399 research outputs found

    A Passivity-based Nonlinear Admittance Control with Application to Powered Upper-limb Control under Unknown Environmental Interactions

    Get PDF
    This paper presents an admittance controller based on the passivity theory for a powered upper-limb exoskeleton robot which is governed by the nonlinear equation of motion. Passivity allows us to include a human operator and environmental interaction in the control loop. The robot interacts with the human operator via F/T sensor and interacts with the environment mainly via end-effectors. Although the environmental interaction cannot be detected by any sensors (hence unknown), passivity allows us to have natural interaction. An analysis shows that the behavior of the actual system mimics that of a nominal model as the control gain goes to infinity, which implies that the proposed approach is an admittance controller. However, because the control gain cannot grow infinitely in practice, the performance limitation according to the achievable control gain is also analyzed. The result of this analysis indicates that the performance in the sense of infinite norm increases linearly with the control gain. In the experiments, the proposed properties were verified using 1 degree-of-freedom testbench, and an actual powered upper-limb exoskeleton was used to lift and maneuver the unknown payload.Comment: Accepted in IEEE/ASME Transactions on Mechatronics (T-MECH

    Control of Flexible Manipulators. Theory and Practice

    Get PDF

    Human-Multirobot Collaborative Mobile Manipulation: the Omnid Mocobots

    Full text link
    The Omnid human-collaborative mobile manipulators are an experimental platform for testing control architectures for autonomous and human-collaborative multirobot mobile manipulation. An Omnid consists of a mecanum-wheel omnidirectional mobile base and a series-elastic Delta-type parallel manipulator, and it is a specific implementation of a broader class of mobile collaborative robots ("mocobots") suitable for safe human co-manipulation of delicate, flexible, and articulated payloads. Key features of mocobots include passive compliance, for the safety of the human and the payload, and high-fidelity end-effector force control independent of the potentially imprecise motions of the mobile base. We describe general considerations for the design of teams of mocobots; the design of the Omnids in light of these considerations; manipulator and mobile base controllers to achieve useful multirobot collaborative behaviors; and initial experiments in human-multirobot collaborative mobile manipulation of large, unwieldy payloads. For these experiments, the only communication among the humans and Omnids is mechanical, through the payload.Comment: 8 pages, 10 figures. Videos available at https://www.youtube.com/watch?v=SEuFfONryL0. Submitted to IEEE Robotics and Automation Letters (RA-L

    Development of New Adaptive Control Strategies for a Two-Link Flexible Manipulator

    Get PDF
    Manipulators with thin and light weight arms or links are called as Flexible-Link Manipulators (FLMs). FLMs offer several advantages over rigid-link manipulators such as achieving highspeed operation, lower energy consumption, and increase in payload carrying capacity and find applications where manipulators are to be operated in large workspace like assembly of freeflying space structures, hazardous material management from safer distance, detection of flaws in large structure like airplane and submarines. However, designing a feedback control system for a flexible-link manipulator is challenging due the system being non-minimum phase, underactuated and non-collocated. Further difficulties are encountered when such manipulators handle unknown payloads. Overall deflection of the flexible manipulator are governed by the different vibrating modes (excited at different frequencies) present along the length of the link. Due to change in payload, the flexible modes (at higher frequencies) are excited giving rise to uncertainties in the dynamics of the FLM. To achieve effective tip trajectory tracking whilst quickly suppressing tip deflections when the FLM carries varying payloads adaptive control is necessary instead of fixed gain controller to cope up with the changing dynamics of the manipulator. Considerable research has been directed in the past to design adaptive controllers based on either linear identified model of a FLM or error signal driven intelligent supervised learning e.g. neural network, fuzzy logic and hybrid neuro-fuzzy. However, the dynamics of the FLM being nonlinear there is a scope of exploiting nonlinear modeling approach to design adaptive controllers. The objective of the thesis is to design advanced adaptive control strategies for a two-link flexible manipulator (TLFM) to control the tip trajectory tracking and its deflections while handling unknown payloads. To achieve tip trajectory control and simultaneously suppressing the tip deflection quickly when subjected to unknown payloads, first a direct adaptive control (DAC) is proposed. The proposed DAC uses a Lyapunov based nonlinear adaptive control scheme ensuring overall system stability for the control of TLFM. For the developed control laws, the stability proof of the closed-loop system is also presented. The design of this DAC involves choosing a control law with tunable TLFM parameters, and then an adaptation law is developed using the closed loop error dynamics. The performance of the developed controller is then compared with that of a fuzzy learning based adaptive controller (FLAC). The FLAC consists of three major components namely a fuzzy logic controller, a reference model and a learning mechanism. It utilizes a learning mechanism, which automatically adjusts the rule base of the fuzzy controller so that the closed loop performs according to the user defined reference model containing information of the desired behavior of the controlled system. Although the proposed DAC shows better performance compared to FLAC but it suffers from the complexity of formulating a multivariable regressor vector for the TLFM. Also, the adaptive mechanism for parameter updates of both the DAC and FLAC depend upon feedback error based supervised learning. Hence, a reinforcement learning (RL) technique is employed to derive an adaptive controller for the TLFM. The new reinforcement learning based adaptive control (RLAC) has an advantage that it attains optimal control adaptively in on-line. Also, the performance of the RLAC is compared with that of the DAC and FLAC. In the past, most of the indirect adaptive controls for a FLM are based on linear identified model. However, the considered TLFM dynamics is highly nonlinear. Hence, a nonlinear autoregressive moving average with exogenous input (NARMAX) model based new Self-Tuning Control (NMSTC) is proposed. The proposed adaptive controller uses a multivariable Proportional Integral Derivative (PID) self-tuning control strategy. The parameters of the PID are adapted online using a nonlinear autoregressive moving average with exogenous-input (NARMAX) model of the TLFM. Performance of the proposed NMSTC is compared with that of RLAC. The proposed NMSTC law suffers from over-parameterization of the controller. To overcome this a new nonlinear adaptive model predictive control using the NARMAX model of the TLFM (NMPC) developed next. For the proposed NMPC, the current control action is obtained by solving a finite horizon open loop optimal control problem on-line, at each sampling instant, using the future predicted model of the TLFM. NMPC is based on minimization of a set of predicted system errors based on available input-output data, with some constraints placed on the projected control signals resulting in an optimal control sequence. The performance of the proposed NMPC is also compared with that of the NMSTC. Performances of all the developed algorithms are assessed by numerical simulation in MATLAB/SIMULINK environment and also validated through experimental studies using a physical TLFM set-up available in Advanced Control and Robotics Research Laboratory, National Institute of Technology Rourkela. It is observed from the comparative assessment of the performances of the developed adaptive controllers that proposed NMPC exhibits superior 7performance in terms of accurate tip position tracking (steady state error ≈ 0.01°) while suppressing the tip deflections (maximum amplitude of the tip deflection ≈ 0.1 mm) when the manipulator handles variation in payload (increased payload of 0.3 kg). The adaptive control strategies proposed in this thesis can be applied to control of complex flexible space shuttle systems, long reach manipulators for hazardous waste management from safer distance and for damping of oscillations for similar vibration systems

    Dynamic analysis and control system design of a deployable space robotic manipulator

    Get PDF
    This thesis presents a dynamic analysis and a control system for a flexible space manipulator, the Deployable Robotic Manipulator or DRM, which has a deployable/retractable link. The link extends (or retracts) from the containing slewing link of the manipulator to change the DRM's length and hence its workspace. This makes the system dynamics time varying and therefore any control strategy has to adapt to this fact. The aim of the control system developed is to slew the manipulator through a predetermined angle given a maximum angular acceleration, to reduce flexural vibrations of the manipulator and to have a certain degree of robustness, all of this while carrying a payload and while the length of the manipulator is changing. The control system consists of a slewing motor that rotates the manipulator using the open-loop assumed torque method and two reaction wheel actuators, one at the base and one at the tip of the manipulator, which are driven by a closed-loop damping control law. Two closed-loop control laws are developed, a linear control law and a Lyapunov based control law. The linear control law is based on collocated output feedback. The Lyapunov control law is developed for each of the actuators using Lyapunov stability theory to produce vibration control that can achieve the objectives stated above for different payloads, while the manipulator is rotating and deploying or retracting. The response of the system is investigated by computer simulation for two-dimensional vibrations of the deployable manipulator. Both the linear and Lyapunov based feedback control laws are found to eliminate vibrations for a range of payloads, and to increase the robustness of the slewing mechanism to deal with uncertain payload characteristics

    Six-DOF Spacecraft Dynamics Simulator For Testing Translation and Attitude Control

    Full text link
    This paper presents a method to control a manipulator system grasping a rigid-body payload so that the motion of the combined system in consequence of externally applied forces to be the same as another free-floating rigid-body (with different inertial properties). This allows zero-g emulation of a scaled spacecraft prototype under the test in a 1-g laboratory environment. The controller consisting of motion feedback and force/moment feedback adjusts the motion of the test spacecraft so as to match that of the flight spacecraft, even if the latter has flexible appendages (such as solar panels) and the former is rigid. The stability of the overall system is analytically investigated, and the results show that the system remains stable provided that the inertial properties of two spacecraft are different and that an upperbound on the norm of the inertia ratio of the payload to manipulator is respected. Important practical issues such as calibration and sensitivity analysis to sensor noise and quantization are also presented

    MIT Space Engineering Research Center

    Get PDF
    The Space Engineering Research Center (SERC) at MIT, started in Jul. 1988, has completed two years of research. The Center is approaching the operational phase of its first testbed, is midway through the construction of a second testbed, and is in the design phase of a third. We presently have seven participating faculty, four participating staff members, ten graduate students, and numerous undergraduates. This report reviews the testbed programs, individual graduate research, other SERC activities not funded by the Center, interaction with non-MIT organizations, and SERC milestones. Published papers made possible by SERC funding are included at the end of the report

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    Modeling and Direct Adaptive Robust Control of Flexible Cable-Actuated Systems

    Get PDF
    Cable-actuated systems provide an effective method for precise motion transmission over various distances in many robotic systems. In general, the use of cables has many potential advantages such as high-speed manipulation, larger payloads, larger range of motion, access to remote locations and applications in hazardous environments. However, cable flexibility inevitably causes vibrations and poses a concern in high-bandwidth, high-precision applications

    Hybrid Simulator for Space Docking and Robotic Proximity Operations

    Full text link
    In this work, we present a hybrid simulator for space docking and robotic proximity operations methodology. This methodology also allows for the emulation of a target robot operating in a complex environment by using an actual robot. The emulation scheme aims to replicate the dynamic behavior of the target robot interacting with the environment, without dealing with a complex calculation of the contact dynamics. This method forms a basis for the task verification of a flexible space robot. The actual emulating robot is structurally rigid, while the target robot can represent any class of robots, e.g., flexible, redundant, or space robots. Although the emulating robot is not dynamically equivalent to the target robot, the dynamical similarity can be achieved by using a control law developed herein. The effect of disturbances and actuator dynamics on the fidelity and the contact stability of the robot emulation is thoroughly analyzed
    corecore