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ABSTRACT

Bhardhwaj, Jayender PhD, Purdue University, August 2015. Modeling and Direct
Adaptive Robust Control of Flexible Cable-Actuated Systems. Major Professor:
Bin Yao, School of Mechanical Engineering.

Cable-actuated systems provide an e↵ective method for precise motion transmis-

sion over various distances in many robotic systems. In general, the use of cables has

many potential advantages such as high-speed manipulation, larger payloads, larger

range of motion, access to remote locations and applications in hazardous environ-

ments. However, cable flexibility inevitably causes vibrations and poses a concern in

high-bandwidth, high-precision applications.

Cable vibrations typically occur in both the longitudinal and mutually perpendic-

ular transverse directions and are coupled. The coupling between longitudinal and

transverse modes is usually assumed to be minimal since longitudinal resonances are

usually at much higher frequencies compared to transverse frequencies. In a cable-

pulley system, the coupling between the cable and high-inertia components such as

pulleys can lead to a drastic reduction in the fundamental longitudinal mode. This

coupling becomes more prominent under conditions of autoparametric or internal

resonance in the system. When these conditions are met, transverse cable vibrations

and pulley rotations exchange significant energy leading to higher amplitudes of os-

cillations not predicted by classical linear analyses. The design parameters needed

to facilitate autoparametric resonance are further examined through a parametric

analysis of the system.

The coupled cable-pulley dynamics are derived and the flexible modes of the overall

system are calculated analytically and verified experimentally. In the system exam-

ined, the dominant resonance mode is caused by cable elasticity and cannot be ignored

in high-bandwidth high-precision applications. This is in contrast to most robot ma-
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nipulators where the resonant modes are assumed to be dominated either by joint

or link flexibility. Experimental observations of the system’s frequency response are

used to model the cables as axial springs and a trajectory tracking problem is formu-

lated using a lumped parameter model of the system with matched uncertainty in the

drive motor dynamics as well as unmatched uncertainty in the load pulley dynamics.

The controller is constructed using a Lyapunov-type direct adaptive robust control

(DARC) framework with necessary design modifications to accommodate uncertain

and non-smooth nonlinearities in the system. The proposed controller guarantees

prescribed output-tracking transient performance as well as final tracking accuracy

in the presence of both parametric uncertainties and other uncertain nonlinearities.

Experimental results are presented to demonstrate its e↵ectiveness.
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1. INTRODUCTION

1.1 Overview and Motivation

Cable-actuated systems are extensively used for the manipulation of a variety of

robotic devices such as rehabilitative devices [1], remote telemanipulators [2], micro

air vehicles [3] and robotic hands ( [4], [5]). Some of these examples are shown in

Figure 1.1. Cable-actuation also has many uses in transporter systems such as high-

rise elevators [57], cranes [6] and cable-cars [7] as shown in Figure 1.2. In the case

of cable-driven parallel manipulators, an end-e↵ector is usually connected in parallel

to a number of actuators using cables and controlled using cable forces which are

constrained to be tensile. This is in contrast to a serial link structure where the

base actuator would need to support the inertia of the entire structure as well as any

payload, resulting in either a heavy robot with large actuators or slow speed. Serial

link structures also have the disadvantage of accumulating joint angle errors lead-

ing to lower positioning accuracy. Cables provide a useful alternative to rigid links

commonly used in robotic manipulators. In general, the use of cables has many po-

tential advantages such as high-speed manipulation [8], larger payloads, larger range

of motion, access to remote locations and applications in hazardous environments [9].

They are also easier to transport, assemble/disassemble and reconfigure.

Since the cables used in such systems are flexible, they can vibrate in both the

axial and transverse directions leading to loss of performance and stability. This may

be an important concern especially in applications requiring high bandwidth or high

sti↵ness. Cable vibrations are a highly nonlinear and coupled phenomenon and the

e↵ect of their vibrations on the performance of some of these applications has only

been partially studied. In this work, a prototypical cable-pulley system is proposed
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Figure 1.1. Cable-driven technologies.

and the nature of nonlinear cable vibrations and the e↵ect of cable flexibility on the

system’s overall sti↵ness is studied in detail.

1.2 Literature Review

1.2.1 Flexible Cable Modeling

Some of the earliest analyses of the free vibrations of a string with fixed ends and

time-varying tension was performed by Carrier ( [11], [12]) and solved using the per-
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Figure 1.2. Cable-transporter systems.

turbation method assuming that the amplitude of oscillations is small. Coulson and

Je↵rey [13] derived the nonlinear wave equation for transverse vibrations of a flexible

string fixed at both ends, under constant equilibrium tension. The equations are

simplified to the standard second order wave equation and solved using D’Alembert’s

method for cases without sudden changes in displacement. Gottlieb [18] presented

modal solutions to Coulson’s equation after modifying it to include both small and

large vibrations. The derived partial di↵erential equation is di↵erent from the one

derived earlier by Carrier. Some common assumptions of flexible cable motion in-

clude small slopes, small displacements compared to the string length, constant or

small changes in tension compared to the equilibrium value, negligible longitudinal

motion and planar motion. Classical linear derivations of the wave equation govern-

ing cable motion can be found in ( [13], [14]). The boundary condition that allows

for constant tension was described by Morse and Ingard [14]. In general, there has

been some inconsistency in the governing equations for nonlinear vibrations of strings

due to the di↵erent assumptions made. Narasimha [20] examined these assumptions

while formulating more exact equations of string motion starting with the tension-
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displacement relationship which takes into account the cross-sectional area change in

the string due to stretching.

Naturally occurring practical examples of nonlinear vibrating systems are more

common today. It is well known that transverse vibrations of a stretched string in-

duce axial motion which causes changes in tension. These changes in tension can

in turn lead to coupling between mutually perpendicular transverse modes of a ca-

ble. Murthy and Ramakrishna [16] presented an analysis of a pair of coupled non-

linear partial di↵erential equations for the two components of transverse motion of

the string. In the absence of a second component of transverse displacement, the

equations reduce to one given earlier by Lee [15]. In both cases longitudinal vibra-

tions were ignored and the string slopes were assumed small. Anand [17] showed

that for nonplanar cable vibration, the curve traced by a point on the cable in the

transverse directions is an ellipse with slowly rotating and shrinking axes. Small dis-

placements and gradients were assumed while longitudinal motion was approximated

assuming that the frequency spectrum of the driving force was well below the low-

est longitudinal resonance frequency. Gottlieb studied the forced [18] and free [19]

transverse vibrations of a constant-tension string with an emphasis on whirling so-

lutions. The coupling between transverse and longitudinal vibrations in stretched

strings was studied in [21]- [23]. Kurmyshev [21] discussed the parametric genera-

tion of a second transverse spatial mode caused by transverse and longitudinal mode

coupling. More recently, Agrawal [24] numerically simulated transverse-longitudinal

coupling in a flexible cable-transporter system assuming small vibrations. In general,

the assumption that longitudinal vibrations are small compared to the transverse and

the neglect of transverse-longitudinal vibration coupling in cables is very common.

Such an approximation is valid only in applications where transverse and longitudinal

resonances occur at very di↵erent frequencies thereby ensuring a lack of interaction

between them. It may not be possible to ignore this coupling in systems where the

motion of continuous flexible cables is closely coupled with discrete high-inertia com-

ponents.
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Systems where flexible cables are coupled with high-inertia components require a

closer study since the presence of such components a↵ects the overall natural frequen-

cies of the system. Many studies of bandsaw systems were done by Mote ( [25]- [27])

in which he examined axially moving belts with finite bending sti↵ness. Vibration

coupling between two band spans in a band supported by two wheels was found to

occur and caused by the finite curvature of the spans. The coupling was found to

reduce with increased tension as the spans became more straight. The same coupling

was reportedly not observed when the belt was replaced by a string with negligible

bending sti↵ness. The natural vibration modes of a serpentine belt drive system was

investigated by Beikmann et al. [29] taking into account the e↵ect of belt and pul-

ley coupling. This study helped establish the relationship between the longitudinal

vibration modes of a cable-driven system and discrete high-inertia components. The

possibility of parametric excitation in the same system was explored in a following

study by Beikmann [30].

1.2.2 Autoparametric Resonance

The phenomenon of parametric excitation of vibrations was first treated theoret-

ically by Lord Rayleigh ( [31], [32]) who showed that if the tension of a stretched

wire is varied periodically at twice one of its transverse mode frequencies, then the

system is unstable and oscillations grow. Elliot ( [33], [34]) analyzed the parametric

coupling of two polarizations of transverse oscillation in stretched strings and showed

the spontaneous exchange of energy between the perpendicular modes. Approximate

solutions to Murthy’s [16] equations give a good description of the observed reso-

nance response, hysteresis, the jump phenomenon and tubular motion in stretched

strings. It is shown that when a driving force approaches transverse resonance fre-

quency, the amplitude of vibrations increases causing the tension to vary, making the

string motion essentially nonlinear even for small driving forces. More experimen-

tal studies of parametric excitation was done by Rao [35]. Most of these theoretical
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and experimental studies focus on the internal resonance of cable vibrations under

forced external excitations where the frequency and amplitude of the driving force

can be changed or controlled based on the system’s natural frequencies. This is in

contrast to the study of flexible systems where internal resonance between transverse

and longitudinal modes is inherent and is known as autoparametric resonance.

The study of autoparametric resonance is relatively recent compared to the study

of cable vibrations and the best known example of such a system is the elastic pendu-

lum [37]. Beikmann et al. [30] also studied the coupling between transverse vibration

of a cable span and rotational oscillation of a pulley in a serpentine belt drive system.

The conditions for autoparametric resonance were explored along with its e↵ect on

engine performance at critical belt speeds. Though only steady state experiments

were performed, some predictions were made on the coupling and growth of transient

vibrations using simulations. Tondl [36] presents a study of autoparametric resonance

in many mechanical systems. Autoparametric resonance in a cable-stayed beam struc-

ture was studied by Fujino [38] in the context of suspension bridges. Bhardhwaj and

Yao [39] studied autoparametric resonance in a cable-pulley system used for motion

transmission and positioning. The parametric conditions leading to strong coupling

between transverse and rotational modes of the system were studied in detail. Sug-

gestions for the design of similar robotic manipulators were made in order to avoid

internal resonance.

1.2.3 Control Design

There has been some research e↵ort on motion control of cable-actuated systems

that focuses on the suppression of either longitudinal or transverse cable vibrations

individually while ignoring the coupling between them. Control of transverse vibra-

tions has been more widely studied in cable-actuated systems [60]- [64] and axially

moving cable systems [67], [63]. While active control schemes have been shown to

improve desired performance, both passive and active controllers have been proposed
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with a focus on stabilizing the system by dampening the transverse vibrations through

energy dissipation. Some of these schemes are boundary-control strategies designed

to use measurements of cable displacement, velocity, slope or its time derivative at

the actuated end and are hard or impractical to implement.

In contrast, longitudinal vibration suppression in cable-driven systems has been

less studied due to the associated frequencies being much higher than the required

bandwidth. In [57], residual longitudinal vibrations in high-rise elevators were damp-

ened using an open-loop controller and a di↵erential-di↵erence equation relating actu-

ator input to the output position. Agrawal [58] proposed the attenuation of residual

longitudinal vibrations in a cable transporter system using an LQG controller. An

approximate finite-dimensional model of the system was used. Many feedforward

command shaping techniques have also been proposed to control residual vibrations

in rigid link robot manipulators. The goal in the above studies was residual vibration

dampening using a simplified controller for point-to-point motion and not precise mo-

tion tracking. The dominant flexible mode of the cable-pulley system studied here

is caused by cable elasticity unlike most prior work where the focus is on joint or

link flexibility [40]- [47]. Experimental results have been used to prove the validity of

approximating cables as axial springs. As a result, the overall cable-pulley system is

approximated using a lumped parameter model either as a 2-mass spring or a 3-mass

spring problem.

Traditionally, many control schemes have been proposed for vibration control in

2-mass spring problems. Hamamoto [70] and Kawanishi [71] used LMI optimization

to propose controllers that satisfy H1 performance and pole-placement assignment

in a prescribed region, in the presence of physical parameter perturbations. The

above approaches require modeling all performance specifications using LMIs, which

can be di�cult. Limitations on control e↵ort were considered by Braatz [72] and

Wolfgang [74], using µ synthesis and H1 loop shaping design, respectively. They

presented simulation results for the stabilization of an undamped pair of coupled

masses with a noncollocated sensor and actuator. A robust controller was designed
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by Mario [73] using mixed l1/H1 optimization to include time-domain specifications.

These approaches resulted in a complex controller of very high order and are usually

hard to implement. Moreover, since they are not adaptive in nature, i.e., unknown

parameters are not estimated, the designed controllers are more conservative than

required. Reducing the controller order leads to relaxing of some performance spec-

ifications. Lastly, reducing the control e↵ort through optimization requires proper

weight selection and multiple trial-and-error iterations. Simulation results have been

presented by Xu [75] for the suppression of torsional vibrations in an electric mo-

tor drive system using LQR. Disturbances and uncertainties were not considered. A

hybrid model predictive controller was used by Takodoro [76] for position control of

a 2-mass spring system with static and kinetic friction. Though simulation results

were presented, the proposed controller requires a precise system model with accurate

parameter estimates that are rarely available in practice. An adaptive backstepping

control approach was proposed and simulated by Liu [77] for the velocity regulation

of 2-mass-spring systems with load uncertainty. The formulation is very specific to

velocity regulation and cannot be extended easily to position tracking. Also, since

the parameter adaptation may not be bounded in the presence of modeling errors

and other uncertain nonlinearities, the closed-loop stability is not guaranteed exper-

imentally. In contrast, a direct adaptive robust controller was designed for position

tracking of a flexible cable-pulley system by Bhardhwaj and Yao [79] that achieved

guaranteed output-tracking transient performance as well as final tracking accuracy,

in the presence of matched model uncertainties. This adaptive robust control de-

sign strategy has also been extended to a cable-pulley system with unmatched model

uncertainties.

1.3 Research Contributions

In this research, the behavior of a prototypical cable-pulley system is studied in

the context of cable-actuated robots used for motion transmission. Flexible cable



9

modeling shows the presence of strong coupling phenomena that can a↵ect remote

position tracking performance. Both analytical and simulation results are used to

calculate the vibration modes of the overall cable-pulley system. Experiments have

been used to validate key results leading to a better understanding of modeling ap-

proximations made to simplify control design without losing fidelity of the model.

Extensive experimental work has also been done in the area of control design and

implementation for position tracking at high bandwidths. The main contributions of

this work are summarized as follows:

1. The governing equations of cable vibrations are studied without the simplify-

ing assumptions made in most prior work. The dynamics are then carefully

simplified to a weakly nonlinear form which is still capable of representing key

nonlinear coupling phenomena.

2. The longitudinal vibration modes of a cable-pulley system are calculated and

it is shown that the fundamental natural frequency of the system is a function

of cable as well as pulley properties. As a result, a large reduction in the

fundamental frequency is predicted analytically and validated experimentally.

Unlike cable-driven robots studied before, this fundamental mode is shown to

dominate other modes of the system caused by joint or link flexibility.

3. The phenomenon of autoparametric resonance in the cable-pulley system has

been explored and strong coupling between transverse cable vibrations and pul-

ley rotations has been observed. The physical parameters necessary to facilitate

internal resonance are studied with implications to the design of such systems.

4. A clear distinction has been made between vibration modes of the system caused

by joint flexibility and cable elasticity. Experimental results are used to validate

a reduced-order lumped parameter model of the overall system without losing

model fidelity. An adaptive robust controller is designed and implemented to

achieve very good position tracking performance at high bandwidth in the pres-

ence of both parametric uncertainties and uncertain nonlinearities.
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1.4 Organization

In Chapter 2, the exact dynamics of flexible cable vibrations are derived without

the simplifying assumptions made in most prior work. A carefully simplified weakly

nonlinear form of the dynamics is also derived to retain key coupling phenomena.

The pulley dynamics along with cable boundary conditions are described in order to

fully define the governing equations of a cable-pulley system. Lastly, a stable finite

di↵erence scheme necessary for numerical simulation of the overall system is specified.

In Chapter 3, the vibration modes of the cable-pulley system are calculated ana-

lytically using modal analysis and validated experimentally. The analysis is extended

to a cable-transporter system. The implications of the fundamental vibration mode

on future analysis of such systems are discussed.

In Chapter 4, the experimental setup and its components are described in detail.

The parameters of the motor and load are identified using linear least square methods.

Further experimental results on the system’s frequency response are used to validate

the parameters.

Chapter 5 explores the conditions of autoparametric resonance in the cable-pulley

system. The constraints on the physical parameters of the system needed to ensure

autoparametric resonance are used to suggest implications on design through a para-

metric analysis. Experiments on the free and forced vibrations of the system are

used to show the e↵ect of autoparametric resonance through strong coupling between

transverse cable vibrations and pulley rotations.

In Chapter 6, reduced-order lumped parameter models of the overall cable-pulley

system are defined. Frequency response experiments are used to model the cables

as axial springs. A clear distinction is made between flexible modes of the system

due to cable elasticity and joint flexibility with the former being dominant. A direct

adaptive robust controller is designed for precise position tracking assuming both

matched uncertainty in the drive motor dynamics and unmatched uncertainty in the
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load pulley dynamics. High closed-loop bandwidth is achieved in the presence of both

parametric uncertainty and uncertain nonlinearities.

Chapter 7 concludes the research work presented here and discusses possible di-

rections for future work in this area.
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2. SYSTEM DYNAMICS

In the following section, the nonplanar coupled dynamic equations for a stretched

flexible cable are derived without simplifying assumptions.

2.1 Exact Nonlinear Cable Dynamics

Figure 2.1. Cable element stretched during vibration.
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We first consider an unstretched cable segment of length dl. When subject to a

constant equilibrium tension T0, the segment is stretched to a length dx. We represent

this element of length dx by the segment AB shown in Figure 2.1 and assume it to

be along the X axis for simplicity. The equilibrium strain in the element can hence

be calculated as the ratio of change in length to original length as follows:

✏0 =
dx� dl

dl
=

dx

dl
� 1 (2.1)

During vibrations of the cable, the segment AB of length dx changes further to the

segment A0B0 of length ds as shown in Figure 2.1. We define the displacements of

point A parallel to the X, Y and Z axes to be u(x, t), v(x, t) and w(x, t), respectively.

Similarly, the displacements of point B are u(x+ dx, t), v(x+ dx, t) and w(x+ dx, t).

Hence the coordinates of A,B,A0, B0 are as follows:

A (x, 0, 0)

B (x+ dx, 0, 0)

A0 (x+ u(x, t), v(x, t), w(x, t))

B0 (x+ dx+ u(x+ dx, t), v(x+ dx, t), w(x+ dx, t))

As shown in Figure 2.1, A0C 0 is the projection of A0B0 on the XY plane and has

length ds1. The net strain on AB can be calculated as the sum of the equilibrium

strain ✏0 and the added strain due to cable vibration. Since the original length used

to calculate the added strain is still dl, the net strain is given by,

✏(x, t) = ✏0 +
ds� dx

dl
(2.2)

Based on the coordinates of A,B,A0, B0, the stretched length ds of the cable segment

is given by,

ds =

✓
(u(x+ dx, t) + dx� u(x, t))2 + (v(x+ dx, t)� v(x, t))2

+ (w(x+ dx, t)� w(x, t))2
◆ 1

2

(2.3)
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Using Taylor expansion,

u(x+ dx, t) = u(x, t) + u0dx+O(dx2) (2.4a)

v(x+ dx, t) = v(x, t) + v0dx+O(dx2) (2.4b)

w(x+ dx, t) = w(x, t) + w0dx+O(dx2) (2.4c)

where

u0 =
@u(x, t)

@x
(2.5a)

v0 =
@v(x, t)

@x
(2.5b)

w0 =
@w(x, t)

@x
(2.5c)

Assuming that the cable segment dx is infinitesimally small, powers of dx greater

than 2 are ignored. Substituting Eq. (2.4) in Eq. (2.3) we get the stretched segment

length ds as,

ds = dx
q
(1 + u0)2 + v02 + w02 (2.6)

Defining the apparent strain measured with respect to the equilibrium configuration

of the cable as �,

� =
ds

dx
� 1 =

q
(1 + u0)2 + v02 + w02 � 1 (2.7)

Substituting for ds from Eq. (2.6) in Eq. (2.2) the net strain in the cable segment is

given by,

✏(x, t) = ✏0 +
dx

dl

✓q
(1 + u0)2 + v02 + w02 � 1

◆
(2.8)

Using the equilibrium strain in Eq. (2.1), the true strain in the cable is defined from

Eq. (2.2) and Eq. (2.6) to be,

✏(x, t) = ✏0 + (1 + ✏0)

✓q
(1 + u0)2 + v02 + w02 � 1

◆
(2.9)
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Assuming only that net cable strain is small enough for Hooke’s law to be valid, the

net tension in the cable at the point originally at x is given by,

T (x, t) = EA✏(x, t)

= T0 + EA(1 + ✏0)

✓q
(1 + u0)2 + v02 + w02 � 1

◆
(2.10)

where E is Young’s modulus of the cable material and A is the area of cross section.

From Figure 2.1, the X, Y and Z components of the tension can be obtained as

follows:

T
x

=T cos � cos (2.11a)

T
y

=T cos � sin (2.11b)

T
z

=T sin � (2.11c)

From the geometry in Figure 2.1, we also observe the following geometric relation-

ships:

sin � =
B0C 0

A0B0 =
w(x+ dx, t)� w(x, t)

ds
= w0dx

ds
(2.12a)

cos � =
ds1
ds

(2.12b)

cos =
u(x+ dx, t) + dx� u(x, t)

ds1
= (1 + u0)

dx

ds1
(2.12c)

sin =
v(x+ dx, t)� v(x, t)

ds1
= v0

dx

ds1
(2.12d)

Substituting Eq. (2.12) in Eq. (2.11), we get the tension components as

T
x

= T (1 + u0)
dx

ds
=

T (1 + u0)p
(1 + u0)2 + v02 + w02

(2.13a)

T
y

= Tv0
dx

ds
=

Tv0p
(1 + u0)2 + v02 + w02

(2.13b)

T
z

= Tw0dx

ds
=

Tw0
p

(1 + u0)2 + v02 + w02
(2.13c)
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In the absence of gravity and cable damping forces, the dynamics of the cable element

can be obtained by equating the net tension force in each direction to the rate of

change of momentum ( [11], [12]).

⇢ü(x, t) =
@T

x

@x
=
@T

@x

(1 + u0)

�+ 1
+ T

@

@x

(1 + u0)

�+ 1
(2.14a)

⇢v̈(x, t) + �⇢v̇(x, t) =
@T

y

@x
=
@T

@x

v0

�+ 1
+ T

@

@x

v0

�+ 1
(2.14b)

⇢ẅ(x, t) + �⇢ẇ(x, t) =
@T

z

@x
=
@T

@x

w0

�+ 1
+ T

@

@x

w0

�+ 1
(2.14c)

where ⇢ is the static linear mass density of the cable, � is the transverse damping

force per unit velocity per unit linear density in the transverse directions and Eq.

(2.7) has been used.

2.1.1 Longitudinal Cable Dynamics

Substituting for cable tension from Eq. (2.10) in Eq. (2.14a), we get the following

coupled nonlinear longitudinal dynamics of the cable.

ü =
u00c2

w

+ c2
u

(1 + u0) (1+u

0)u00+v

0
v

00+w

0
w

00

�+1

�+ 1
+

c2
u

u00�

�+ 1

� (1 + u0)((1 + u0)u00 + v0v00 + w0w00)(c2
w

+ c2
u

�)

(�+ 1)3

=F (u, v, w, u0, v0, w0, u00, v00, w00) (2.15)

where c2
u

= EA(1+✏0)
⇢

is the longitudinal wave velocity.

2.1.2 Transverse Cable Dynamics

Substituting Eq. (2.10) in Eq. (2.14b) and Eq. (2.14c), we get the following coupled

nonlinear transverse dynamics of the cable.

v̈ + �v̇ =
v00c2

w

+ c2
u

v0 (1+u

0)u00+v

0
v

00+w

0
w

00

�+1

�+ 1
+

c2
u

v00�

�+ 1

� v0((1 + u0)u00 + v0v00 + w0w00)(c2
w

+ c2
u

�)

(�+ 1)3

=G(u, v, w, u0, v0, w0, u00, v00, w00) (2.16)
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ẅ + �ẇ =
w00c2

w

+ c2
u

w0 (1+u

0)u00+v

0
v

00+w

0
w

00

�+1

�+ 1
+

c2
u

w00�

�+ 1

� w0((1 + u0)u00 + v0v00 + w0w00)(c2
w

+ c2
u

�)

(�+ 1)3

=H(u, v, w, u0, v0, w0, u00, v00, w00) (2.17)

where c2
w

= EA✏0
⇢

is the transverse wave velocity. Gravity has been ignored here but

will be included in the cable-pulley dynamics.

2.2 Weakly Nonlinear Dynamics

In this section, the exact cable dynamics are simplified to a weakly nonlinear

form as proposed by Narasimha [20] where the most significant nonlinearity arises

when u = O(v2) = O(w2) and all higher order terms are neglected. As a result, the

stretched cable segment ds in Eq. (2.6) can be rewritten as,

ds =dx(1 + 2u0 + u02 + v02 + w02)
1
2

⇡dx

✓
1 + u0 +

v02 + w02

2

◆
(2.18)

The apparent strain is hence given by,

� = u0 +
v02 + w02

2
(2.19)

Substituting for ds from Eq. (2.18) in Eq. (2.2) and using the equilibrium strain

equation in Eq. (2.1), the true strain is given by

✏(x, t) =✏0 +
dx

dl

✓
u0 +

v02 + w02

2

◆

=✏0 + (1 + ✏0)

✓
u0 +

v02 + w02

2

◆
(2.20)
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Assuming cable strain to be small enough to be in the elastic range and ignoring the

change in cable cross section due to stretching, cable tension in Eq. (2.10) can be

rewritten as follows:

T (x, t) = EA✏(x, t)

= T0 + EA(1 + ✏0)

✓
u0 +

v02 + w02

2

◆
(2.21)

As mentioned before, the dynamics of the cable element are given by equating the

net force in each direction to the rate of change of momentum,

⇢ü(x, t) =
@T

x

@x
(2.22a)

⇢v̈(x, t) =
@T

y

@x
� �⇢v̇(x, t) (2.22b)

⇢ẅ(x, t) =
@T

z

@x
� �⇢ẇ(x, t) (2.22c)

Substituting for tension using Eq. (2.13) and Eq. (2.21) in Eq. (2.22), we get the

following weakly nonlinear longitudinal and mutually perpendicular transverse cable

dynamics.

ü = c2
u

�0
1 + u0

1 + �
+ (c2

w

+ c2
u

�)
(1 + �)u00 � (1 + u0)�0

(1 + �)2

= F (u, v, w, u0, v0, w0, u00, v00, w00) (2.23)

v̈ + �v̇ = c2
u

�0
v0

1 + �
+ (c2

w

+ c2
u

�)
(1 + �)v00 � v0�0

(1 + �)2

= G(u, v, w, u0, v0, w0, u00, v00, w00) (2.24)

ẅ + �ẇ = c2
u

�0
w0

1 + �
+ (c2

w

+ c2
u

�)
(1 + �)w00 � w0�0

(1 + �)2

= H(u, v, w, u0, v0, w0, u00, v00, w00) (2.25)

2.3 Cable-Pulley System

Figure 2.2 shows a cable-pulley setup in its equilibrium configuration, consisting of

(1) a driving pulley, (2) a load pulley, and (3) a single cable loop under equilibrium

tension T0. The distance between the pulleys is L
e

= L(1 + ✏0) where L is the
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Figure 2.2. Cable-pulley system.

distance between pulleys when the cable is not under tension. Two separate but

related coordinate systems have been defined. X1, Y1, Z1 is fixed at the first point of

contact between the drive pulley on the left and the upper cable. Similarly, X2, Y2, Z2

is fixed at the first point of contact between the load pulley on the right and the

lower cable. At equilibrium, both X1 and X2 are along the axial cable directions and

gravity acts vertically downwards. Using these coordinate systems, Eqs. (2.15)-(2.17)

can be written for the upper and lower cable spans as follows:

ü1(x1, t) = F1

v̈1(x1, t) + �v̇1(x1, t) = G1

ẅ1(x1, t) + �ẇ1(x1, t) = H1 � g (2.26)
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and

ü2(x2, t) = F2

v̈2(x2, t) + �v̇2(x2, t) = G2

ẅ2(x2, t) + �ẇ2(x2, t) = H2 + g (2.27)

2.4 Pulley Dynamics

The pulley dynamics is coupled with the cable vibrations at the boundaries through

cable tension, which is a function of cable strain. Assuming that friction between

the cable loop and pulleys is large enough to prevent slipping, the free motion of the

pulleys in the absence of external torque is governed by,

J1✓̈1 + b1✓̇1 + c1S(✓̇1) =
�
T1(0, t)� T2(Le

, t)
�
r1 (2.28a)

J2✓̈2 + b2✓̇2 + c2S(✓̇2) =
�
T2(0, t)� T1(Le

, t)
�
r2 (2.28b)

where J1, J2 are the rotational moments of inertia of the drive and load pulleys re-

spectively. ✓1, ✓2 are their corresponding angular rotations. r1, r2 are their radii. b1, b2

are the damping coe�cients and c1, c2 are coulomb friction coe�cients of the drive

and load pulleys respectively. S(•) represents the usual signum function.

2.5 Boundary Conditions

Since the cable ends are attached to the pulleys, their displacements are constrained

by the rotation of the pulleys. Friction between the cable and pulleys is assumed

su�cient to prevent cable slip, leading to the following boundary conditions.

u1(0, t) = u2(Le

, t) = r1✓1(t)

u1(Le

, t) = u2(0, t) = r2✓2(t) (2.29)
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In the transverse directions, the boundary conditions are essentially the same as for

a cable fixed to rigid supports on both ends to prevent displacement only.

v1(0, t) = v1(Le

, t) = v2(0, t) = v2(Le

, t) = 0

w1(0, t) = w1(Le

, t) = w2(0, t) = w2(Le

, t) = 0 (2.30)

2.6 Finite Di↵erence Scheme

Traditionally, linear second-order wave equations have been discretized either us-

ing explicit central di↵erence time-marching schemes or implicit backward di↵erence

schemes. Since implicit schemes are generally computationally more intensive, to re-

duce the computational burden, an explicit central di↵erence scheme has been used

to discretize the nonlinear cable dynamics in Eqs. (2.26) and (2.27). Based on the

chosen configuration of the system, physical parameters such as E,A, L, ⇢, r1, r2, T0

are assumed to be known. Dividing each of the two cable spans into n equal segments

of length dx = L

e

n�1 as shown in Figure 2.3, the numerical time step is obtained as

follows:

c
u

=

s
EA

⇢

dt = �
dx

c
u

(2.31)

Figure 2.3. Cable span divided into n equal segments.
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where � is the Courant-Friedrichs-Lewy (CFL) number. The condition � < 1 must

be satisfied for stability of the explicit numerical scheme [80]. The discretized cable

dynamics for i = 1, 2 are as follows:

u
i

(t
j+1, xm

)� 2u
i

(t
j

, x
m

) + u
i

(t
j�1, xm

)

dt2
=F

i

|(t
j

,x

m

)

(2.32a)

v
i

(t
j+1, xm

)� 2v
i

(t
j

, x
m

) + v
i

(t
j�1, xm

)

dt2
+ �

v
i

(t
j+1, xm

)� v
i

(t
j�1, xm

)

2dt
=G

i

|(t
j

,x

m

)

(2.32b)

w1(tj+1, xm

)� 2w
i

(t
j

, x
m

) + w
i

(t
j�1, xm

)

dt2
+ �

w
i

(t
j+1, xm

)� w
i

(t
j�1, xm

)

2dt
=H

i

|(t
j

,x

m

)

± g

(2.32c)

Eq. (2.32) can be used to calculate u
i

, v
i

, w
i

, i = 1, 2 at every successive time step

given by t
j+1. The nonlinear functions F

i

, G
i

, H
i

evaluated at (t
j

, x
m

) are functions

of u0
i

, v0
i

, w0
i

, u00
i

, v00
i

, w00
i

evaluated at (t
j

, x
m

) . These spatial derivatives, for i = 1, 2,

are calculated using central di↵erences as follows:

u0
i

|(t
j

,x

m

) =
u
i

(t
j

, x
m+1)� u

i

(t
j

, x
m�1)

2dx
(2.33a)

v0
i

|(t
j

,x

m

) =
v
i

(t
j

, x
m+1)� v

i

(t
j

, x
m�1)

2dx
(2.33b)

w0
i

|(t
j

,x

m

) =
w

i

(t
j

, x
m+1)� w

i

(t
j

, x
m�1)

2dx
(2.33c)

and

u00
i

|(t
j

,x

m

) =
u
i

(t
j

, x
m+1)� 2u

i

(t
j

, x
m

) + u
i

(t
j

, x
m�1)

2dx
(2.34a)

v00
i

|(t
j

,x

m

) =
v
i

(t
j

, x
m+1)� 2v

i

(t
j

, x
m

) + v
i

(t
j

, x
m�1)

2dx
(2.34b)

w00
i

|(t
j

,x

m

) =
w

i

(t
j

, x
m+1)� 2w

i

(t
j

, x
m

) + w
i

(t
j

, x
m�1)

2dx
(2.34c)

The boundary conditions in Eqs. (2.29) and (2.30) are applied at m = 1, n+1. Hence

at any given time t
j

, the following conditions are enforced:

u1(tj, x1 = 0) = u2(tj, xn+1 = L
e

) = r1✓1(tj) (2.35a)

u1(tj, xn+1 = L
e

) = u2(tj, x1 = 0) = r2✓2(tj) (2.35b)
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For i = 1, 2,

v
i

(t
j

, x1 = 0) = v
i

(t
j

, x
n+1 = L

e

) = 0 (2.36a)

w
i

(t
j

, x1 = 0) = w
i

(t
j

, x
n+1 = L

e

) = 0 (2.36b)

The pulley dynamics in Eq. (2.28) are discretized as follows:

J1
✓1(tj+1)� 2✓1(tj) + ✓1(tj�1)

dt2
+ b1

✓1(tj+1)� ✓1(tj�1)

2dt
= K1(tj) (2.37a)

J2
✓2(tj+1)� 2✓2(tj) + ✓2(tj�1)

dt2
+ b2

✓2(tj+1)� ✓2(tj�1)

2dt
= K2(tj) (2.37b)

where coulomb friction is ignored for convenience. ✓1(tj+1), ✓2(tj+1) are obtained from

Eq. (2.37) and applied to the numerical boundary conditions in Eq. (2.35) at the

appropriate time step. K1(tj), K2(tj) are calculated as follows:

K1(tj) =EA(1 + ✏0)r1

✓q
(1 + u0

1)
2 + v01

2 + w0
1
2

����
(t

j

,0)

�
q

(1 + u0
2)

2 + v02
2 + w0

2
2

����
(t

j

,L

e

)

◆

(2.38a)

K2(tj) =EA(1 + ✏0)r2

✓q
(1 + u0

2)
2 + v02

2 + w0
2
2

����
(t

j

,0)

�
q

(1 + u0
1)

2 + v01
2 + w0

1
2

����
(t

j

,L

e

)

◆

(2.38b)

Since ✓(t
j+1) depends on ✓(t

j

) and ✓(t
j�1), the pulley angles at the first two time

instants need to be known. ✓1(0), ✓2(0), ✓̇1(0), ✓̇2(0) are obtained from the initial

conditions of the system. ✓1(dt) and ✓2(dt) can be calculated as follows:

✓1(dt) = ✓1(0) + dt✓̇1(0) +
dt2

2
✓̈1(0) +O(dt3)

⇡ dt✓̇1(0) +
dt2

2J1
(K1(0)� b1✓̇1(0)) (2.39a)

✓2(dt) ⇡ ✓2(0) + dt✓̇2(0) +
dt2

2J2
(K2(0)� b2✓̇2(0)) (2.39b)

The values of u
i

, v
i

, w
i

, i = 1, 2 at t = 0, dt can be calculated similarly. Hence

the discretized form in Eqs. (2.32)-(2.39) can be simulated with the relevant initial

conditions of the cable spans and pulleys.
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3. MODAL ANALYSIS

The e↵ect of cable elasticity on the vibration modes of cable-driven robotic systems

has been largely neglected. Joint flexibility has been modeled in many studies of

cable-actuated robot manipulators [40], [41], [42], [43] while the cables are assumed

to be rigid. Zeinali and Khajepour [40] designed an adaptive sliding mode controller

for a parallel cable-driven manipulator using only rigid body dynamics of the sys-

tem. Flexible modes resulting from the cable were considered to be high-frequency

dynamics modeled as a bounded lumped uncertainty for stability purposes. Trevisani

et al. [41] proposed a hybrid serial/parallel architecture for a planar translational

cable-driven robot with two redundant actuators to ensure positive cable tension.

The end e↵ector was controlled using four cable-actuators while also being supported

by a passive two-degree-of-freedom serial manipulator that provided sti↵ness normal

to the plane of motion. Korayem et al. [42] calculated the dynamic load carrying

capacity of a cable-driven robot for both rigid and flexible joints. Impedance control

of a multi-stage cable-pulley-driven robot with flexible joints and rigid cables was

considered by Pitakwatchara [43]. The e↵ect of cable tension on sti↵ness and stabil-

ity of cable manipulators was studied by Behzadipour [44]. In more recent numerical

studies by Diao and Ma [45], it was shown that the modeling of cables as axial springs

can help accurately predict natural frequencies of a 6-DOF cable manipulator, though

the results were not experimentally verified. It was concluded that in space robotic

applications, the fundamental frequency of the manipulator due to cable flexibility

was still much higher than those attributed to joint or link vibration modes. It was

also shown that transverse vibrations of the cables can be ignored compared to the

axial modes simply by increasing cable tension, since the e↵ect of cable tension on

axial modes is not significant in the linear elastic range. These studies also indicate

that in cable-driven robot manipulators used in high-bandwidth applications where
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the fundamental frequency due to cable elasticity is su�ciently low, it is important

to consider cable sti↵ness in the dynamic model of the system, since it a↵ects overall

sti↵ness of the manipulator.

The cable-pulley setup in Figure 2.2 is a prototypical system that can be used to

understand the e↵ect of cable flexibility on the performance of various high-speed,

motion control applications. Since the goal is precise motion tracking and cable-driven

motion is only possible through tensile cable forces, the system studied is such that

the cables are always in tension during operation. The load pulley angle is controlled

using an external torque acting from the drive pulley, while tension in the cables is

used to transmit forces. Due to their inherent flexibility, cable vibrations can lead

to performance issues during motion transmission. It is hence necessary to calculate

the overall system’s natural vibration modes resulting from cable elasticity. This

helps model the system more accurately by including its lower-frequency modes while

neglecting only the high-frequency modes based on available controller bandwidth.

3.1 Linear Cable Dynamics

To determine the longitudinal vibration modes of the system, a modal analysis

is performed using the linear equations of motion. As mentioned earlier, classical

linear analyses of the vibrating string require simplifying assumptions such as small

displacements and slopes, small changes in tension compared to the equilibrium value

etc. and can be summarized as follows:

u0, v0, w0 << 1 (3.1a)

u02, v02, w02 << u0 (3.1b)
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Under the assumptions in Eq. (3.1), the stretched cable segment length ds is given

by,

ds =

✓q
(1 + u0)2 + v02 + w02

◆
dx

=

✓p
1 + 2u0 + u02 + v02 + w02

◆
dx

⇡ (
p
1 + 2u0)dx

⇡ (1 + u0)dx (3.2)

Hence the true strain and net tension at a point in the cable can be simplified from

Eqs. (2.9) and (2.10),

✏(x, t) = ✏0 + (1 + ✏0)u
0 (3.3)

T (x, t) = T0 + EA(1 + ✏0)u
0 (3.4)

The tension components are given by,

T
x

= T (1 + u0)
dx

ds
= T (3.5a)

T
y

= Tv0
dx

ds
=

Tv0

1 + u0 ⇡ Tv0 (3.5b)

T
z

= Tw0dx

ds
=

Tw0

1 + u0 ⇡ Tw0 (3.5c)

The dynamics of the cable segment can be rewritten as follows:

⇢ü(x, t) =
@T

x

@x
=
@T

@x
(3.6a)

⇢v̈(x, t) =
@T

y

@x
=
@T

@x
v0 + Tv00 (3.6b)

⇢ẅ(x, t) =
@T

z

@x
=
@T

@x
w0 + Tw00 (3.6c)

Further simplifying Eq. (3.6) and neglecting all higher order terms, the linear dynamic

equations of motion for the cable spans in Figure 2.2 can be decoupled as follows:

ü1(x1, t) = c2
u

u00
1(x1, t) (3.7a)

Upper Span: v̈1(x1, t) = c2
w

v001(x1, t) (3.7b)

ẅ1(x1, t) = c2
w

w00
1(x1, t)� g (3.7c)
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and

ü2(x2, t) = c2
u

u00
2(x2, t) (3.8a)

Lower Span: v̈2(x2, t) = c2
w

v002(x2, t) (3.8b)

ẅ2(x2, t) = c2
w

w00
2(x2, t) + g (3.8c)

Ignoring damping and friction in the pulleys for simplicity without losing model fi-

delity, the dynamic longitudinal boundary conditions of the cables are as follows:

J1
r1
✓̈1(t) =

J1
r21

ü1(0, t) = T1(0, t)� T2(Le

, t) = EA(1 + ✏0)(u
0
1(0, t)� u0

2(Le

, t)) (3.9a)

J2
r2
✓̈2(t) =

J2
r22

ü2(0, t) = T2(0, t)� T1(Le

, t) = EA(1 + ✏0)(u
0
2(0, t)� u0

1(Le

, t)) (3.9b)

u1(0, t) = u2(Le

, t) (3.9c)

u2(0, t) = u1(Le

, t) (3.9d)

3.2 Cable-Pulley System

The upper and lower cable span displacements u1(x1, t) and u2(x2, t) are separated

into spatial and temporal functions as follows:

0

@u1(x1, t)

u2(x2, t)

1

A =

0

@U1(x1)

U2(x2)

1

A ei!t (3.10)

where !

2⇡ represents all the natural longitudinal frequencies of the cable-pulley system

and U
i

(x
i

), i = 1, 2 represent the corresponding cable mode shapes. We obtain the

following spatial functions by substituting Eq. (3.10) in Eqs. (3.7a) and (3.8a),

U1(x1) = a1 cos(
!x1

c
u

) + b1 sin(
!x1

c
u

) (3.11a)

U2(x2) = a2 cos(
!x2

c
u

) + b2 sin(
!x2

c
u

) (3.11b)
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where a
i

, b
i

are unknown constant coe�cients. Substituting the above spatial func-

tions and Eq. (3.10) in boundary conditions Eq. (3.9), we obtain

J1
r21

a1(�!2) = EA(1 + ✏0)
!

c
u

✓
b1 + a2 sin(

!L
e

c
u

)� b2 cos(
!L

e

c
u

)

◆
(3.12a)

J2
r22

a2(�!2) = EA(1 + ✏0)
!

c
u

✓
b2 + a1 sin(

!L
e

c
u

)� b1 cos(
!L

e

c
u

)

◆
(3.12b)

a1 = a2 cos(
!L

e

c
u

) + b2 sin(
!L

e

c
u

) (3.12c)

a2 = a1 cos(
!L

e

c
u

) + b1 sin(
!L

e

c
u

) (3.12d)

With further simplification, Eqs. (3.12a)-(3.12d) can be rewritten in matrix form as

follows:
0

BBBBBB@

J1!

c

u

⇢r

2
1

sin(!Le

c

u

) 1 � cos(!Le

c

u

)

sin(!Le
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u

) J2!

c

u

⇢r

2
2

� cos(!Le
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u

) 1

1 � cos(!Le

c

u

) 0 � sin(!Le

c

u

)

� cos(!Le

c

u

) 1 � sin(!Le

c

u

) 0

1

CCCCCCA
.

0

BBBBBB@

a1

a2

b1

b2

1

CCCCCCA
= 0 (3.13)

The natural frequencies of the cable-pulley system are obtained by solving Eq. (3.13).

For a non-trivial solution to exist, the modal matrix above must be singular. Equating

the determinant to zero leads to an implicit characteristic equation in the system’s

natural frequency !
n

, n = 0, 1, 2..., which has infinitely many solutions. The equation

is easy to solve numerically using Matlab’s fzero function which uses a combination

of bisection, secant and inverse quadratic interpolation methods to find the root of a

function. Table 3.1 lists the physical parameters of the cable-pulley system for two

di↵erent configurations; one where the drive motor is detached from the drive pulley

and one where it is connected as reflected in the parameter J1. Figures 3.1(a) and

3.2(a) show the determinant of the above modal matrix as a function of frequency.

The zero-crossings indicate the theoretical natural frequencies of the system.

Figures 3.1(b) and 3.2(b) show the determinant of the modal matrix zoomed at

lower frequencies so that the fundamental longitudinal frequency can be seen more

clearly. The natural frequencies of both configurations are shown in Table 3.2. It can
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Table 3.1. Physical parameters of cable-pulley system.

Configuration 1 Configuration 2

Cable material nylon nylon

J1 7.316⇥ 10�6 kgm2 0.0011 kgm2

J2 7.316⇥ 10�6 kgm2 7.316⇥ 10�6 kgm2

r1 3 cm 3 cm

r2 3 cm 3 cm

E 2.6 Gpa 2.6 Gpa

A 4.26⇥ 10�7 m2 4.26⇥ 10�7 m2

⇢ 4.9⇥ 10�4 kg/m 4.9⇥ 10�4 kg/m

L 1 m 1 m

T0 5 N 5 N
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be seen that there is a large gap between the first two natural longitudinal frequencies

of the system.
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Figure 3.1. Determinant of modal matrix for Configuration 1.

Table 3.2. Modal frequencies of cable-pulley system.

Fundamental

Longitudinal

Frequency

Second Lon-

gitudinal Fre-

quency

Fundamental

Transverse

Frequency

Fundamental

Longitudinal

Frequency

with rigid

end-supports

Configuration 1 116Hz 766Hz 50.5Hz 751.8Hz

Configuration 2 81.6Hz 757.5Hz 50.5Hz 751.8Hz
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Figure 3.2. Determinant of modal matrix for Configuration 2.

Figures 3.3 and 3.4 show the normalized fundamental longitudinal mode shapes of

the cable spans obtained from the null space of the modal matrix in Eq. (3.13),

evaluated at the fundamental natural frequency. They are consistent with a spring-

like behavior of the two cable spans. Figure 3.5(a) and (b) illustrate the possible

fundamental longitudinal modes of the two cable spans in the cable-pulley system.

The out-of-phase cable oscillations in Figure 3.5(a) require angular rotation of the

pulleys and are consistent with the cable modes in Figures 3.3 and 3.4. They are also

consistent with the drastic reduction in fundamental frequency of the cables when

compared to a similar arrangement where the boundary conditions are rigid supports

instead of pulleys. In contrast, the in-phase cable oscillations in Figure 3.5(b) do not

require angular acceleration of the pulleys.
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Figure 3.3. Fundamental longitudinal mode shapes of upper and
lower cable spans for Configuration 1.

3.2.1 Comparison to Rigid Boundary Conditions

Consider a flexible cable fixed between two rigid supports. The fundamental longitu-

dinal and transverse vibration frequencies are given by,

f
long

=
c
u

2L
(3.14a)

f
transverse

=
c
w

2L
(3.14b)

where c2
u

= EA(1+✏0)
⇢

and c2
w

= T0
⇢

are the longitudinal and transverse wave velocities

respectively, T0 is the equilibrium tension, ✏0 is the strain due to equilibrium tension

and L is cable length between the fixed supports. Using the same parameter values in



33

0 0.2 0.4 0.6 0.8 1
−0.3

−0.2

−0.1

0

0.1

U
1
(x

1
)

Span 1

0 0.2 0.4 0.6 0.8 1
−0.3

−0.2

−0.1

0

0.1

x/L

U
2
(x

2
)

Span 2

Figure 3.4. Fundamental longitudinal mode shapes of upper and
lower cable spans for Configuration 2.

Table 3.1, the fundamental longitudinal frequency of a cable with fixed rigid supports

instead of pulleys are calculated using Eq. (3.14a) and shown in Table 3.2. Compared

to the cable with rigid end-supports, the cable-pulley system has a much lower funda-

mental longitudinal frequency. The corresponding fundamental transverse frequency

of the cable with rigid end-supports is also calculated using Eq. (3.14b) and shown

in Table 3.2. It is worth noting that at lower values of tension (T0), the fundamental

transverse frequency is much lower then the fundamental longitudinal frequency. For

this reason, longitudinal cable vibrations are usually ignored or decoupled from trans-
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Figure 3.5. Fundamental longitudinal modes (a) out of phase; (b) in-phase.

verse vibrations in most dynamic analyses as well as vibration control applications.

The same does not apply in the case of the cable-pulley system.

3.2.2 Experimental Results

A detailed description of the experimental setup can be found in Chapter 4. Both

cable spans of the cable-pulley system in configuration 2 shown in Table 3.1 were

plucked at their midpoints and load pulley oscillations were recorded using an optical

encoder. Figure 3.6 shows the frequency spectrum of the recorded free oscillations of

the load pulley. The peak matches closely with the theoretical frequency of 81.6Hz in

Table 3.2, validating the analysis so far. In the following section, the modal analysis

of the cable-pulley system is extended to cable-transporter systems so that the e↵ect

of the transported mass on the vibration modes of the system can be studied in a

similar way.

3.3 Cable Transporter System

There have been many studies on suspended cable-mass systems that use long,

flexible, lightweight cables in an e↵ort to analyze engineering applications such as
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Figure 3.6. Frequency spectrum of cable-pulley system’s free oscilla-
tions from Configuration 2.

aerial cableways, tramways and cranes. Sergev [48] presented an iterative algorithm

to calculate transverse mode shapes and frequencies of a taut cable with attached dis-

crete masses at extremely high mode numbers. Longitudinal modes were not studied

but reasonable experimental agreement was found for the first 8-10 transverse modes.

Wu and Chen [49] investigated the dynamic behavior of an inextensible stationary

cable suspended between two points of equal elevation, under a moving load. The

transient dynamics of such a cable-mass system was studied later by Wang [53] under

conditions such as a free fall of the mass onto the cable and rapid acceleration or

braking, A linearized theoretical model for calculating low and higher order eigenso-

lutions in the transverse direction for an arbitrarily complex array of discrete masses,

attached to a suspended sagged cable fixed between two supports was developed by

Lin and Perkins [50]. Brownjohn [51] simulated the vertical plane vibrations of a cable
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car and compared them with recorded vibrations during emergency halts and when

the car passed over support towers. Renezeder et al. [54] analyzed the fundamental

transverse modes of a ’rope field’ in a monocable ropeway supported between two

towers as a function of rope speed. Sofi and Muscolino [55] numerically studied the

in-plane vibrations of a cable with small sag-to-span ratio, carrying an array of mov-

ing oscillators. The cable was fixed at both ends while the oscillators were allowed to

move at arbitrary velocities. Under the small sag-to-span assumption, longitudinal

inertial forces were neglected leading to a governing equation in the vertical displace-

ment alone. Ho↵mann [56] experimentally studied the e↵ect of cross winds on the

oscillation of gondolas such as chairlifts and ropeways. The e↵ect of transported mass

on the natural longitudinal frequency of the system has been less studied in literature.

3.3.1 Single Mass with Cable Loop

The schematic of a cable-transporter system with a single mass moved using a cable

loop is shown in Figure 3.7. This is a common setup used in elevators and some

monocable gondolas. L1, L2 are stretched cable lengths as shown in the figure such

that L1 + L2 = L
e

where L
e

is the distance between the two pulleys at equilibrium.

The following are the linear equations of motion.

ü1(x1, t) = c2
u

u00
1(x1, t) (3.15a)

ü2(x2, t) = c2
u

u00
2(x2, t) (3.15b)

ü3(x3, t) = c2
u

u00
3(x3, t) (3.15c)
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Figure 3.7. Cable transporter system with cable loop.

The dynamic boundary equations and constraints are as follows:

mü2(0, t) = EA(u0
2(0, t)� u0

1(L1, t)) (3.16a)

J1
r1
✓̈1(t) =

J1
r21

ü1(0, t) = EA(u0
1(0, t)� u0

3(Le

, t)) (3.16b)

J2
r2
✓̈2(t) =

J2
r22

ü3(0, t) = EA(u0
3(0, t)� u0

2(L2, t)) (3.16c)

u1(0, t) = u3(Le

, t) (3.16d)

u3(0, t) = u2(L2, t) (3.16e)

u2(0, t) = u1(L1, t) (3.16f)

Separating the longitudinal cable displacements into spatial and temporal functions

as shown,

0

BBB@

u1(x1, t)

u2(x2, t)

u3(x3, t)

1

CCCA
=

0

BBB@

U1(x1)

U2(x2)

U3(x3)

1

CCCA
ei!t (3.17)
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where !

2⇡ represents all the natural longitudinal frequencies of the system and U
i

(x
i

)

for i = 1, 2, 3 represent the mode shapes, we obtain the following spatial functions

from substituting Eq. (3.17) in Eq. (3.15),

U1(x1) = a1 cos(
!x1

c
u

) + b1 sin(
!x1

c
u

) (3.18a)

U2(x2) = a2 cos(
!x2

c
u

) + b2 sin(
!x2

c
u

) (3.18b)

U3(x3) = a3 cos(
!x3

c
u

) + b3 sin(
!x3

c
u

) (3.18c)

where a
i

, b
i

are unknown constant coe�cients. Substituting the above spatial func-

tions and Eq. (3.17) in boundary conditions Eq. (3.16), we obtain

ma2(�!2) = EA
!

c
u

✓
b2 + a1 sin(

!L1

c
u

)� b1 cos(
!L1

c
u

)

◆
(3.19a)

J1
r21

a1(�!2) = EA
!

c
u

✓
b1 + a3 sin(

!L
e

c
u

)� b3 cos(
!L

e

c
u

)

◆
(3.19b)

J2
r22

a3(�!2) = EA
!

c
u

✓
b3 + a2 sin(

!L2

c
u

)� b2 cos(
!L2

c
u

)

◆
(3.19c)

a1 = a3 cos(
!L

e

c
u

) + b3 sin(
!L

e

c
u

) (3.19d)

a3 = a2 cos(
!L2

c
u

) + b2 sin(
!L2

c
u

) (3.19e)

a2 = a1 cos(
!L1

c
u

) + b1 sin(
!L1

c
u

) (3.19f)

With further simplification, Eqs. (3.19a)-(3.19f) can be re-written in matrix form as

follows:
0

BBBBBBBBB@

sin(

!L1
cu

)

m!
cu⇢

0 � cos(

!L1
cu

) 1 0

J1!
cu⇢r21

0 sin(

!Le
cu

) 1 0 � cos(

!Le
cu

)

0 sin(

!L2
cu

)

J2!
cu⇢r22

0 � cos(

!L2
cu

) 1

1 0 � cos(

!Le
cu

) 0 0 � sin(

!Le
cu

)

0 � cos(

!L2
cu

) 1 0 � sin(

!L2
cu

) 0

� cos(

!L1
cu

) 1 0 � sin(

!L1
cu

) 0 0

1

CCCCCCCCCA

.

0

BBBBBBBBB@

a1

a2

a3

b1

b2

b3

1

CCCCCCCCCA

= 0

(3.20)

For a non-trivial solution to exist, the coe�cient matrix above must be singular, which

leads to an implicit equation in the natural frequency that can be solved numerically.
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Figure 3.8 shows the variation of fundamental longitudinal frequency with mass po-

sition for di↵erent masses, based on configuration 1 in Table 3.1. �
m

= m

2L
e

⇢

is the

ratio of transported mass to the net cable mass. In the case where �
m

= 0, the fun-

damental frequency is constant and is as calculated in Table 3.2. As the transported

mass becomes heavier, the fundamental frequency reduces for any given position of

the mass. Due to the symmetry of configuration 1, when the mass approaches the

midpoint between the two pulleys, it reaches a vibration node such that the config-

uration is equivalent to �
m

= 0. This can be verified using the cable mode shapes

associated with the mass at the cable midpoint as shown in Figure 3.9. The three

cable spans also behave such that their motion is coupled with pulley rotation as

explained in Figure 3.10.
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Figure 3.8. Longitudinal frequency as a function of mass and position.
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Figure 3.10. Fundamental longitudinal modes of cable transporter system.
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3.3.2 Single Mass without Cable Loop

Figure 3.11. Cable transporter system without cable loop.

The linear equations of motion for the cable-transporter system without a cable loop

as shown in Figure 3.11, can be written as follows:

ü1(x1, t) = c2
u

u00
1(x1, t) (3.21a)

ü2(x2, t) = c2
u

u00
2(x2, t) (3.21b)

The boundary equations and constraints are,

mü2(0, t) = EA(u0
2(0, t)� u0

1(L1, t) (3.22a)

J1
r1
✓̈1(t) =

J1
r21

ü1(0, t) = EAu0
1(0, t) (3.22b)

J2
r2
✓̈2(t) =

J2
r22

ü3(0, t) = EAu0
3(0, t) (3.22c)

u2(0, t) = u1(L1, t) (3.22d)
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Using separation of variables for the longitudinal cable displacements into spatial and

temporal functions as shown,
0

@u1(x1, t)

u2(x2, t)

1

A =

0

@U1(x1)

U2(x2)

1

A ei!t (3.23)

where !

2⇡ represents all the natural longitudinal frequencies of the system and U
i

(x
i

)

represent the mode shapes. We obtain the following spatial functions from substitut-

ing Eq. (3.23) in Eq. (3.21),

U1(x1) = a1 cos(
!x1

c
u

) + b1 sin(
!x1

c
u

) (3.24a)

U2(x2) = a2 cos(
!x2

c
u

) + b2 sin(
!x2

c
u

) (3.24b)

where a
i

, b
i

are unknown constant coe�cients. Substituting the above spatial func-

tions and Eq. (3.23) in boundary conditions Eq. (3.22), we obtain

m(�!2)a2 =
EA!

c
u

✓
b2 + a1 sin(

!L1

c
u

)� b1 cos(
!L1

c
u

)

◆

(3.25a)

J1
r21

(�!2)a1 =
EA!

c
u

b1 (3.25b)

J2
r22

(!2)

✓
a2 cos(

!L2

c
u

) + b2 sin(
!L2

c
u

)

◆
=

EA!

c
u

✓
� a2 sin(

!L2

c
u

) + b2 cos(
!L2

c
u

)

◆

(3.25c)

a1 cos(
!L1

c
u

) + b1 sin(
!L1

c
u

) = a2 (3.25d)

Eq. (3.25) re-arranged and written in matrix form is given by,

0

BBBB@

sin(

!L1
cu

)

m!
cu⇢

� cos(

!L1
cu

) 1

J1!
cu⇢r21

0 1 0

0 � J2!
cu⇢r22

cos(

!L2
cu

)� sin(

!L2
cu

) 0 � J2!
cu⇢r22

sin(

!L2
cu

) + cos(

!L2
cu

)

cos(

!L1
cu

) �1 sin(

!L1
cu

) 0

1

CCCCA
.

0

BBBB@

a1

a2

b1

b2

1

CCCCA
= 0

(3.26)

The natural frequencies of the system are obtained from the condition of singularity

imposed on the above matrix.
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3.3.3 Single Mass - Lateral

When the transported mass is not supported in the vertical direction it has an ad-

ditional degree of freedom. The linear transverse dynamics of the upper cable spans

are given by,

ẅ1(x1, t) = c2
w

w00
1(x1, t) (3.27a)

ẅ2(x2, t) = c2
w

w00
2(x2, t) (3.27b)

The variable-separable solution to the above wave equations are expressed as follows:

w1(x1, t) =

✓
b11 cos(

!x1

c
w

) + b12 sin(
!x1

c
w

)

◆
ei!t (3.28a)

w2(x2, t) =

✓
b21 cos(

!x2

c
w

) + b22 sin(
!x2

c
w

)

◆
ei!t (3.28b)

where !

2⇡ represents the transverse oscillation frequency of the transported mass.

Figure 3.12 shows the forces on the transported mass at equilibrium and during cable

motion respectively. The dynamic equations of the mass at equilibrium and during

motion are as follows:

T0 sin ✓1e + T0 sin ✓2e = mg (3.29a)

T1 sin ✓1 + T2 sin ✓2 �mg = mÿ(t) (3.29b)

where y(t) is the vertical displacement of the transported mass from its equilibrium

position and ✓1, ✓2, ✓1e, ✓2e are sag angles with respect to the horizontal caused by the

mass’s vertical displacement. From Figure 3.12 (a) and (b), the following approximate

relationships are obtained:

sin ✓1 =
H � y(t)

L1
= sin ✓1e �

y(t)

L1
(3.30a)

sin ✓2 =
H � y(t)

L2
= sin ✓2e �

y(t)

L2
(3.30b)
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Figure 3.12. Forces on transported mass.

Substituting for tension and the above relationships in Eq. (3.29b),

T0 sin ✓1e � T0
y(t)

L1
+ EAu0

1 sin ✓1 + T0 sin ✓2e

� T0
y(t)

L2
+ EAu0

2 sin ✓2 �mg = mÿ(t) (3.31)

Simplifying the above using the equilibrium condition in Eq. (3.29a), we obtain

ÿ(t) +
T0

m
(
1

L1
+

1

L2
)y(t) =

EA

m
(u0

1 sin ✓1 + u0
2 sin ✓2) (3.32)

In applications where cable sag and longitudinal displacements are not negligible, Eq.

(3.32) provides a more accurate description of the vertical dynamics of the transported

mass, where the right-hand term represents a kind of forcing function. When cable

sag and longitudinal cable displacements are small, the higher order terms on the

right can be ignored, leading to the following transverse dynamics.

ÿ(t) +
T0

m
(
1

L1
+

1

L2
)y(t) = 0 (3.33)
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The mass boundary condition for the second cable span is obtained from Eq. (3.28b)

as follows:

w2(0, t) = y(t) = b21e
i!t (3.34)

Substituting the above in Eq. (3.33), the natural transverse vibration frequency of

the transported mass is given by,

! =
1

2⇡

r
T0

m
(
1

L1
+

1

L2
) (3.35)

3.3.4 Two Masses in Parallel

Figure 3.13. Cable transporter system with two masses in parallel.
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A 2-mass cable transporter system is shown in Figure 3.13. This is a common con-

figuration used in monocable ropeways. The following are the linear equations of

motion of the system.

ü1(x1, t) = c2
u

u00
1(x1, t) (3.36a)

ü2(x2, t) = c2
u

u00
2(x2, t) (3.36b)

ü3(x3, t) = c2
u

u00
3(x3, t) (3.36c)

ü4(x4, t) = c2
u

u00
4(x4, t) (3.36d)

The dynamic boundary conditions and constraints are as follows,

m1ü2(0, t) = EA(u0
2(0, t)� u0

1(L1, t)) (3.37a)

m2ü4(0, t) = EA(u0
4(0, t)� u0

3(L3, t)) (3.37b)

J1
r1
✓̈1(t) =

J1
r21

ü1(0, t) = EA(u0
1(0, t)� u0

4(L4, t)) (3.37c)

J2
r2
✓̈2(t) =

J2
r22

ü3(0, t) = EA(u0
3(0, t)� u0

2(L2, t)) (3.37d)

u1(0, t) = u4(L4, t) (3.37e)

u3(0, t) = u2(L2, t) (3.37f)

u2(0, t) = u1(L1, t) (3.37g)

u4(0, t) = u3(L3, t) (3.37h)

Substituting the variable-separable form of the cable displacements in Eq. (3.37), the

following matrix form is obtained:
0

BBBBBBBBBBBBBBBBB@

S1
m1!

c

u

⇢

0 0 �C1 1 0 0

0 0 S3
m2!

c

u

⇢

0 0 �C3 1

J1!

c

u

⇢r

2
1

0 0 S4 1 0 0 �C4

0 S2
J2!

c

u

⇢r

2
2

0 0 �C2 1 0

1 0 0 �C4 0 0 0 �S4

0 �C2 1 0 0 �S2 0 0

�C1 1 0 0 �S1 0 0 0

0 0 �C3 1 0 0 �S3 0

1

CCCCCCCCCCCCCCCCCA

.

0

BBBBBBBBBBBBBBBB@

a1

a2

a3

a4

b1

b2

b3

b4

1

CCCCCCCCCCCCCCCCA

= 0 (3.38)
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where S
i

= sin(!Li

c

u

), C
i

= cos(!Li

c

u

), i = 1, 2, 3, 4. The longitudinal natural frequen-

cies of the system are obtained by imposing the condition of singularity on the modal

matrix in Eq. (3.38).
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4. SYSTEM IDENTIFICATION

In order to implement model-based feedback controllers on the system, a good system

model with accurate parameters is crucial. In the following sections, the complete

experimental setup is described in detail followed by parameter estimation of the drive

motor and pulleys, frequency response measurements of the cable-pulley system and

servoamplifier

4.1 Experimental Setup

A schematic of the prototypical cable-pulley system is shown in Figure 4.1 and

consists of the following major components: (i) Drive pulley setup, (ii) Load pulley

setup, (iii) Monofilament cable loop. The drive and load pulleys are attached using set

screws to 0.5inch diameter steel shafts that are mounted on ball bearings for transverse

load support and smooth rotation. Transverse loads are forces acting perpendicular

to the shaft. In the case of the cable-pulley system, most of these forces are due

to cable tension. The drive pulley mounted on the steel shaft is connected to the

motor shaft using a coupler with four clamping screws and keyways on both ends for

additional shaft support. The drive motor is mounted on a sleeve-bearing carriage

that can be tightened with a hand brake as shown in Figure 4.2. Hence the distance

between the drive pulley and load pulley can be freely adjusted by sliding the carriage

along the 8020 bar. The complete drive side of the setup is shown in Figure 4.3.

A single monofilament cable loop is used to connect the drive pulley to the load

pulley. The load pulley shaft and ball bearings are mounted on pillow blocks that

move freely on two linear shafts. As the cable is under positive tension, the load pulley

side of the setup is pulled against a fixed compressive load cell (Loadstar Sensors).

As a result, the load cell measures the combined tension of the upper and lower cable
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spans from which individual cable tension can be calculated. The load side of the

setup is shown in Figure 4.4.

Figure 4.1. Experimental setup of cable-pulley system.

Figure 4.2. Sleeve-carriage mounted on 8020 bar and hand brake.

The complete cable-pulley setup is shown in Figure 4.5. A brushed motor (Maxon

Motors) rated for 240W with a nominal speed of 5680RPM, a nominal voltage of 24V
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Figure 4.3. Drive pulley setup.

Figure 4.4. Load pulley setup.

and a nominal torque of 0.405Nm is used. It is connected to a planetary gearhead

with a gear ratio of 5.2 resulting in a nominal torque of 2.1Nm and a nominal speed



51

Figure 4.5. Complete cable-pulley setup.

of 1092RPM. The motor shaft is pre-assembled to be connected to an optical encoder

with 500 counts per revolution. Due to the gearhead, the resulting encoder resolution

is 2600 counts per revolution (CPR). More specifications of the drive motor, gear

head and motor encoder can be found in Tables A.1-A.2. Two optical encoders (US

Digital) with resolutions of 10000CPR each are mounted on the drive pulley and load

pulley shafts. The entire system is controlled by dSpace DS1103 controller board and

monitored by a host computer with a Pentium 4 processor.

A high-speed camera with a maximum speed of 480 frames/sec is mounted near

the cable midpoint to capture cable motion. As the frame rate of the camera is

increased from its lowest value, the resolution of each frame in any recorded video was

reduced automatically. When used at the highest frame rate of 480 frames/sec, the

video resolution was set to 224x160 pixels. In order to simplify the image processing

needed to capture cable vibrations using the camera, the cable was spray-painted

black and a small segment of the cable midpoint was painted white. The camera was

then used to record videos of cable vibrations against a black background as shown in
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Figure 4.5. Post-processing of the video frames is illustrated in Figure 4.6 where (a)

is an original frame from the recorded video, (b) is the frame converted to greyscale

and contains imperfections and (c) is the final frame after removal of unwanted pixels.

The centroid of the white pixels in the final corrected frame is then calculated to track

the motion of the cable midpoint.

Figure 4.6. Processing of frames captured by the high-speed camera.
(a) Original frame, (b) Frame in greyscale with errors, (c) Corrected
frame.
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4.2 Parameter Estimation using Linear Least Squares

Experiments were performed to estimate motor parameters such as inertia, damp-

ing and friction. The principle behind the least-square estimation is described below.

Using a sampling rate of 1kHz, motor torque was calculated using current measure-

ments and the torque constant from motor specs. To reduce measurement noise from

the optical encoder, the angular position was filtered using a low-pass second-order

filter. The filter transfer function is as follows:

H
f

(s) =
!2
f

s2 + 2⇣
f

!
f

s+ !2
f

(4.1)

where ⇣
f

, !
f

are damping ratio and natural frequency of the filter, respectively.

Choosing states x1 = ✓
f

= filtered angular position and x2 = ✓̇
f

= filtered angular

velocity, the following filter dynamics was used to obtain filtered angular position:

ẋ1 = x2

ẋ2 = �2⇣
f

!
f

x2 � !2
f

(x1 � ✓(t)) (4.2)

where ✓(t) is the measured angular position. When the equation of motion is written

linearly in terms of the unknown parameters, a linear least-square solution can be

obtained using measurements. This gives us the parametric solution that minimizes

the sum of the squares of error with respect to all measurements. More information

on this technique can be found in [83]. In the linear form, the equation of motion is

written as:

y
m

(t) = �(t)P (4.3)

where y
m

(t) is a measured output, �(t) is the regressor vector and P is the associated

vector of unknown constant parameters. Applying the filter, the equation of motion

can be rewritten as follows:

y
f

(t) = �
f

(t)P (4.4)
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In the Laplace domain,

y
f

= H
f

(s)y
m

(4.5a)

�
f

= H
f

(s)� (4.5b)

Using measurements taken at discrete time steps t
j

= jT
s

, j = 0, 1, 2... where T
s

is

the sampling time interval, gives the following equation of motion.

y
f

(t
j

) = �
f

(t
j

)P (4.6)

Combining the measurements at multiple times gives vector Y
f

and matrix �
f

. Hence

the vector of parameter estimates that minimizes error is obtained by solving:

�T

f

Y
f

= (�T

f

�
f

)P (4.7)

The least square solution is given by P̂ = (�T

f

�
f

)�1�T

f

Y
f

. The inverse of �T

f

�
f

exists

if the measurements are su�ciently rich.

4.2.1 Motor and Drive Pulley Identification

The drive pulley was attached to the motor shaft using the coupling. The motor

dynamics is given by,

J1✓̈ + b1✓̇ + c1tanh(K ✓̇) = ⌧(t) + d+ d̃(t) (4.8)

where J1, b1, c1 are the combined motor and drive pulley inertia, viscous and coulomb

friction parameters, respectively. The hyperbolic tangent function with K = 0.5

was used to smoothly approximate the signum function such that numerical errors

in angular velocity fall within the linear slope region. d is the nominal part of the

lumped modeling error and d̃(t) is the unknown time-varying part. ⌧ is the measured

motor torque. The above motor dynamics can be written in linear form as follows:

⌧(t) = [✓̈, ✓̇, tanh(0.5✓̇),�1](t)P � d̃(t)

= �(t)P � d̃(t) (4.9)
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where parameter vector P = [J1, b1, c1, d]T . Applying the filter to the above equation,

the dynamics can be rewritten as follows:

⌧
f

(t) = [✓̈, ✓̇, tanh(0.5✓̇),�1]
f

(t)P̂ � d̃
f

(t)

= [✓̈
f

, ✓̇
f

, (tanh(0.5✓̇))
f

, (�1)
f

](t)P̂ � d̃
f

(t)

= �
f

(t)P̂ � d̃
f

(t) (4.10)

where P̂ is the linear least-square estimate of the parameters and is obtained from

the matrix form in Eq. (4.7).

In order to verify the accuracy of the estimated parameters, the predicted modeling

error d̃(t) is calculated using the true values of angular velocity (✓̇) and angular

acceleration (✓̈) used in Eq. (4.9). To obtain them, ✓̇ and ✓̈ are first numerically

calculated from position measurement (✓), using finite central di↵erences. They are

then processed using Matlab’s idealfilter function which applies an ideal low-pass

filter using a given cut-o↵ frequency. This is done to remove noise from encoder

measurements as well as numerical di↵erentiation thereby giving their best estimates.

Since the filter is ideal and non-causal, no phase lag is introduced.

Experiment 1 using 3Hz+4Hz torques

The motor was excited using a sum of sinusoidal torques of 3Hz and 4Hz for about 70

seconds with an amplitude of 0.1V each. Encoder measurements were filtered using

the causal filter with ⇣
f

= 1 and !
f

= 2⇡(20)rad/s. Figure 4.7 shows the unfiltered

and filtered regressor functions plotted during the first second of collected data. An

ideal filter with a cut-o↵ frequency of 50Hz was used to obtain the best estimate of

angular velocity and acceleration. Figure 4.8 shows the modeling error d̃(t) calculated

from Eq. (4.9) and is seen to be quite small comported to the applied torque.
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Figure 4.7. Comparison of unfiltered and filtered regressors.
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Experiment 2 using 1Hz+5Hz torques

In the second experiment, the motor was excited using a sum of sinusoidal torques of

1Hz and 5Hz for about 70 seconds with an amplitude of 0.1V each. Figure 4.9 shows

the unfiltered and filtered regressor functions plotted during the first few seconds of

collected data. Figure 4.10 shows the modeling error d̃(t).
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Figure 4.9. Comparison of unfiltered and filtered regressors.

Experiment 3 using 1Hz+3Hz+5Hz torques

In the third experiment, the motor was excited using a sum of sinusoidal torques of

1Hz, 3Hz and 5Hz for about 70 seconds with an amplitude of 0.1V each. Figure 4.11

shows the unfiltered and filtered regressor functions during the first two seconds of

collected data. Figure 4.12 shows the modeling error.
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Figure 4.10. Modeling error d̃(t).
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Figure 4.11. Comparison of unfiltered and filtered regressors.
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4.2.2 Motor Identification

The drive pulley and shaft coupling were detached from the motor shaft. As a result,

the dynamics is given by,

J11✓̈ + b1✓̇ + c1tanh(0.5✓̇) = ⌧(t) + d+ d̃(t) (4.11)

where J11 is the inertia of the motor only. The same notation is retained for damping

and friction parameters since they are not expected to change significantly. The

motor was excited using a sum of sinusoidal torques of 1Hz, 3Hz and 5Hz for about

55 seconds with an amplitude of 0.05V, 0.05V and 0.1V respectively. Figure 4.13

shows the unfiltered and filtered regressor functions during the first two seconds of

collected data. Figure 4.14 shows the modeling error.
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Figure 4.13. Comparison of unfiltered and filtered regressors.

4.2.3 Motor and Load Pulley Identification

The load pulley was attached to the motor shaft using the coupling. Hence the

dynamics is given by,

(J11 + J2)✓̈ + b1✓̇ + c1tanh(0.5✓̇) = ⌧(t) + d+ d̃(t) (4.12)

where J11 is the motor inertia and J2 is the load pulley inertia. The motor was

excited using a sum of sinusoidal torques of 1Hz, 3Hz and 5Hz for about 55 seconds

with amplitudes of 0.05V, 0.05V and 0.1V. Figure 4.15 shows the unfiltered and

filtered regressor functions magnified during the first two seconds of collected data.

Figure 4.16 shows the modeling error.

The estimated parameter values from all experiments performed are shown in Table

4.1. It can be seen that damping and friction coe�cient estimates are fairly consis-
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Table 4.1. Linear least-square parameter estimates.

Motor only

Torque J11 (kgm2) b1 (Nms) c1 (Nm) d (Nm)

1Hz+3Hz+5Hz 0.0011 0.00216 0.024 �0.0057

Motor and drive pulley

Torque J11 + J12 (kgm2) b1 (Nms) c1 (Nm) d (Nm)

1Hz+3Hz+5Hz 0.001742 0.0031 0.0376 �0.0006

Motor and load pulley

Torque J11 + J2 (kgm2) b1 (Nms) c1 (Nm) d (Nm)

1Hz+3Hz+5Hz 0.00345 0.005 0.045 �0.0008
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Figure 4.14. Modeling error d̃(t).

tent with only a small increase with increasing inertia. This is most likely due to a

higher turning resistance exhibited by the ball bearings supporting the shaft, as more

transverse load acts on it. Using the estimated inertias in Table 4.1, J11, J12 and J2

are calculated and shown in Table 4.2.

Table 4.2. Inertias estimated o✏ine.

J1(kgm2) J11(kgm2) J12(kgm2) J2(kgm2)

0.001742 0.0011 0.000642 0.00235
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Figure 4.15. Comparison of unfiltered and filtered regressors.
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4.3 Validation using Frequency Response

In this section, results from the frequency response of the cable-pulley system are

presented to validate the estimated parameters of the system. The motor is excited

using a sum of sine torques and its angular response is measured. The torque signals

are generated using Matlab’s idinput function, which allows a choice of the frequency

interval, number of sine waves and overall amplitude using the following command.

[u, freq] = idinput(N,’sine’, [w
min

, w
max

], [u
min

, u
max

], [no. of sines, no. of trials])

(4.13)

where

u = signal generated

freq = frequencies generated

N = number of data points in u

w
min

, w
max

= minimum and maximum frequencies as fractions of Nyquist frequency

u
min

, u
max

= minimum and maximum amplitudes of signal generated

no. of trials = number of trials tried to get the lowest amplitude signal

Based on the Matlab command in Eq. (4.13), the following torque containing 1000

sine waves from 1-500Hz was generated using a sampling frequency of 5kHz. The

maximum allowed voltage range for the signal was [�1, 1]V.

[u, freq] = idinput(N,’sine’, [1/2500, 500/2500], [-1, 1], [1000,10]) (4.14)

The motor shaft angle was measured using the optical encoder and angular velocity

was numerically calculated to obtain the output. Matlab’s tfestimate function was

used to estimate the transfer function from input to output as shown below.

[Txy,F] = tfestimate(x,y,window,noverlap,n↵t,f
s

) (4.15)
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where

x,y =input and output signals, respectively

window =window function to split x and y into sections

overlap =no. of samples to overlap windows

n↵t =FFT length that determines frequencies for estimation of

power spectral density, default value is maximum of 256

or power of 2 > length of x or y

f
s

=sampling frequency

The e↵ects of coulomb friction and constant o↵set were subtracted from the measured

torque to obtain the input. Data was collected for about 8 seconds and the last 5

seconds of collected data was used to generate the input and output. Using the

command in Eq. (4.15), a hanning window of 1 second and an overlap of 0.2 seconds,

the transfer function (Txy) from input to output was obtained.

4.3.1 Motor Response

The motor governing equation is given by,

J11✓̈11 = ⌧ � b1✓̇11 � c1Sf

(✓̇11) + d1 (4.16)

where ✓11 is the motor shaft encoder measurement. Hence the transfer function from

torque to motor angular velocity is obtained as follows:

✓̇11
⌧
c

(s) =
1

J11s+ b1
(4.17)

where ⌧
c

= ⌧ � c1Sf

(✓̇11) + d1 is the drive motor torque compensated for coulomb

friction and constant o↵set. Figure 4.17 shows the experimental frequency response of

the motor only. The theoretical frequency response is simulated using the estimated

parameters in Table 4.1 and the transfer function derived above. A good agreement

is seen.
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Figure 4.17. Motor frequency response.

4.3.2 Motor and Drive Pulley Response

Figure 4.19 shows the experimental frequency response of the motor coupled with

the drive pulley. A mild resonance and anti-resonance pair is observed near 100Hz

indicating that the motor-drive pulley coupling is not rigid. The theoretical frequency

response is simulated using the estimated parameters in Table 4.1 and the transfer

function derived below. In order to capture the flexible mode of the motor-drive pulley

coupling, a spring damper model is used to approximate the coupling as shown in

Figure 4.18.
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Figure 4.18. Motor-drive pulley coupling model.

The governing equations are given by,

J11✓̈11 = ⌧ � b1✓̇11 � c1Sf

(✓̇11) + d1 + k
m

(✓12 � ✓11)� b
m

(✓̇11 � ✓̇12) (4.18a)

J12✓̈12 = k
m

(✓11 � ✓12)� b
m

(✓̇12 � ✓̇11) (4.18b)

where ✓11, ✓12 are motor shaft and drive pulley angular positions, respectively, as

shown in Figure 4.18. Hence the transfer function from torque to motor shaft angular

velocity is obtained as follows:

✓̇11
⌧
c

(s) =
(J12s2 + b

m

s+ k
m

)s

(J11s2 + (b1 + b
m

)s+ k
m

)(J12s2 + b
m

s+ k
m

)� (k
m

+ b
m

s)2

=
1

J11
s2 + b

m

J11J12
s+ k

m

J11J12

s3 + b
m

✓
1

J11
+ 1

J12

◆
s2 +

✓
k

m

J11
+ k

m

J12
+ b1bm

J11J12

◆
s+ b1km

J11J12

(4.19)

Parameters b
m

= 0.075, k
m

= 135 were chosen to closely match the flexible mode in

the experimental frequency response.

4.4 Current Amplifier Characteristics

As mentioned earlier, the system is controlled using a DS1103 dSpace controller

board. Figure 4.20 shows a block diagram of the closed-loop system. The drive motor

is operated in current control mode and receives its signal from the servoamplifier.

When a required drive torque is computed, it is sent to the servoamplifier in the form

of a voltage command from the dSpace controller board.
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Figure 4.19. Motor-drive pulley frequency response.

Figure 4.20. Block diagram of closed-loop system.

In order to calculate the voltage command for a known current or torque, the charac-

teristics of the servoamplifier were measured using a frequency response experiment

where a sum-of-sines voltage command was generated and the motor torque was
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Figure 4.21. Frequency response of current amplifier ⌧

V

cmd

(s).

calculated from measured motor current and the torque constant in manufacturer

specifications. The results are shown in Figure 4.21, which shows that the relation-

ship between dSpace voltage command and motor current is essentially a constant

gain of about 4.2dB. Hence the dSpace voltage command for a given motor torque is

calculated as follows:

4.2 =20 log10

✓
⌧

V
cmd

◆

⌧

V
cmd

=10
4.2
20 = 1.6218

V
cmd

=0.6166 ⌧ (4.20)
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5. AUTOPARAMETRIC RESONANCE

The excitation of oscillations in an oscillatory system through the periodic varia-

tion of one of the system’s oscillation parameters is known as parametric resonance.

When a mechanical system consists of two or more coupled vibrating components,

the vibration of one of the component subsystems may destabilize the motion of the

other [36]. This destabilization e↵ect is called autoparametric resonance. A classical

example of such an autoparametric system is the elastic pendulum which consists of

a spring fixed at one end and a mass at the other, as shown in Figure 5.1. Hence

the spring may swing like a pendulum and oscillate at the same time. An interest-

ing phenomenon occurs when the ratio of linear frequencies in the longitudinal and

transverse directions is 2:1. When that happens, if we start with oscillation of the

spring in the near vertical direction, this motion is unstable and energy is gradually

transferred to the swinging motion and back [10], [37].

Figure 5.1. Spring pendulum.

In the case of motion transmission using flexible cables, the phenomenon of au-

toparametric or internal resonance requires careful consideration for the purposes of
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stability as well as positioning accuracy. Cable vibrations generally occur in the longi-

tudinal and mutually perpendicular transverse directions and are coupled nonlinearly.

As in the case of the elastic pendulum, the condition for auto parametric resonance

in cables is as follows:

Fundamental longitudinal frequency

Fundamental transverse frequency
= 2 (5.1)

As a result, solutions to the cable vibrations when written in the form of their fun-

damental modes are as follows:

u(x, t) = U(x) cos 2!t (5.2a)

v(x, t) = V (x) sin!t (5.2b)

w(x, t) = W (x) sin!t (5.2c)

where ! is the transverse mode frequency. Substituting the above equations in Eq.

(2.21) for nonlinear tension, we get

T (x, t) = T0 + EA(1 + ✏0)(U
0 cos 2!t+

1

4
(V 02(1� cos 2!t) +W 02(1� cos 2!t)))

= T0 + EA(1 + ✏0)(
V 02 +W 02

4
) + EA(1 + ✏0)(U

0 � V 02 +W 02

4
) cos 2!t (5.3)

Therefore, if the cable-pulley system satisfies the condition in Eq. (5.1) where the

fundamental longitudinal mode is twice the frequency of the fundamental transverse

mode, we see that cable tension varies periodically at twice the transverse mode

frequency. As a result, the behavior studied by Lord Rayleigh ( [31], [32]) is intrinsic

to cable vibrations where periodic variation of tension can be caused naturally by the

vibration mode of the cable. For a cable fixed at both ends, as mentioned earlier, there

is generally minimal coupling between longitudinal and transverse natural resonances

due to the large gap between their fundamental frequencies. However, in the case of

a cable-pulley system it has been shown that the system’s fundamental longitudinal

frequency may be greatly reduced due to the coupling between cables and high-inertia

components such as the pulleys. Hence it becomes possible for longitudinal resonances

to be strongly coupled with transverse resonances. In the following section, the design
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conditions that lead to strong coupling between longitudinal and transverse vibrations

in the cable-pulley system are explored.

5.1 Parametric Analysis

In order to predict when auto-parametric resonance occurs in the cable-pulley

system, we take a closer look at the characteristic equation obtained from the deter-

minant of the modal matrix in Eq. (3.13), which implicitly relates the fundamental

longitudinal frequency of the system with all the physical parameters of the cable

and pulleys. It is important to note that the fundamental transverse cable vibration

frequency in the cable-pulley system is still given by Eq. (3.14b) as f
transverse

= c

w

2L .

Defining � = f

transverse

!

long

/2⇡ = ⇡c

w

!

long

L

as the ratio of fundamental transverse and longitudi-

nal frequencies, we get the following modified characteristic equation.

⇡c
w

�c
u

�2 =
�⇡c

w

�c

u

�1 cos(
⇡c

w

�c

u

)� sin(⇡cw
�c

u

)
�⇡c

w

�c

u

�1 sin(
⇡c

w

�c

u

) + cos(⇡cw
�c

u

)
(5.4)

where �1 =
J1

2⇢r21L
, �2 =

J2

2⇢r22L
are essentially ratios of mass of each pulley to total cable

mass. Each surface in Figure 5.2 represents the variation of transverse-to-longitudinal

fundamental frequency ratio (�) with pulley-to-cable mass ratios for di↵erent equilib-

rium cable tension (T0). The plane parallel to the �1�2 plane represents a constant

frequency ratio of � = 1
2 and hence its intersection with the surfaces gives a family

of curves shown in Figure 5.3 that correspond to autoparametric resonance in cable-

pulley systems. Since �1 and �2 are non-dimensional and depend only on physical

properties and parameters of the cable and pulleys used, they may be used to repre-

sent di↵erent cable-pulley systems used in a variety of applications. For e.g., robotic

hands, elevators and serpentine belt drive systems typically have lower pulley-to-

cable mass ratios and higher cable tension. This analysis provides some insight into

the choice of design parameters and their e↵ects on natural frequencies and inter-

nal resonance, as cable-driven systems become more common in motion transmission

applications.
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�2) for di↵erent equilibrium tensions (T0).

Figure 5.3. Contours of autoparametric resonance in a cable-pulley system.
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5.2 Forced Response

Using the parameters of configuration 2 in Table 3.1 and the condition in Eq.

(5.1), forced vibrations of the cable-pulley system were numerically simulated and

verified experimentally. Only cable tension was changed to satisfy Eq. (5.1) and

study the phenomenon of autoparametric resonance. The cable-pulley system was

subject to an external oscillatory torque through the drive motor at the system’s

natural longitudinal frequency of 81.6Hz. Both simulation and experimental results

are presented here.

5.2.1 Numerical Results

The numerical scheme discussed in Eqs. (2.32)-(2.39) was used to simulate the cable-

pulley system. Zero initial conditions were used for pulley and cable velocities and

pulley angle while a triangular profile was used for cable displacement. An external

oscillatory torque ⌧ = A sin!t was added to the drive pulley dynamics, where A is the

amplitude of the torque and ! is its angular frequency. Figure 5.4 shows oscillations

of the load pulley and transverse vibrations of the cable span midpoint (w1(t, x = L

e

2 ))

during autoparametric resonance. A strong coupling between the rotational mode of

the load pulley and transverse mode of the cable can be seen along with an exchange

of energy as seen from the vibration amplitudes.

5.2.2 Experimental Results

As shown in the experimental setup in Figure 4.1, load pulley oscillations and cable

tension are both measured using an optical encoder and compressive load cell in real

time. A high-speed camera is installed at the cable midpoint and captures longitudi-

nal and transverse cable vibrations at 400 frames/sec. The external torque is applied

through the drive motor at the longitudinal natural frequency of 81.6Hz as cable

tension is slowly increased from near zero. Figure 5.5 shows measured transverse ca-
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Figure 5.4. Simulated forced autoparametric resonance of pulley
oscillations (top) and transverse cable midpoint vibrations (bottom).

ble midpoint vibrations as cable tension is slowly increased. Changing cable tension

changes the frequency ratio (�) by changing the cable’s fundamental transverse fre-

quency, while the fundamental longitudinal frequency remains relatively constant. As

a result, the system is slowly moved from a detuned state to a tuned state where the

frequency ratio condition in Eq. (5.1) is satisfied. The sudden increase in transverse

cable vibrations is due to the onset of autoparametric resonance as � approaches 0.5.

Figure 5.6 shows experimentally recorded oscillations of the pulley and transverse

vibrations of the cable midpoint during autoparametric resonance. Strong coupling

between the rotational and transverse modes can be seen clearly leading to a growth

of both vibration amplitudes. A kind of beats phenomenon is seen where energy is

exchanged between the two modes.
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Figure 5.5. Response of transverse cable midpoint vibrations with changing �.

Figure 5.6. Experimentally recorded forced auto-parametric reso-
nance of pulley oscillations (top) and transverse cable midpoint vi-
brations (bottom).
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5.3 Free Response Experimental Results

The free response of the cable-pulley system in configuration 2 shown in Table

3.1 is studied during autoparametric resonance. Both cable spans were plucked at

their midpoints. Load pulley oscillations were recorded using the optical encoder

while the upper cable midpoint vibrations in the w1 direction were captured using

the high-speed camera at 400 frames/sec. Figure 5.7 shows the recorded transverse

cable midpoint vibrations and pulley oscillations. Coupling between them can be

seen over the first second where the amplitude of pulley oscillations increases at the

same time the transverse cable vibrations reach their minimum and vice versa. The

vibrations die out due to cable damping after the first second.

Figure 5.7. Experimentally recorded free oscillations of pulley (top)
and transverse vibrations of cable midpoint (bottom) during au-
toparametric resonance.
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6. CONTROL DESIGN

6.1 Trajectory Design

In this section, a 9th order polynomial is used to design a pulse trajectory that

rotates the load pulley back and forth between two angles. The trajectory is chosen

to be feasible in terms of available motor speed and acceleration and smooth up to 4th

order to avoid jerk motions during the start and end of the motion. The rise portion

of the trajectory is defined as follows:

y
d1(t) =

9X

j=0

a
j

tj (6.1)

Applying the following initial conditions,

y
d1(0) = 0 (6.2a)

ẏ
d1(0) = 0 (6.2b)

ÿ
d1(0) = 0 (6.2c)

...
y
d1(0) = 0 (6.2d)

....
y

d1(0) = 0 (6.2e)

leads to a0 = a1 = a2 = a3 = a4 = 0. Defining t
f

to be the time taken to reach a final

desired angle ✓
f

, we apply the following end conditions:

y
d1(tf ) = ✓

f

= a5t
5
f

+ a6t
6
f

+ a7t
7
f

+ a8t
8
f

+ a9tf
9 (6.3a)

ẏ
d1(tf ) = 0 = 5a5t

4
f

+ 6a6t
5
f

+ 7a7t
6
f

+ 8a8t
7
f

+ 9a9t
8
f

(6.3b)

ÿ
d1(tf ) = 0 = 20a5t

3
f

+ 30a6t
4
f

+ 42a7t
5
f

+ 56a8t
6
f

+ 72a9t
7
f

(6.3c)

...
y
d1(tf ) = 0 = 60a5t

2
f

+ 120a6t
3
f

+ 210a7t
4
f

+ 336a8t
5
f

+ 504a9t
6
f

(6.3d)

...
y
d1(tf ) = 0 = 120a5tf + 360a6t

2
f

+ 840a7t
3
f

+ 1680a8t
4
f

+ 3024a9t
5
f

(6.3e)
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The above linear set of equations can be solved to obtain a
j

, j = 5, ...9 for a given ✓
f

and t
f

. By adjusting t
f

, the trajectory can be made faster or slower keeping in mind

the available control e↵ort. The reverse trajectory to return to zero angle is defined

by,

y
d2(t) =

9X

j=0

b
j

tj (6.4)

Using the following initial conditions,

y
d2(0) = ✓

f

(6.5a)

ẏ
d2(0) = 0 (6.5b)

ÿ
d2(0) = 0 (6.5c)

...
y
d2(0) = 0 (6.5d)

....
y

d2(0) = 0 (6.5e)

we get b0 = ✓
f

, b1 = b2 = b3 = b4 = 0. Hence,

y
d2(t) = ✓

f

+
9X

j=5

b
j

tj (6.6)

Applying the following end conditions,

y
d2(tf ) = 0 = ✓

f

+ b5t
5
f

+ b6t
6
f

+ b7t
7
f

+ b8t
8
f

+ b9t
9
f

(6.7a)

ẏ
d2(tf ) = 0 = 5b5t

4
f

+ 6b6t
5
f

+ 7b7t
6
f

+ 8b8t
7
f

+ 9b9t
8
f

(6.7b)

ÿ
d2(tf ) = 0 = 20b5t

3
f

+ 30b6t
4
f

+ 42b7t
5
f

+ 56b8t
6
f

+ 72b9t
7
f

(6.7c)

...
y
d2(tf ) = 0 = 60b5t

2
f

+ 120b6t
3
f

+ 210b7t
4
f

+ 336b8t
5
f

+ 504b9t
6
f

(6.7d)

....
y

d2(tf ) = 0 = 120b5tf + 360b6t
2
f

+ 840b7t
3
f

+ 1680b8t
4
f

+ 3024b9t
5
f

(6.7e)

Hence the reverse trajectory can be obtained by solving the above linear set of equa-

tions. A single pulse can then be obtained by combining y
d1 and y

d2 as follows:

y
d

(t) =

8
><

>:

y
d1(t) for 0 < t < t

f

y
d2(t� t

f

��t) for t
f

+�t < t < 2t
f

+�t
(6.8)
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where �t is a time span for which the load pulley is stationary between forward

and revere trajectories. The resulting pulse is shown in Figure 6.1. In the following

section, the design and performance of control techniques applied to the cable-pulley

system are examined.

Figure 6.1. Single pulse using 9th order polynomial.

6.2 Reduced-Order System Models

In this section, reduced-order models of the cable-pulley system are presented in

order to simply the control design process used for position tracking. Since it has been

shown through modal analysis and frequency response of the overall system that the

flexible modes are due to the fundamental longitudinal mode of the cable and the

flexible motor-drive pulley joint, four possible models of the system are discussed.
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6.2.1 Model 1: Rigid Motor Joint and Rigid Cable

The simplest model where both motor joint and cables are assumed to be rigid, is

presented. The load pulley angle is constrained to be equal to the drive pulley angle

and motor shaft angle, i.e. ✓2 = ✓1. No distinction is made between the three angles

and the di↵erent inertias (J11, J12, J2) are combined into one. Using Figure 6.2 as

reference, the dynamics of the system is as follows:

(J1 + J2)✓̈1 =⌧ � b1✓̇1 � c1S(✓̇1) + d(t)

=⌧ � b1✓̇1 � c1S(✓̇1) + d0 + d̃(t) (6.9)

6.2.2 Model 2: Flexible Motor Joint and Rigid Cable

In this model, the motor joint flexibility is modeled and the cables are assumed to be

rigid as is done commonly in literature. Hence the load pulley angle is constrained to

be equal to the drive pulley angle, i.e. ✓2 = ✓12. Load pulley inertia (J2) and drive

pulley inertias (J12) are combined into one. Based on the variables defined in Figure

6.4, the dynamics of the system is defined as follows:

J11✓̈11 =⌧ � b1✓̇11 � c1S(✓̇11) + d0 + d̃(t) + k
m

(✓12 � ✓11)� b
m

(✓̇11 � ✓̇12)

(6.10a)

(J2 + J12)✓̈12 =k
m

(✓11 � ✓12)� b
m

(✓̇12 � ✓̇11) (6.10b)

6.2.3 Model 3: Rigid Motor Joint and Flexible Cable

Based on modal analysis of the system and experimental verification, it was shown

that the fundamental longitudinal frequency of the cable-pulley system is greatly

reduced, due to coupling between the flexible cables and high-inertia components i.e.,

the two pulleys. The normalized fundamental mode shapes of the upper and lower

cable spans calculated as solutions to the eigenvalue problem and shown earlier in
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Figures 3.3 and 3.4 are consistent with an axial spring-like behavior of the cables.

These results strongly suggest the validity of an axial-spring damper approximation

of the cables. It has also been shown that there is a large frequency gap between

the fundamental mode of the cable-pulley system and the next higher mode. Hence,

a lumped parameter model of the cable-pulley system is presented where only the

rigid body mode and fundamental longitudinal vibration mode of the system are

considered. The cables are replaced by spring-dampers with spring constant k and

damping coe�cient b
c

while the motor-drive pulley joint is assumed to be rigid. A

schematic of the system considered is shown in Figure 6.2. In the dynamic equations of

the system, without loss of generality, load pulley damping and friction are neglected

since they were found to be negligible in the load pulley setup unlike the drive pulley

setup.

Figure 6.2. Cable-pulley system with cables approximated by axial
spring-dampers.

The dynamic equations of the setup in Figure 6.2 are as follows:

J1✓̈1 =⌧ � 2kr(r✓1 � r✓2)� b1✓̇1 � c1S(✓̇1)� 2b
c

r(✓̇1 � ✓̇2) + d(t)

=⌧ � 2kr2(✓1 � ✓2)� b1✓̇1 � c1S(✓̇1)� 2b
c

r(✓̇1 � ✓̇2) + d0 + d̃(t) (6.11a)

J2✓̈2 =2kr(r✓1 � r✓2)� 2b
c

r(✓̇2 � ✓̇1) (6.11b)

where r is the radius of both pulleys and ⌧ is the control torque from the drive motor.

b1, c1 are coe�cients of viscous and coulomb friction respectively of the drive motor
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shaft and S(•) is the usual signum function. d(t) is the lumped error from modeling

inaccuracies and uncertainties such as disturbances and neglected higher modes. d0

is the nominal constant part and d̃(t) is the time varying part of d(t). Based on the

dynamics in Eq. (6.11), the following transfer function can be obtained.

✓̇1
⌧
c

(s) =

1
J1

✓
s2 + 2b

c

r

J2
s+ 2kr2

J2

◆

s3 +

✓
b1+2b

c

r

J1
+ 2b

c

r

J2

◆
s2 +

✓
2kr2

J1
+ 2kr2

J2
+ 2b1bcr

J1J2

◆
s+ 2kb1r2

J1J2

(6.12)

where ⌧
c

(s) is the Laplace transform of ⌧
c

= ⌧ � c1S(✓̇1) + d0, the net driving torque

after coulomb friction and o↵set compensation.

Results from experiments on the systems’s frequency response are shown in Figure

6.3, which compares the experimental and theoretical frequency responses of the

system from ⌧
c

to motor angular velocity. The physical parameters of the system

are listed in Table 6.1. The lowest natural frequency is seen to be around 7Hz and

is caused by the spring-like behavior of the cable spans, leading to clearly visible

resonance and anti-resonance modes. A higher-order flexible mode can also be seen

around 120Hz. This is caused by the motor-drive pulley coupling and not a higher-

order cable mode, based on the larger frequency gap in the system’s longitudinal

modes. The theoretical frequency response in Figure 6.3 is obtained from the transfer

function in Eq. (6.12). Spring constant (k) and damping coe�cient (b
c

) values were

chosen to match experimental observation.

6.2.4 Model 4: Flexible Motor Joint and Flexible Cable

A lumped parameter model of the cable-pulley system is presented where the flexibil-

ity of the motor-drive pulley joint is included along with cable flexibility. A schematic

representation of the system is shown in Figure 6.4. ✓11, ✓12, ✓2 are the angular ro-

tations of the motor shaft, drive pulley and load pulley, respectively. J11, J12, J2 are

their corresponding rotational inertias.
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Table 6.1. Physical parameters of cable-pulley system.

Configuration 3

Cable material nylon

J1 0.001742 kgm2

J11 0.0011 kgm2

J12 0.000642 kgm2

J2 0.00235 kgm2

r1 4 cm

r2 4 cm

E 3 Gpa

A 1.46⇥ 10�7 m2

⇢ 1.68⇥ 10�4 kg/m

L 1 m

T0 7 N

The dynamics of the 3-mass-spring-damper system in Figure 6.4 is as follows:

J11✓̈11 =⌧ � b1✓̇11 � c1S(✓̇11) + d0 + d̃(t) + k
m

(✓12 � ✓11)� b
m

(✓̇11 � ✓̇12) (6.13a)

J12✓̈12 =k
m

(✓11 � ✓12) + 2kr2(✓2 � ✓12)� 2b
c

r(✓̇12 � ✓̇2)� b
m

(✓̇12 � ✓̇11) (6.13b)

J2✓̈2 =2kr2(✓12 � ✓2)� 2b
c

r(✓̇2 � ✓̇12) (6.13c)

where k
m

, b
m

are spring constant and damping coe�cient, respectively, of the motor-

drive pulley joint. As in the case of Eq. (6.12), the transfer function from motor

torque to motor shaft angular velocity is obtained as follows:

G1 =
✓12
✓11

(s) =
b

m

J12
(s+ b

m

k

m

)(s2 + 2b
c

r

J2
s+ 2kr2

J2
)

s4 + (2bcr
J2

+ b

m

J12
+ 2b

c

r

J12
)s3 + (2kr

2

J2
+ 2b

c

b

m

r

J12J2
+ 2kr2

J12
)s2 + 2kr2b

m

J12J2
s

✓̇11
⌧
c

(s) =
s

J11

s2 + b1+b

m

J11
s+ k

m

J11
�G1bm(s+

k

m

b

m

)
(6.14)

The theoretical frequency response from Eq. (6.14) can also be seen in Figure 6.3.

k
m

, b
m

values are again chosen to match experimental observation. The spring con-
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Table 6.2. Spring-damper coe�cients from reduced-order model.

k(N/m) b
c

(Ns/rad) k
m

(Nm/rad) b
m

(Nms/rad)

850 0.18 135 0.075

stant and damping coe�cient values are listed in Table 6.2. The results in Figure 6.3

further validate the spring-damper approximation of the cable spans and the motor

joint.

In the following sections, adaptive robust controllers are designed based on the

above four models of the cable-pulley system. Output position tracking performance

is discussed in each case based on the fidelity of the model and its ability to capture

key flexible modes.
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Figure 6.4. Cable-pulley system with flexible motor joint.

6.3 DARC with Matched Uncertainty: Model 1

Based on the dynamics in Eq. (6.9), the following state variables are defined:

x1 = ✓1

x2 = ✓̇1

The system dynamics can be expressed as,

ẋ1 =x2 (6.15a)

p2ẋ2 =u� p3x2 � p4Sf

(x2) + p5 + d̃(t) (6.15b)

y =x1 (6.15c)

where p2 = J1 + J2, p3 = b1, p4 = c1, p5 = d0 are constant model parameters that

need to be estimated. S
f

(•) = tanh(0.5•) is a smooth approximation to the signum

function and u = ⌧ is the control input/drive torque.

The following nomenclature is used from here on. At any give time t, p̂
i

denotes

the estimate of p
i

and p̃
i

denotes the estimation error of p
i

given by p̃
i

= p̂
i

� p
i

.

p
i,max

and p
i,min

represent the maximum and minimum values of p
i

, respectively.

Based on practical knowledge of the system, the following assumptions are made

about parametric uncertainties and uncertain nonlinearities.
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Assumption 1 : The unknown parameter vector p lies within a known bounded

convex set ⌦
p

. Without loss of generality, it is assumed that p
i,min

 p
i

 p
i,max

where p
i,min

and p
i,max

are known constants.

Assumption 2 : The uncertain nonlinearity is bounded, i.e., d̃(t) 2 ⌦
d

= d : |d|  �,

where �(t) is a known bounded function.

Let y
d

(t) be the reference angular trajectory, assumed to be bounded with bounded

derivatives up to at least fourth order. Our control objective is to synthesize a control

input u(t) such that the output y = ✓1(t) tracks y
d

(t) as closely as possible. The

following error variables are defined:

z1 = x1 � y
d

(6.16a)

z2 = ż1 = x2 � ẏ
d

(6.16b)

A sliding surface is defined as follows:

�(s) = (s+ �)z1(s) (6.17)

Hence,

� = ż1 + �z1 = z2 + �z1 (6.18)

Taking the derivative of � and using Eq. (6.15),

p2�̇ =p2ż2 + p2�z2

=p2ẋ2 � p2(ÿd � �z2)

=u� p3x2 � p4Sf

(x2) + p5 + d̃(t)� p2zeq

=u+ 'Tp+ d̃(t) (6.19)

where z
eq

= ÿ
d

� �z2 and 'T = [�z
eq

, �x2, �S
f

(x2), 1] and p = [p2, p3, p4, p5]T .

Hence the control law u is designed as follows.

u =u
a

+ u
s1 + u

s2

u
a

=� 'T p̂ (6.20a)

u
s1 =� k

�

� (6.20b)

u
s2 =� k

�s

� (6.20c)
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where k
�

is a positive feedback gain and k
�s

is a positive nonlinear gain chosen large

enough such that the following two conditions are satisfied:

Condition 1 : �(u
s2 � 'T p̃+ d̃(t))  ✏ (6.21a)

Condition 2 : �u
s2  0 (6.21b)

Condition 1 ensures that u
s2 can attenuate uncertainties due to parametric uncer-

tainty and uncertain nonlinearity to a constant ✏ > 0 specified by the designer.

Condition 2 guarantees that u
s2 is dissipative in nature so as to not interfere with the

functioning of the adaptation and to guarantee asymptotic tracking in the presence

of parametric uncertainty alone. An example for choice of u
s2 is as follows:

u
s2 = � �

4✏
[kp

max

� p
min

k2k'k2 + �2] (6.22)

With K
�

= k
�

+ k
�s

, the controller results in the following sliding surface error

dynamics,

µ�̇ +K
�

� = �'T p̃+ d̃(t) (6.23)

where µ = p2.

6.3.1 Discontinuous Projection Type Adaptation Law

A key element of DARC design is to use practical a priori knowledge of estimated

parameters to construct the projection type adaption law for a controlled learning

process. The following projection mapping is used to always keep parameter estimates

within the known bounded set ⌦
p

.

Proj
p

i

(•
i

) =

8
>>>>><

>>>>>:

0 if p̂
i

= p
i,max

and •
i

> 0

0 if p̂
i

= p
i,min

and •
i

< 0

•
i

otherwise

(6.24)
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The above parameter projection leads to the following desirable properties:

P1. The parameter estimates are always within the known bounded set ⌦
p

, i.e.,

p̂(t) 2 ⌦
p

, 8t. If p̂
i

(0) 2 ⌦
p

,

p
i,min

 p̂
i

(t)  p
i,max

, i = 2, ..., 5, 8t (6.25)

P2. For any adaptation function ⌧ and positive definite adaptation gain matrix �,

p̃T (��1Proj
p

(�⌧)� ⌧)  0 (6.26)

6.3.2 Performance of DARC

Theorem : Based on Assumptions 1 and 2, using the DARC control law defined

in Eq. (6.20) and the rate limited adaptation law structure in Eq. (6.24), all signals

in the closed-loop system are bounded and the following conditions hold:

(A) The output tracking error has a guaranteed transient performance and a guar-

anteed final tracking accuracy. Furthermore, the non-negative function V = µ

2�
2 is

bounded above by

V  e��tV (0) +
✏

�
(1� e��t) (6.27)

where � = 2k
�

µ

.

(B) In the presence of parametric uncertainties alone (i.e. d̃ = 0), the designed control

law ensures asymptotic tracking, i.e. z1 ! 0 as t ! 1.

Proof of (A): Di↵erentiating V and using Eq. (6.23),

V̇ =�µ�̇

=�(u
s2 � 'T p̃+ d̃� k

�

�)

=� k
�

�2 + �(u
s2 � 'T p̃+ d̃) (6.28)

Applying Condition 1 from Eq. (6.21a),

V̇ � k
�

�2 + ✏

=� �V + ✏ (6.29)
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where � = 2k
�

µ

.

Proof of (B): We define a function with a slight modification to the previous one as

follows:

V
n

=V +
1

2
p̃T��1p̃

V̇
n

=� k
�

�2 + �u
s2 + p̃T (��1 ˙̂p� '�) (6.30)

Using the parameter update law ˙̂p = Proj
p

(�'�), Property 2 of the projection law

in Eq. (6.26) and Condition 2 in Eq. (6.21b),

V̇
n

 �k
�

�2 + p̃T (��1Proj
p

(�'�)� '�)

 �k
�

�2 (6.31)

Hence � is bounded. From Eq. (6.23), it can be checked that �̇ is bounded and

continuous. Using Barbalat’s Lemma, we obtain � ! 0 as t ! 1 or z1 ! 0 as

t ! 1.

6.3.3 Adaptation Gain Tuning

Consider the � dynamics in (6.23),

�̇ +
K

�

µ
� = � 1

µ
('T p̃� d̃(t)) (6.32)

The parameter update law given by ˙̂p = �'� results in,

p̂(t) =p̂(0) +

Z
t

0

�'�d⌧

⇡p̂(0) + �'
d

Z
t

0

�d⌧ (6.33)

Substituting the above in Eq. (6.32),

�̇ + k
m

� =� 1

µ

✓
'T (p̂(0)� p) + 'T

Z
t

0

�'�d⌧ � d̃(t)

◆

�̇ + k
m

� +
'T

d

�'
d

µ

Z
t

0

�d⌧ =� 1

µ
('T p̃(0)� d̃(t)) (6.34)
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Eq. (6.34) represents the second-order dynamics of � where k
m

= K

�

µ

and the as-

sumption '(x) ⇡ '
d

(t) = '(x
d

(t)) has been made. This is because for a large k
m

the � dynamics is fast, � is normally small and x ⇡ x
d

in ARC. Since a very small

� makes the parameter adaptation response too slow to be useful and a large � can

lead to a very lightly damped second-order system with excess oscillating transient

response, � is chosen as follows:

'T

d

�'
d

µ
= !2

d

=
k2
m

4⇣2
d

(6.35)

� is chosen as,

� = �W 2
p

, W
p

= diag(p
max

� p
min

) (6.36)

where

� =
k2
m

4⇣2
d

s
p̄

, s
p̄

= sup

✓
'T

d

W 2
p

'
d

µ

◆
(6.37)

6.3.4 Experimental Results

Figure 6.5 shows the load pulley output under the DARC law defined in Eq.

(6.20). The vibrations in the output can be seen at di↵erent values of closed-loop

bandwidth, �. The frequency spectrum of the output in Figure 6.6 shows that the

frequency of vibrations is the same as the dominant mode of the cable-pulley system

caused by cable flexibility, confirming the need to model this mode of the system. As

� is increased, the higher-order flexible mode of the system due to the motor joint

is also excited. This is evident from the drive pulley angle seen in Figure 6.7 and

its frequency spectrum in Figure 6.8. These results are consistent with ignoring both

flexible modes in the system model, which leads to their excitement as the closed-loop

bandwidth is increased.
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Figure 6.5. Load pulley output under assumptions of rigid cable and
rigid motor joint.
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Figure 6.6. Frequency spectrum of load pulley output under rigid
cable and motor joint assumption.
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94

6.4 DARC with Matched Uncertainty: Model 2

Based on the dynamics in Eq. (6.10), the following states are defined:

x1 = ✓2 = ✓12

x2 = ✓̇2 = ✓̇12

x3 = ✓11 � ✓12

x4 = ✓̇11 � ✓̇12 (6.38)

The system dynamics can be rewritten as follows:

ẋ1 =x2 (6.39a)

ẋ2 =
k
m

J2 + J12
x3 = �x3 = x̄3 (6.39b)

˙̄x3 =�x4 = x̄4 (6.39c)

J11
�

˙̄x4 =u� b1(x2 + x4)� c1Sf

(x2 + x4) + d0 + d̃(t)� (p2 +
k
m

�
)x̄3

p2
�

˙̄x4 =u� p3(x2 + x4)� p4Sf

(x2 + x4) + p5 + d̃(t)� (p2 +
k
m

�
)x̄3 (6.39d)

y =x1 (6.39e)

where � = k

m

J2+J12
, x̄

i

= �x
i

, i = 3, ..6. p2 = J11, p3 = b1, p4 = c1, p5 = d0. Let yd(t)

be the reference angular trajectory, assumed to be bounded with bounded derivatives

up to at least sixth order. Our control objective is to synthesize a control input u(t)

such that the output y = ✓2(t) tracks yd(t) as closely as possible. The following error

variables are defined:

z1 =x1 � y
d

(6.40a)

z2 =ż1 = x2 � y(1)
d

(6.40b)

z3 =ż2 = ẋ2 � y(2)
d

= x̄3 � y(2)
d

(6.40c)

z4 =ż3 = ˙̄x3 � y(3)
d

= x̄4 � y(3)
d

(6.40d)
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where y(i)
d

is the ith time derivative of y
d

(t). The sliding surface is defined as follows:

�(s) = (s+ �)3z1(s)

= z4 + 3z3�+ 3z2�
2 + z1�

3 (6.41)

Di↵erentiating � and using Eq. (6.39),

p2
�
�̇ =

p2
�
(ż4 + 3z4�+ 3z3�

2 + z2�
3)

=
p2
�

˙̄x4 �
p2
�
(y(4)

d

� 3z4�� 3z3�
2 � z2�

3)

=u� p3(x2 + x4)� p4Sf

(x2 + x4) + p5 + d̃(t)� (p2 +
k
m

�
)x̄3 � p2

z
eq

�

=u� k
m

�
x̄3 + 'Tp+ d̃(t) (6.42)

where z
eq

= y(4)
d

�3z4��3z3�2�z2�3 and 'T = [�x̄3� z

eq

�

, �(x2+x4), �S
f

(x2+x4), 1]

and p = [p2, p3, p4, p5]T . Hence the controller is designed as follows:

u = u
a

+ u
s1 + u

s2

u
a

=
k
m

�
x̄3 � 'T p̂ (6.43a)

u
s1 = �k

�

� (6.43b)

u
s2 = �k

�s

� (6.43c)

where k
�

is a positive feedback gain and k
�s

is a positive nonlinear gain chosen large

enough such that the following two conditions are satisfied:

Condition 1 : �(u
s2 � 'T p̃+ d̃)  ✏ (6.44a)

Condition 2 : �u
s2  0 (6.44b)

With K
�

= k
�

+ k
�s

, the controller results in the following sliding surface error

dynamics,

µ�̇ +K
�

� = �'T p̃+ d̃(t) (6.45)

where µ = J11
�

. Proof of stability and tracking performance is the same as derived

earlier in Model 1.
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6.4.1 Experimental Results

Figure 6.9 shows the load pulley output under the DARC law defined in Eq.

(6.43) using � = 2⇡(22). The frequency spectrum of the output in Figure 6.10

shows that the frequency of vibrations seen is the same as the dominant mode of

the cable-pulley system caused by cable flexibility. In contrast with results from the

previous model, the motor-joint vibration mode is not excited. However, even when

the flexibility of the motor joint is modeled and cable flexibility is neglected, as is

done commonly in literature, vibrations occur as closed-loop bandwidth is increased

leading to deterioration of output tracking performance. These results further confirm

the need to model the flexible mode of the system caused by cable flexibility.
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Figure 6.9. Load pulley output under assumptions of rigid cable and
flexible motor joint.
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Figure 6.10. Frequency spectrum of load pulley output under rigid
cable and flexible motor joint assumption.

6.5 DARC with Matched Uncertainty: Model 3

Based on the reduced system-order system dynamics in Eq. (6.11), the following state

variables are defined:

x1 = ✓2

x2 = ✓̇2

x3 = ✓1 � ✓2 (6.46)

x4 = ✓̇1 � ✓̇2
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The system dynamics in Eq. (6.11) can be expressed as,

ẋ1 =x2 (6.47a)

ẋ2 =�x3 = x̄3 (6.47b)

˙̄x3 =�x4 = x̄4 (6.47c)

p2
�

˙̄x4 =u� (J2 + p2)x̄3 � p3(x4 + x2)� p4Sf

(x4 + x2) + p5 + d̃(t) (6.47d)

y =x1 (6.47e)

where � = 2kr2

J2
> 0 is assumed known from o✏ine measurement of the system’s

fundamental natural frequency and load inertia. x̄
i

= �x
i

, i = 3, 4. p2 = J1, p3 =

b1, p4 = c1, p5 = d0 are constant model parameters that need to be estimated. S
f

(•) =

tanh(0.5•) is a smooth approximation to the signum function and u = ⌧ is the control

input/drive torque.

Let y
d

(t) be the reference angular trajectory, assumed to be bounded with bounded

derivatives up to at least fourth order. Our control objective is to synthesize a control

input u(t) such that the output y = ✓2(t) tracks y
d

(t) as closely as possible. The

following error variables are defined:

z1 = x1 � y
d

(6.48a)

z2 = ż1 = x2 � ẏ
d

(6.48b)

z3 = ż2 = z̈1 = x̄3 � ÿ
d

(6.48c)

z4 = ż3 =
...
z 1 = ˙̄x3 �

...
y
d

= x̄4 �
...
y
d

(6.48d)

A sliding surface is defined as follows:

�(s) = (s+ �)3z1(s) (6.49)

Hence,

� =
...
z 1 + 3�z̈1 + 3�2ż1 + �3z1

= z4 + 3�z3 + 3�2z2 + �3z1 (6.50)
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Taking the derivative of � and using Eq. (6.47),

p2�̇ =p2ż4 + p2(3�z4 + 3�2z3 + �3z2)

=p2 ˙̄x4 � p2(
....
y

d

� 3�z4 � 3�2z3 � �3z2)

=�(u� (J2 + p2)x̄3 � p3(x4 + x2)� p4Sf

(x4 + x2) + p5 + d̃)� p2zeq (6.51)

where z
eq

=
....
y

d

� 3�z4 � 3�2z3 � �3z2. Dividing by � and rearranging,

p2
�
�̇ =u� J2x̄3 � p2(x̄3 +

z
eq

�
)� p3(x4 + x2)� p4Sf

(x4 + x2) + p5 + d̃

=u� J2x̄3 + 'Tp+ d̃ (6.52)

where 'T = [�x̄3 � z

eq

�

, �(x4 + x2), �S
f

(x4 + x2), 1] and p = [p2, p3, p4, p5]T .

Hence the control law u is designed as follows,

u =u
a

+ u
s1 + u

s2

u
a

=J2x̄3 � 'T p̂ (6.53a)

u
s1 =� k

�

� (6.53b)

u
s2 =� k

�s

� (6.53c)

where k
�

is a positive feedback gain and k
�s

is a positive nonlinear gain chosen large

enough such that the following two conditions are satisfied:

Condition 1 : �(u
s2 � 'T p̃+ d̃)  ✏ (6.54a)

Condition 2 : �u
s2  0 (6.54b)

Condition 1 ensures that u
s2 can attenuate uncertainties due to parametric uncer-

tainty and uncertain nonlinearity to a constant ✏ > 0 specified by the designer.

Condition 2 guarantees that u
s2 is dissipative in nature so as to not interfere with the

functioning of the adaptation and to guarantee asymptotic tracking in the presence

of parametric uncertainty alone. An example for choice of u
s2 is as follows:

u
s2 = � �

4✏
[kp

max

� p
min

k2k'k2 + �2] (6.55)
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With K
�

= k
�

+ k
�s

, the controller results in the following sliding surface error

dynamics,

µ�̇ +K
�

� = �'T p̃+ d̃(t) (6.56)

where µ = p2

�

. Proof of stability and tracking performance is the same as derived

earlier in Model 1.

6.5.1 Experimental Results

The upper and lower bounds on p2 to p5 were chosen as [0.00185, 0.0033, 0.04, 0.01]

and [0.00165, 0.0029, 0.035, �0.01], respectively. k
�s

was chosen to be large enough

to satisfy Condition 1 in Eq. (6.54a). � = 2⇡(11) and K
�

= 2⇡(13)J1
�

were chosen

to obtain maximum tracking accuracy without exciting the unmodeled higher-order

flexible mode of the motor joint. Figure 6.11 compares the desired trajectory to be

tracked with the system output under the proposed controller. The tracking error

is shown in Figure 6.12 where a tracking accuracy of 0.17deg was achieved, which is

about five times the encoder resolution. Most of the tracking error originates from

the unmodeled higher-order mode of the motor. Figure 6.13 shows the sliding surface

value and Figure 6.14 shows the measured motor torque, which is below the maximum

achievable value of 2.1Nm due to the chosen closed-loop poles. Online parameter es-

timates are shown in Figures 6.15 and 6.16. In each of these figures, the horizontal

red lines indicate nominal parameter values from o✏ine experiments. Although the

online parameter estimates do not necessarily converge to their nominal values, they

change to help reduce tracking error. They are also bounded due to the discontinuous

projection law, thereby preserving robust performance of the controller.
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6.6 DARC with Matched Uncertainty: Model 4

Based on the reduced-order system dynamics in Eq. (6.13), the following states are

defined:

x1 = ✓2

x2 = ✓̇2

x3 = ✓12 � ✓2

x4 = ✓̇12 � ✓̇2 (6.57)

x5 = ✓11 � ✓12

x6 = ✓̇11 � ✓̇12

The system dynamics in Eq. (6.13) can be rewritten as follows:

ẋ1 =x2 (6.58a)

ẋ2 =
2kr2

J2
x3 = �x3 = x̄3 (6.58b)

˙̄x3 =�x4 = x̄4 (6.58c)

˙̄x4 =� 2kr2
✓

1

J12
+

1

J2

◆
x̄3 +

k
m

J12
x̄5 (6.58d)

˙̄x5 =�x6 = x̄6 (6.58e)

J11
�

˙̄x6 =u� b1(x2 + x4 + x6)� c1Sf

(x2 + x4 + x6) + d0 + d̃(t)

+ 2kr2
J11
J12

x3 � k
m

✓
1 +

J11
J12

◆
x5

=u� p3(x2 + x4 + x6)� p4Sf

(x2 + x4 + x6) + p5 + d̃(t)

� k
m

�
x̄5 + p2

✓
J2
J12

x̄3 �
k
m

�J12
x̄5

◆
(6.58f)

where � = 2kr2

J2
, x̄

i

= �x
i

, i = 3, ..6. p2 = J11, p3 = b1, p4 = c1, p5 = d0. Let y
d

(t)

be the reference angular trajectory, assumed to be bounded with bounded derivatives

up to at least sixth order. Our control objective is to synthesize a control input u(t)

such that the output y = ✓2(t) tracks yd(t) as closely as possible.
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The following error variables are defined:

z1 =x1 � y
d

(6.59a)

z2 =ż1 = x2 � y(1)
d

(6.59b)

z3 =ż2 = ẋ2 � y(2)
d

= x̄3 � y(2)
d

(6.59c)

z4 =ż3 = ˙̄x3 � y(3)
d

= x̄4 � y(3)
d

(6.59d)

z5 =ż4 = ˙̄x4 � y(4)
d

= �2kr2
✓

1

J12
+

1

J2

◆
x̄3 +

k
m

J12
x̄5 � y(4)

d

(6.59e)

z6 =ż5 = �2kr2
✓

1

J12
+

1

J2

◆
˙̄x3 +

k
m

J12
˙̄x5 � y(5)

d

=� 2kr2
✓

1

J12
+

1

J2

◆
x̄4 +

k
m

J12
x̄6 � y(5)

d

(6.59f)

where y(i)
d

is the ith time derivative of y
d

(t). The sliding surface is defined as follows:

�(s) = (s+ �)5z1(s)

= z6 + 5z5�+ 10z4�
2 + 10z3�

3 + 5z2�
4 + �5z1 (6.60)

Di↵erentiating � and using Eq. (6.58),

J11
�
�̇ =

J11
�

(ż6 + 5z6�+ 10z5�
2 + 10z4�

3 + 5z3�
4 + �5z2)

=
J11
�

✓
� 2kr2(

1

J12
+

1

J2
) ˙̄x4 +

k
m

J12
˙̄x6

◆
� J11

�
z
eq

=� J11

✓
1 +

J2
J12

◆
˙̄x4 +

k
m

J12

J11
�

˙̄x6 �
J11
�

z
eq

(6.61)

where z
eq

= y(6)
d

� 5z6�� 10z5�2 � 10z4�3 � 5z3�4 � �5z2. Rearranging,

J11J12
�k

m

�̇ =
J11
�

˙̄x6 � J11
J12
k
m

✓
(1 +

J2
J12

) ˙̄x4 +
z
eq

�

◆

= u� p3(x2 + x4 + x6)� p4Sf

(x2 + x4 + x6) + p5 + d̃(t)

� k
m

�
x̄5 + p2

✓
J2
J12

x̄3 �
k
m

�J12
x̄5

◆
� p2

J12
k
m

✓
(1 +

J2
J12

) ˙̄x4 +
z
eq

�

◆

= u� k
m

�
x̄5 + 'Tp+ d̃(t) (6.62)
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where 'T = [�'2, �(x2 + x4 + x6), �S
f

(x2 + x4 + x6), 1] and p = [p2, p3, p4, p5]T .

'2 is given by,

'2 =
J12
k
m

✓
(1 +

J2
J12

) ˙̄x4 +
z
eq

�

◆
�

✓
J2
J12

x̄3 �
k
m

�J12
x̄5

◆

Hence the controller is designed as follows:

u = u
a

+ u
s1 + u

s2

u
a

=
k
m

�
x̄5 � 'T p̂ (6.63a)

u
s1 = �k

�

� (6.63b)

u
s2 = �k

�s

� (6.63c)

where k
�

is a positive feedback gain and k
�s

is a positive nonlinear gain chosen large

enough such that the following two conditions are satisfied:

Condition 1 : �(u
s2 � 'T p̃+ d̃)  ✏ (6.64a)

Condition 2 : �u
s2  0 (6.64b)

With K
�

= k
�

+ k
�s

, the controller results in the following sliding surface error

dynamics,

µ�̇ +K
�

� = �'T p̃+ d̃(t) (6.65)

where µ = J11J12
�k

m

.

6.6.1 Experimental Results

The upper and lower bounds on p2 to p5 were chosen as [0.0013, 0.0033, 0.04, 0.01]

and [0.009, 0.0029, 0.035, �0.01], respectively. � = 2⇡(23) and K
�

= 2⇡(25)J11J12
�k

m

were chosen. Figure 6.17 compares the desired trajectory to be tracked with the

system output under the proposed controller. The tracking error is shown in Figure

6.18 where a tracking accuracy of 0.055deg was achieved, which is less than twice the

encoder resolution. Figure 6.19 shows the sliding surface value and Figure 6.20 shows

the measured motor torque, which is below the maximum achievable value of 2Nm.

Online parameter estimates are shown in Figures 6.21 and 6.22.
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Figure 6.18. Output tracking error.
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6.7 Backstepping DARC with Unmatched Uncertainty: Model 1

Based on the system in Figure 6.2, the pulley dynamics can be written as follows.

J1✓̈1 = u� 2kr(r✓1 � r✓2)� b1✓̇1 � c1Sf

(✓̇1) + d1 + d̃1(t) (6.66)

J2✓̈2 = 2kr(r✓1 � r✓2) + d2 + d̃2(t) (6.67)

where u = ⌧ is the control torque from the motor, b1, c1 are constant parameters that

represent coe�cients of viscous damping and coulomb friction, respectively, of the

motor. d1, d2 represent the constant parts of modeling uncertainty and d̃1(t), d̃2(t)

represent the time-varying parts. S
f

(•) = tanh(0.5•) is a smooth approximation to

the signum function. Using the following transformed state variables,

x1 = ✓2

x2 = ✓̇2

x3 = ✓1 � ✓2 (6.68)

x4 = ✓̇1 � ✓̇2

the state dynamics can be rewritten as follows:

ẋ1 =x2 (6.69a)

ẋ2 =
2kr2

J2
x3 + p2 + d̃2(t) =

�

�
n

�
n

x3 + p2 + d̃2(t)

=p1x̄3 + p2 + d̃2(t) (6.69b)

˙̄x3 =�nx4 = x̄4 (6.69c)

J1 ˙̄x4 =�n(u� 2kr2x3 � J1p1x̄3 � b1(x4 + x2)� c1Sf

(x4 + x2) + d1

� J1p2 + d̃1(t)� J1d̃2(t))

˙̄x4 =�np7u� p3x̄3 � p4(x4 + x2)� p5Sf

(x4 + x2) + p6 + d̃(t) (6.69d)

y =x1 (6.69e)

where u = ⌧ is the drive motor torque. � = 2kr2

J2
and its nominal value is �

n

.

x̄
i

= �
n

x
i

, i = 3, 4. p1 = �

�

n

, p2 = d2
J2
, p3 = (2kr

2

�

n

+ J1p1)
�

n

J1
, p4 = b1

�

n

J1
, p5 =
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c1
�

n

J1
, p6 = (d1 � J1p2)

�

n

J1
, p7 = 1

J1
, are constant model parameters that need to

be estimated. In the formulation above, unmatched uncertainties are considered,

i.e., some uncertainty exists in the coe�cient of the control input. This is a direct

consequence of assuming uncertainties in the load pulley dynamics unlike previous

models with only matched uncertainties where load inertia was assumed known and

no modeling uncertainties were assumed in the load pulley dynamics. The output

tracking error is given by,

z1 = y � y
d

= x1 � y
d

(6.70)

Di↵erentiating z1,

ż1 = ẋ1 � ẏ
d

= x2 � ẏ
d

= z2 + ↵1 � ẏ
d

(6.71)

where z2 = x2 � ↵1 has been defined. The virtual control input ↵1 is designed as

↵1 = ẏ
d

� k1z1, leading to the following error dynamics:

ż1 + k1z1 = z2 (6.72)

where k1 is a positive gain to be chosen. Setting a Lyapunov candidate for z1 and

di↵erentiating,

V1 =
z21
2

V̇1 =z1ż1 = z1z2 � k1z
2
1 (6.73)

↵̇1 is defined as follows:

↵̇1 =
@↵1

@t
+
@↵1

@x1
x2 = ÿ

d

� k1x2 + k1ẏd (6.74)

Di↵erentiating z2,

ż2 =ẋ2 � ↵̇1 = p1x̄3 + p2 + d̃2(t)� ↵̇1

=p1z3 + p1↵2 + p2 + d̃2(t)� ↵̇1 (6.75)
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where z3 = x̄3 � ↵2 has been defined. The virtual control input ↵2 is designed as,

↵2 =↵2a + ↵2s = ↵2a + ↵2g + ↵2r (6.76a)

↵2a =
↵̇1 � p̂2

p̂1
=

ÿ
d

� k1x2 + k1ẏd � p̂2
p̂1

(6.76b)

↵2g =� k2g2z2
p̂1

� k2g1z1
p̂1

(6.76c)

↵2r =� k2rz2
p̂1

= �k2r
(x2 � ẏ

d

+ k1x1 � k1yd)

p̂1
(6.76d)

where k2g1, k2g2 are positive feedback gains and k2r is a positive nonlinear feedback

gain chosen such that the following conditions hold:

z2(↵2r � �T

2 p̃+ d̃2(t)) ✏2 (6.77a)

z2↵2r 0 (6.77b)

where �T

2 = [ ↵̇1�p̂2�k2sz2

p̂1
, 1, 0, 0, 0, 0, 0], p̃ = [p̃1, p̃2, p̃3, p̃4, p̃5, p̃6, p̃7]T and

k2s = k2g1 + k2g2 + k2r. ✏2 is a positive constant chosen by the designer. This leads to

the following z2 error dynamics:

ż2 =p1z3 +
p1
p̂1
(↵̇1 � p̂2 + ↵2s) + p2 � ↵̇1 + d̃2(t)

=p1z3 +
p̂1 � p̃1

p̂1
(↵̇1 � p̂2 + ↵2s) + p2 � ↵̇1 + d̃2(t)

=p1z3 �
p̃1
p̂1
(↵̇1 � p̂2 + ↵2s)� p̃2 � k2g2z2 � k2g1z1 + d̃2(t) + ↵2r

=p1z3 � k2g2z2 � k2g1z1 + ↵2r � �T

2 p̃+ d̃2(t) (6.78)

Defining the second Lyapunov function and di↵erentiating,

V2 =V1 +
z22
2

V̇2 =V̇1 + z2ż2

=z1z2 � k1z
2
1 + p1z2z3 � k2g2z

2
2 � k2g1z1z2 + z2(↵2r � �T

2 p̃+ d̃2(t)) (6.79)
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Di↵erentiating z3,

ż3 = ˙̄x3 � ↵̇2 = x̄4 � ↵̇2

=z4 + ↵3 � ↵̇2

=z4 + ↵3 �
✓
@↵2

@t
+
@↵1

@x1
x2 +

@↵2

@x2
ẋ2 +

@↵2

@p̂
˙̂p

◆
(6.80)

where @↵2
@p̂

˙̂p = @↵2
@p̂1

˙̂p1 + @↵2
@p̂2

˙̂p2 and z4 = x̄4 � ↵3 has been defined. The following

derivatives are obtained:

@↵2

@t
=

...
y
d

+ k1ÿd � (k2g2 + k2r)(�ÿ
d

� k1ẏd)

p̂1
+

k2g1ẏd
p̂1

(6.81a)

@↵2

@x1
=� (k2g2 + k2r)k1

p̂1
� k2g1

p̂1
(6.81b)

@↵2

@x2
=
�k1 � k2g2 � k2r

p̂1
(6.81c)

The virtual control ↵3 is designed as follows:

↵3 =↵3a + ↵3s = ↵3a + ↵3g + ↵3r (6.82a)

↵3a =
@↵2

@t
+
@↵2

@x1
x2 +

@↵2

@x2

ˆ̇x2 (6.82b)

↵3g =� k3g3z3 � k3g2z2 (6.82c)

↵3r =� k3rz3 (6.82d)

where ˆ̇x2 = ẋ2|p=p̂

= p̂1x̄3 + p̂2. k3g3, k3g2 are positive feedback gains and k3r is a

positive nonlinear feedback gain chosen such that the following conditions hold:

z3(↵3r � �T

3 p̃+ d̃3(t)) ✏3 (6.83a)

z3↵3r 0 (6.83b)

where

�T

3 =
@↵2

@x2
[�x̄3, �1, 0, 0, 0, 0, 0] (6.84a)

d̃3(t) =� @↵2

@x2
d̃2(t) (6.84b)
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and ✏3 is chosen by the designer. This results in the following z3 error dynamics,

ż3 =z4 +
@↵2

@x2
( ˆ̇x2 � ẋ2)�

@↵2

@p̂
˙̂p� k3g3z3 � k3g2z2 + ↵3r

=z4 +
@↵2

@x2
(p̂1x̄3 + p̂2 � p1x̄3 � p2 � d̃2(t))�

@↵2

@p̂
˙̂p� k3g3z3 � k3g2z2 + ↵3r

=z4 �
@↵2

@x2
(�p̃1x̄3 � p̃2 + d̃2(t))�

@↵2

@p̂
˙̂p� k3g3z3 � k3g2z2 + ↵3r

=z4 + ↵3r � �T

3 p̃+ d̃3(t)�
@↵2

@p̂
˙̂p� k3g3z3 � k3g2z2 (6.85)

Defining the third Lyapunov function and di↵erentiating,

V3 =V2 +
z23
2

V̇3 =V̇2 + z3ż3

=z1z2 � k1z
2
1 + p1z2z3 � k2g2z

2
2 � k2g1z1z2 + z2(↵2r � �T

2 p̃+ d̃2(t) (6.86)

+ z3z4 + z3(↵3r � �T

3 p̃+ d̃3(t))� z3
@↵2

@p̂
˙̂p� k3g3z

2
3 � k3g2z2z3 (6.87)

Di↵erentiating z4,

ż4 = ˙̄x4 � ↵̇3

=�
n

p7u� p3x̄3 � p4(x4 + x2)� p5Sf

(x4 + x2) + p6 + d̃(t)� @↵3

@p̂
˙̂p

�
✓
@↵3

@t
+
@↵3

@x1
x2 +

@↵3

@x2
ẋ2 +

@↵3

@x̄3
x̄4

◆
(6.88)

where @↵3
@p̂

˙̂p = @↵3
@p̂1

˙̂p1 +
@↵3
@p̂2

˙̂p2. The following derivatives are obtained as,

@↵3

@t
=

....
y

d

+ k1
...
y
d

� (k2g2 + k2r)(�
...
y
d

� k1ÿd)

p̂1
(6.89a)

+
k2g1ẏd
p̂1

+ (k3g3 + k3r)
@↵2

@t
+ k3g2

@↵1

@t
(6.89b)

@↵3

@x1
=(k3g3 + k3r)

@↵2

@x1
+ k3g2

@↵1

@x1
(6.89c)

@↵3

@x2
=� (k2g2 + k2r)k1

p̂1
+ (k3g3 + k3r)

@↵2

@x2
(6.89d)

@↵3

@x̄3
=� k1 � k2g2 � k2r � k3g3 � k3r (6.89e)
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Hence control u = ↵4 is designed as follows:

↵4 =↵4a + ↵4s = ↵4a + ↵4g + ↵4r

↵4a =


p̂3x̄3 + p̂4(x4 + x2) + p̂5Sf

(x4 + x2)� p̂6

+

✓
@↵3

@t
+
@↵3

@x1
x2 +

@↵3

@x2

ˆ̇x2 +
@↵3

@x̄3
x̄4

◆�
1

�
n

p̂7
(6.90a)

↵4g =
�k4g4z4 � k4g3z3 � k4g2z2

�
n

p̂7
(6.90b)

↵4r =� k4rz4
�
n

p̂7
(6.90c)

k4g4, k4g3, k4g2 are positive feedback gains and k4r is a positive nonlinear feedback gain

chosen such that the following conditions hold:

z4(↵4r � �T

4 p̃+ d̃4(t)) ✏4 (6.91a)

z4↵4r 0 (6.91b)

where �4, d̃4(t) are defined later and ✏4 is chosen by the designer. The controller

results in the following z4 error dynamics,

ż4 =p̃3x̄3 + p̃4(x4 + x2) + p̃5Sf

(x4 + x2)� p̃6 � p̃7�n↵4 + d̃(t)

� k4g4z4 � k4g3z3 � k4g2z2 + ↵4r +
@↵3

@x2
(p̃1x̄3 + p̃2 + d̃2(t))�

@↵3

@p̂
˙̂p

=↵4r � �T

4 p̃+ d̃4(t)�
@↵3

@p̂
˙̂p� k4g4z4 � k4g3z3 � k4g2z2 (6.92)

where �4 and d̃4 are given by,

�T

4 =


� @↵3

@x2
x̄3,�

@↵3

@x2
,�x̄3,�(x2 + x4),�S

f

(x2 + x4), 1, �n↵4

�
(6.93a)

d̃4(t) =d̃(t) +
@↵3

@x2
d̃2(t) (6.93b)
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Defining and di↵erentiating the final Lyapunov function,

V4 =V3 +
z24
2

V̇4 =V̇3 + z4ż4

=z1z2 � k1z
2
1 + p1z2z3 � k2gz

2
2 � k2g1z1z2

+ z2(↵2r � �T

2 p̃+ d̃2(t)) + z3z4

+ z3(↵3r � �T

3 p̃+ d̃3(t))� z3
@↵2

@p̂
˙̂p

� k3g3z
2
3 � k3g2z2z3 + z4(↵4r � �T

4 p̃+ d̃4(t))

� z4
@↵3

@p̂
˙̂p� k4g4z

2
4 � k4g3z3z4 � k4g2z2z4 (6.94)

The parameter adaptation function is given by,

⌧ =
4X

i=2

�
i

z
i

(6.95)

Based on the projection law in Eq. (6.24), the following inequality holds:

| ˙̂p| = |Proj
p̂

(�⌧)|  |�⌧ | 
4X

i=2

|��
i

||z
i

| (6.96)

Hence the e↵ect of the online time-varying parameter estimation is bounded above

by,

�����z3
@↵2

@p̂
˙̂p

���� 
����
@↵2

@p̂

����

✓
|��2||z2z3|+ |��3|z23 + |��4||z3z4|

◆
(6.97)

�����z4
@↵3

@p̂
˙̂p

���� 
����
@↵3

@p̂

����

✓
|��2||z2z4|+ |��3||z3z4|+ |��4|z24

◆
(6.98)
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Hence V̇4 can be rewritten as,

V̇4 z1z2 � k1z
2
1 + p1z2z3 � k2g2z

2
2 � k2g1z1z2

+ z3z4 � k3g3z
2
3 � k3g2z2z3 � k4g4z

2
4 � k4g3z3z4 � k4g2z2z4

+

����
@↵2

@p̂

����

✓
|��2|sign(z2z3)z2z3 + |��3|z23 + |��4|sign(z3z4)z3z4

◆

+

����
@↵3

@p̂

����

✓
|��2|sign(z2z4)z2z4 + |��4|z24 + |��3|sign(z3z4)z3z4

◆

+
4X

i=2

z
i

(↵
ir

� �T

i

p̃+ d̃
i

(t))

=� z̄T4 Dz

z̄4 +
4X

i=2

z
i

(↵
ir

� �T

i

p̃+ d̃
i

(t)) (6.99)

where z̄T4 = [z1, z2, z3, z4] and D
z

is a symmetric matrix given by,

D
z

=

2

6666664

k1 D12 0 0

D12 D22 D23 D24

0 D23 D33 D34

0 D24 D34 D44

3

7777775
(6.100)

where

D12 =
1

2
(k2g1 � 1) (6.101a)

D22 =k2g2 (6.101b)

D23 =
1

2

✓
k3g2 � p1 �

����
@↵2

@p̂

���� |��2|sign(z2z3)
◆

(6.101c)

D24 =
1

2

✓
k4g2 �

����
@↵3

@p̂

���� |��2|sign(z2z4)
◆

(6.101d)

D33 =k3g3 �
����
@↵2

@p̂

���� |��3| (6.101e)

D34 =
1

2

✓
k4g3 � 1�

����
@↵2

@p̂

���� |��4|sign(z3z4)�
����
@↵3

@p̂

���� |��3|sign(z3z4)
◆

(6.101f)

D44 =k4g4 �
����
@↵3

@p̂

���� |��4| (6.101g)

The closed-loop system dynamics in terms of tracking errors is given by,

˙̄z4 = A
z

z̄4 +B ˙̂
p

˙̂p� [�T p̃� �̃] (6.102)
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where � = [�2, �3, �4], �̃ = [d̃2, d̃3, d̃4]T , and A
z

, B ˙̂
p

are defined as follows:

A
z

=

2

6666664

�k1 1 0 0

�k2g1 �k2 p1 0

0 �k3g2 �k3 0

0 �k4g2 �k4g3 �k4

3

7777775
(6.103)

k2 =k2g2 + k2r

k3 =k3g3 + k3r

k4 =k4g4 + k4r

B ˙̂
p

=


0, 0, �@↵2

@p̂
, �@↵3

@p̂

�
T

(6.104)

6.7.1 Performance of DARC

Theorem : Using the DARC control law and the rate limited adaptation law

structure defined above, all signals in the closed-loop system are bounded and the

following conditions hold:

(A) The output tracking error has a guaranteed transient performance and a guar-

anteed final tracking accuracy. Furthermore, the non-negative function V = 1
2 z̄

T

4 z̄4 is

bounded above by,

V  e��tV (0) +
✏

�
(1� e��t) (6.105)

where � is twice the minimum eigenvalue of D
z

and ✏ = ✏2 + ✏3 + ✏4.

(B) In the presence of parametric uncertainties alone (i.e., d̃ = 0), the designed

control law ensures asymptotic tracking, i.e., z1 ! 0 as t ! 1.

Proof of (A): V̇ obtained from Eq. (6.99) is given by,

V̇ � z̄T4 Dz

z̄4 +
4X

i=2

z
i

(↵
ir

� �T

i

p̃+ d̃
i

(t)) (6.106)

The constants k2g1, k2g2, k3g2, k3g3, k4g2, k4g3, k4g4 are chosen such that matrix D
z

is

always positive definite, i.e., D
z

> 0, 8z̄4. Defining ⇤ = diag(�1,�2,�3,�4), �1 �
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�2 � �3 � �4 where �
i

are the eiqenvalues of D
z

and Q = [q1, q2, q3, q4] as the matrix

of corresponding orthogonal eigenvectors, we have

�z̄T4 Dz

z̄4 =� z̄T4 Q⇤QT z̄4

=� (QT z̄4)
T⇤(QT z̄4)

=�
4X

i=1

�
i

(qT
i

z̄4)
2

� �4

4X

i=1

(qT
i

z̄4)
2

=� �4z̄
T

4 z̄4 (6.107)

Using Condition 1 in Eq. (6.77a), (6.83a), (6.91a), we obtain

V̇ � �V + ✏ (6.108)

where ✏ = ✏2 + ✏3 + ✏4 and � is twice the minimum eigenvalue of D
z

. As a result, V̇

is negative definite w.r.t. z̄4, achieving asymptotic stability, a guaranteed transient

performance and steady-state tracking accuracy.

Proof of (B): In the presence of parametric uncertainties alone (d̃
i

(t) = 0, i = 2, 3, 4),

we define a new function and its derivative as follows.

V
n
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1
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4X
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(↵
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p̃) + p̃T��1 ˙̂p (6.109)

Applying Condition 2 from Eqs. (6.77b), (6.83b), (6.91b), the parameter adaptation

function and update law as defined in Eq. (6.95) and Eq. (6.24), respectively, and

Property 2 in Eq. (6.26):

V̇
n

� z̄T4 Dz

z̄4 + p̃T (��1Proj
p

(�⌧)� ⌧)

� z̄T4 Dz

z̄4 (6.110)

From part (A) of the Theorem above, z1, z2, z3, z4 2 L2. It can be checked from

Eqs. (6.72), (6.78), (6.85) and (6.92) that ż1, ż2, ż3, ż4 are bounded. Using Barbalat’s

Lemma, we obtain, V
n

! 0 as t ! 1. Hence z1 ! 0 as t ! 1.
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Table 6.3. Parameter estimate and bounds.

Parameter estimate min max

�
n

1157

p1 1 0.95 1.05

p3 2718.9 2637 2800

p4 2059.8 1998 2121

p5 2498.3 2423 2573

p7 547 556 591

6.7.2 Experimental Results

The parameter estimates, upper and lower bounds for p1 to p7, are shown in

Table 6.3. Feedback gains were chosen to obtain maximum tracking accuracy without

exciting the unmodeled higher-order mode in the system. A closed-loop bandwidth

of 10.5Hz was achieved. Figure 6.23 compares the desired trajectory to be tracked

with the system output under the proposed controller. The tracking error is shown in

Figure 6.24 where a tracking accuracy of 0.3deg was achieved. Most of the tracking

error originates from the unmodeled higher-order mode of the motor-drive pulley joint.

Figure 6.25 shows the measured motor torque, which is well below the maximum

achievable value of 2.1Nm. Figures 6.26-6.29 show the online parameter estimates.
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7. CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

Cable-actuated systems provide an e↵ective method for precise motion control

over various distances. They are widely used in areas of robotics such as surgi-

cal instruments, robotic hands, rehabilitative devices and bio-inspired robots. They

are also used in mass transporter systems such as cranes, elevators, cable-cars, 3D

printers and cable-mounted cameras. Cable-actuation has many advantages such as

high-speed manipulation, larger payloads, larger range of motion, access to remote

locations and applications in hazardous environments. They are also easier to trans-

port, assemble/disassemble and reconfigure.

Since the cables used in such systems are inherently flexible, they are prone to

vibrations in the axial and transverse directions that can lead to a loss of performance

and in the worst case can cause instability. As a result, cable flexibility is an important

concern especially in motion control applications requiring high bandwidth or high

sti↵ness since it a↵ects positioning accuracy. In this dissertation, a prototypical cable-

pulley system is proposed for motion transmission and the e↵ect of cable flexibility on

the system’s vibration modes is studied in detail. An analysis of the flexible modes of

such a system shows that coupling between cable flexibility and discrete high-inertia

pulleys leads to a drastic reduction in the fundamental longitudinal frequency that

depends only on the physical properties of the system’s components. This was verified

experimentally as well.

Since traditional approaches to cable flexibility involved either neglect of or the

assumption that the dominant flexible mode of the system is due to joint or link

flexibility, the system considered in this work shows that this may indeed not be the

case. In high bandwidth applications, the flexible mode due to cable elasticity cannot
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be ignored or treated as a lumped model uncertainty and will need to be considered

in the overall system model.

Since the cable-pulley system consists of vibrating subsystems, the phenomenon

of autoparametric resonance has been studied. It has been shown that under the right

design parameters, cable vibrations and pulley rotations can couple strongly. Energy

can be exchanged between them leading to a growth in their vibration amplitudes.

A parametric analysis shows that the right choice of pulley-to-cable mass ratios and

cable tension can help avoid 1:2 internal resonance in the overall system.

Experiments on frequency response of the overall system confirm that the cables

behave like axial spring-dampers. Also, the dominant flexible mode of the system is

caused by cable elasticity while a higher-order mode is caused by flexible coupling

between the drive motor and drive pulley. Knowledge of the system’s flexible modes

is used to propose simplified lumper parameter models of the overall system. Since

the motor-drive pulley joint is a higher-order mode, models are proposed assuming

that the joint is either rigid or flexible. A direct adaptive robust controller has been

designed to achieve high closed-loop bandwidth and track point-to-point rotation

by the load pulley, while assuming matched model uncertainties in the drive motor

dynamics. A higher closed-loop bandwidth is achieved when the motor joint flexibility

is modeled in contrast with the rigid joint assumption. When cable flexibility is

ignored, vibrations are seen in the load pulley output at the dominant frequency when

controlled using the direct adaptive robust controller. Both matched uncertainties

in the motor dynamics and unmatched uncertainties in the load pulley dynamics

are considered in the final controller design. Good tracking accuracy is achieved in

the presence of both parametric uncertainties and uncertain nonlinearities such as

neglected higher-order modes.
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7.2 Future Work

Although key improvements to the modeling and performance of certain types

of cable-driven systems have been made in this work, the following suggestions for

future improvements are made.

7.2.1 Unmatched Uncertainty Including Motor Joint Flexibility

The final controller designed in Chapter 6 includes matched model uncertainties

for a system with flexible cables and a rigid or flexible motor joint as well as and

unmatched model uncertainties for a system with flexible cables and a rigid motor

joint. Clearly, a higher closed-loop bandwidth is obtainable when both flexible modes

are modeled. Hence, an adaptive robust controller could be designed that includes

both cable flexibility and motor joint flexibility in the presence of unmatched model

uncertainty caused by uncertain load inertia. This is application-specific since the

inclusion of the higher-order motor joint flexible mode depends on the required closed-

loop bandwidth.

7.2.2 Improved Parameter Estimation

The online parameter estimates using DARC are based on a gradient law with the

sole purpose of reducing tracking error. However, in some applications there is a need

for highly accurate online parameter estimates. Hence a modified adaptive robust

controller could be designed with a di↵erent estimation algorithm independent of the

tracking error dynamics, e.g., Indirect adaptive robust control (IARC) using a least

square estimation algorithm based on plant dynamics.

7.2.3 Cable Transporter System Control

The current work includes a modal analysis applied to a simplified form of cable-

transporter systems in an e↵ort to understand the dominant flexible modes. A more
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detailed study of the dynamics based on specific applications would be useful for the

improvement of performance. For example, aerial cable-cars are generally more com-

plicated vibrating systems subject to wind-induced forces and pendulum-like swinging

behavior. Hence their complete analysis requires a more detailed study of the coupling

between vibrating subsystems. Also, since the natural longitudinal frequency of such

systems changes with position of the transported mass, a more complex controller

may be necessary.
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A. HARDWARE SPECIFICATIONS

Table A.1. Motor characteristics.

RE 50 50 mm, Graphite Brushes, 200 Watt $ 592.38

Motor length 108 mm

Outer diameter 50 mm

Values at Nominal Voltage

Nominal Voltage 24.0 V

No load speed 5950.0 rpm

No load current 236.0 mA

Nominal speed 5680.0 rpm

Nominal torque (max. continuous torque) 405.0 mNm

Nominal current (max. continuous current) 10.8 A

Stall torque 8920.0 mNm

Starting current 232.0 A

Max. e�ciency 93.8

Characteristics

Terminal inductance 0.072 mH

Terminal resistance 0.103

Torque constant 38.5 mNm / A

Speed / torque gradient 0.668 rpm / mNm

Mechanical time constant 3.75 ms

Rotor inertia 536.0 gcm2

Speed constant 248.0 rpm / V
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Table A.2. Motor shaft encoder characteristics.

Encoder HEDL 5540, Line Driver RS 422 $ 131.5

Number of channels 3.0

Counts per turn 500.0

Max. speed 12000.0 rpm

Table A.3. Gearhead characteristics.

Planetary Gearhead GP 62 A 62 mm, 8 - 50 Nm $ 544

Reduction 5.2

Number of stages 1.0

Intermittently permissible torque at gear output 12.0 Nm

Average backlash no load 1.0o

Mass inertia 109.0 gcm2

Weight 950 g

Max. motor shaft diameter 8 mm

Outer diameter 62 mm

Measurement from flange 24 mm

Recommended input speed 3000.0 rpm
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