most efficient dimension 

reduction. The combination of EBTW and the cost-effective current sensor also 

shows a 100% accuracy. Experiment 3 applied k-means clustering and Calinski-

Harabasz index to investigate the real number of health conditions during a 

continuous fault progression. The results show that each simulated fault severity 

defines one health condition in reality. Therefore, the EBTW methodology is 

capable of diagnosing a machine’s real health condition, which also establishes 

a concrete basis for future study of fault prognostics. 
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5.2 Data-Driven Prognosis Methodology: RMFOP-Based Degradation 

Modelling 

To demonstrate and evaluate the RMFOP-based prognosis method proposed in 

Section 4.2, a group of degradation data was collected from operational railway 

switch systems in Great Britain. Unlike the diagnosis data used in Section 5.1, the 

prognosis data directly relates to the physical evolution of state degradation. 

Based on the experimental analysis provided in Section 5.1.2, force sensors and 

current sensors both demonstrate reliable sensitivity to railway switch faults, 

when compared to voltage sensors. However, force sensors cost ten times more 

than current sensors; refer to Table 3-1. Therefore, in the following research on 

fault prognosis, a current sensor is employed and the data is collected. The 

results of the data processing are shown in the following Subsection 5.2.1, by 

implementing the RMFOP methodology in 10 steps. 

 

5.2.1 Experimental Results 

Step 1 of the RMFOP methodology is data collection; 50 groups of current sensor 

data were collected from hydraulic type switches over a 13-month period 

ranging from January 2018 to February 2019. The data collected from each 

railway switch is called a data group. Each data group is a series of event-based 

data records. Each record is a time series describing the current sensor 
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waveform for one movement of the switch. Step 2 is to transform the original 

sensor data into degradation signals. The degradation signals are also known as 

characteristic patterns, which can directly demonstrate the fault progression. In 

terms of the railway switch case used in this research, many characteristics 

including peak, variance, average and median have been estimated. The time-

domain average current amplitude is taken forward because of its clear 

representation of the deterioration process and well-defined maintenance 

thresholds per movement. The thresholds are provided by Network Rail, which 

is responsible for the infrastructure management of most railway networks in 

Great Britain. Once the monitored signals exceed the threshold, a fault alert will 

be generated in the operation centre for further field inspections to be 

scheduled. 

 

Step 3 of the methodology is to calculate the degradation signal for each switch 

movement and plot against the operating period ranging from January 2018 to 

February 2019. Fig. 5.12 demonstrates the results of average amplitude over the 

operating period for one railway switch. 



 112 

 

Fig. 5.12 An example of degradation signals: average amplitude over the 

operating period 

The average amplitude of current signals is calculated each time the switch 

moves and is marked as a data point in Fig. 5.12. The red data points are used to 

describe the average amplitude exceeding the maintenance threshold, while the 

residual data points are all marked in black. The connection line represents a 

blue dashed line linking adjacent data points. Some gaps can be observed in Fig. 

5.12 between adjacent data points indicating the switch did not operate during 

those periods of time. 

 

Subsequently, the degradation signals are truncated to form degradation paths. 

Five instances of maintenance interventions are marked as red points in Fig. 5.12, 

which means four degradation paths can be extracted by each time truncating 
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at the threshold and splitting the degradation signals into several sections. It is 

assumed the maintenance alerts have all been addressed properly with faults 

identified and fixed. As such, the degradation signals between two adjacent 

maintenance records are treated as one degradation path, describing the 

changes in average current amplitude during switch movements from fault-free 

to faulty condition. An example of a single degradation path is demonstrated in 

Fig. 5.13. 

 

Fig. 5.13 An example of degradation path 

It can be seen that the x-axis representing the switch useful life is a time-free 

index, which refers to the number of events (a single switch movement). In other 

words, the progression of a machine’s fault is recorded only when a movement 

event happens. The benefit of the time-free measurement is the independence 
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to the process of fault occurrence. The example degradation path shown in Fig. 

5.13 operates approximately 230 times before triggering a fault alarm. 

 

In general, three types of faults will influence the switch operations: intermittent 

faults, abrupt faults and incipient faults. The progression of intermittent faults 

and abrupt faults are usually difficult to describe. In contrast, incipient faults 

could be monitored and predicted as the selected models and parameters are 

appropriate for the system. In this case study, only the degradation paths 

demonstrating a gradual increase of average amplitude will be taken forward 

since they indicate an incipient fault progression and could be predicted by the 

proposed methodology. A total of 50 degradation paths are extracted from the 

data groups and will be taken through the following method steps. 

 

To further identify the fault type, examples of current waveforms recorded at a 

switch’s different life percentages are demonstrated in Fig. 5.14. In the case of a 

railway switch system, the value of the life percentage is determined by the ratio 

of the number of movements the switch has already performed since the last 

maintenance intervention (time-free index) to the overall number of switch 

movements. The overall number of switch movements is counted from the first 
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time the switch has operated since the last maintenance intervention until the 

time the switch triggers a fault alarm. 

 

Fig. 5.14 Current waveforms at different degradation percentages 

An incipient overdriving fault is observed to be progressing, corresponding to an 

increased peak at the end of each current waveform. Overdriving defines a fault 

condition where the force between the switch blade and the stock blade is above 

the ideal range. This consumes more electric energy to lock the switch after 

moving it to the proper position. The motor current supply, as well as the overall 

operation duration, is expected to increase under this circumstance. A 

continuous current supply is seen in Fig. 5.14 where the switch has reached 100% 

life, because an overdriving failure occurs and the switch fails to be locked 

properly.  

 



 116 

After detailed analysis of the 50 degradation paths, it is found they can each 

represent one realization of an incipient overdriving fault progression. Among 

them, 70% of the paths, i.e., 35 paths, are randomly selected to calculate the 

model prior distributions, which will be individually updated and validated using 

the remaining 30% of the paths. 

 

As described in Step 4 of the methodology, the normalized 35 paths are treated 

as prior knowledge to estimate parameters within the linear degradation model. 

According to Eq. 19, the prior mean is calculated to be 𝜇𝜃 = 0.0035892. The 

prior variance is calculated as 𝜎𝜃
2 = 1.2781 × 10−5 . The constant 𝑐  is 

estimated to be 0.096942 . Variance of the error term is 𝜎2 = 0.006 , by 

estimating the highest level of fluctuation. As such, the population-wide 

characteristics among the monitored switch systems have been identified. Then, 

the RMFOP distributions are individually estimated for each remaining validation 

switch system under the various life percentages, by following Step 5 to Step 7. 

Fig. 5.15 shows the updated RMFOP distributions of one validation switch 

system. 
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Fig. 5.15 Updated RMFOP distributions of one validation switch system using 

the linear model 

Subsequently, Step 8 is implemented to calculate the prediction errors at 

various life percentages with 95% confidence interval for all validation paths. 

The prediction error is computed as the ratio of the estimated failure time error 

to the actual failure time. The estimated failure time is the time for which the 

switch has already been operating since the last maintenance intervention, plus 

the estimated remaining life. The switch operating time and the estimated 

remaining life are both measured by number of switch movements, which is a 

time-free index. The estimated remaining life measuring the predicted number 

of switch movements before triggering a fault alarm refers to the median of the 

residual life distribution. The median value is adopted since it can reasonably 
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measure the central tendency of the distribution. A mathematical expression 

of prediction error 𝑅𝑖
𝑗
 is demonstrated in Equation (5.1): 

 𝑅𝑖
𝑗
=
|(𝑡𝑜

𝑗
+ 𝑡𝑝,𝑖

𝑗
) − 𝑡𝑎,𝑖

𝑗
|

𝑡𝑎,𝑖
𝑗  (5.1) 

𝑡𝑜
𝑗
 is the machine’s operating time until the 𝑗th observation time. 𝑡𝑝,𝑖

𝑗
 is the 

predicted residual useful life according to the median value of the 𝑖th machine 

life distribution curve. As such, the summation of 𝑡𝑜
𝑗
 and 𝑡𝑝,𝑖

𝑗
 represents the 

predicted time of failure with respect to the 𝑖 th machine at time 𝑗 . 𝑡𝑎,𝑖
𝑗

 

represents the actual time of failure. The numerator in Eq. 28 therefore 

represents the absolute prediction error of the machine’s failure time. The ratio 

of the prediction error for the 𝑖the machine at observation time 𝑗 is given by 

𝑅𝑖
𝑗
. 

 

Step 9 is to choose a different model and proceed through Steps 4 to 8 as before. 

In this case, the prediction results of the exponential degradation model are 

computed and compared with those derived earlier for linear model; the results 

are given in Fig. 5.16. For a clear demonstration, the linear curve is slightly offset 

to the right. 
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Fig. 5.16 A comparison between the linear model and the exponential model 

regarding residual life prediction accuracy 

It is clear that in both the case of linear and exponential models, the prediction 

errors will decrease when more life has elapsed. The prediction errors for the 

exponential model are generally smaller than those for the linear model, which 

indicates the exponential degradation form may be a better selection for 

characterizing railway switch fault progression in the real world. This finding 

can be attributed to the fact that the cumulative damage accelerates the speed 

of degradation for a switch machine in real life. In addition, the results in Fig. 

5.16 demonstrate that the usage of linear and exponential models is a 

reasonable starting point for RMFOP predictions in terms of complex industrial 

applications. The proposed RMFOP-based methodology is capable of predicting 



 120 

and updating the residual useful life distributions when more life percentage 

has elapsed. 

 

Step 10 is to validate the effectiveness of Bayesian theory on model updating. 

In Fig. 5.17, the residual life prediction error is plotted for both the ‘linear with 

updating model’ and the ‘linear without updating model’. 

 

Fig. 5.17 A comparison between the ‘linear with updating model’ and the 

‘linear without updating model’ regarding residual life prediction accuracy 

It can be seen that in the case of ‘linear with updating model’, the prediction 

error has been decreased dramatically due to its application of Bayesian theory 

for updating parameter statistics.  
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A similar finding is obtained when comparing the ‘exponential with updating 

model’ and the ‘exponential without updating model’, as shown in Fig. 5.18. 

 

Fig. 5.18 A comparison between the ‘exponential without updating model’ 

and the ‘exponential with updating model’ regarding residual life prediction 

accuracy 

It is found that the prediction error of ‘exponential without updating model’ 

fluctuates by around 30%, while the error drops to below 20% when Bayesian 

theory is applied and parameter distributions are updated. 

 

Thus, a proof of the concept of the RMFOP-based prognosis methodology has 

been achieved. By implementing the methodology on real-world railway switch 

systems, the health condition can be recognized and predicted. The probability 
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distributions of the RMFOP can also be estimated and plotted for any future 

time. 
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CHAPTER 6  
 

 

CONCLUSIONS AND FUTURE WORK 

 

 

Fault diagnostics and fault prognostics are the two key components of condition 

monitoring of railway switch systems. In the most recent two decades, the 

significance of condition diagnostics and prognostics has been grasped by both 

the rail industry as well as researchers. Visual inspections that are carried out 

periodically by personnel may not provide the basis for timely or accurate 

decision support in these areas. On the other hand, limited research has been 

conducted using real-world data combined with state-of-the-art methods. The 

core aim of diagnostics and prognostics is to precisely identify and predict 

existing / potential faults, respectively, by means of analysing collected sensor 

data. The benefits of diagnostics and prognostics are the provision of enhanced 

safety, reliability and availability through better decision support for inspection 

and maintenance scheduling. 
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6.1 Summary of Intellectual Contributions 

The aim of this research was to explore and enhance the current diagnosis and 

prognosis approaches in terms of the system performance and the effectiveness 

for real-world railway switch applications. In order to fulfil the aim, the 

established literature regarding fault diagnosis and prognosis was categorized. It 

was found that three types of approach are normally applied to achieve 

machinery diagnosis results: statistical approaches, AI approaches, and physical 

approaches. Each type of approach has its own pros and cons. AI diagnosis 

approaches were identified as showing the highest possibility of being applied 

to real-world railway switches. Similarly, an analysis and discussion were carried 

out in terms of three prognosis approach types, the results of which indicate the 

data-driven prognosis approaches are most likely to be applicable to railway 

switch systems. Investigating methods’ applicability to real-world railway 

switches is of great importance, hence this research focussed on the topic of AI-

based diagnosis and data-driven prognosis, with respect to data collection, 

method exploration, and result analysis. The intellectual contributions of this 

research are summarised as follows: 

 

1. This research provided an essential industrial criterion for selecting the most 

effective sensor that shows high sensitivity to railway switch faults. Specifically, 
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the data collected from various measurement sensors were explored and 

compared. The best sensor for monitoring the switch health condition was found 

when the least computation time was consumed but obtained the highest 

diagnosis accuracy. The comparisons were made for switch motor current sensor, 

motor voltage sensor and force sensor; refer to Section 5.1.2 for details. 

 

2. This research proposed a fault diagnosis algorithm that improves the 

computation complexity and decision accuracy by demonstrating its 

effectiveness to diagnosing faults in railway switches. Specifically, by localizing 

and redistributing the signal energy during the wavelet transform process, the 

derivation of a meaningful descriptor was achieved. The descriptors that replace 

the raw data were treated as the input for the diagnosis models, which was 

demonstrated to have achieved a more accurate and quicker diagnosis analysis 

compared with some state-of-the-art techniques. For related mathematical 

derivations and methodology explanations, refer to Section 4.1.2. For 

experimental study and results analysis, refer to Section 5.1.1 - 5.1.2. 

 

3. This research put forward a fault prognosis methodology that is applicable to 

operational industrial systems in practice. Specifically, a novel prognosis 

definition and related signal processing approach were proposed and validated 
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using the real-world switch system data, whose use effectively overcomes the 

common difficulty in fitting the real-world raw data into established methods for 

an industrial application. The applicability of the methodology is enhanced when 

compared with most methods reported in the literature using idealized lab data 

for proof of concept. Refer to Section 4.2.2 for method explanation. Refer to 

Section 5.2.1 for experimental results. 

 

The work presented in this thesis has been published in two journals and one 

academic conference: refer to Appendix A for details. 

 

6.2 Future Work 

The main fields for future work will include the exploration of the applicability of 

the proposed method. As well as the electro-hydraulic type of railway switches 

applied in this research, other switch machines such as electro-mechanical and 

electro-pneumatic types should be investigated. In addition, further 

consideration should be given to the model assumptions in the prognosis 

algorithm. As seen in Section 4.2.2.2, two monotonically increasing functions 

(i.e., linear function and exponential function) are applied to model machine 

faults with different degradation rates. A future study investigating the 

modelling of a wider set of degradation patterns and rates using various 
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functions including the Weibull, Gaussian and lognormal can be expected to 

demonstrate the broadening of the method’s applicability. In this study the 

decision is made to use the median value to represent the residual life value 

when the residual life probability distribution is obtained. A further 

improvement could be achieved in prediction accuracy if a close mathematical 

form is found to describe the residual life distribution, and distribution moments 

can be computed and replace the median to become a more representative 

value of the residual life. Furthermore, some consideration can be devoted to 

investigating deep learning models for prognosis data analysis, which will include 

collecting an enormous amount of sensor data, establishing and optimizing the 

model structure for the best outcomes. Also, the collected datasets can serve as 

a benchmark dataset for testing other newly developed prognosis algorithms in 

the future. 
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