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Abstract 

 

Manipulators with thin and light weight arms or links are called as Flexible-Link Manipulators 

(FLMs). FLMs offer several advantages over rigid-link manipulators such as achieving high-

speed operation, lower energy consumption, and increase in payload carrying capacity and find 

applications where manipulators are to be operated in large workspace like assembly of free-

flying space structures, hazardous material management from safer distance, detection of flaws 

in large structure like airplane and submarines. However, designing a feedback control system 

for a flexible-link manipulator is challenging due the system being non-minimum phase, under-

actuated and non-collocated. Further difficulties are encountered when such manipulators handle 

unknown payloads. Overall deflection of the flexible manipulator are governed by the different 

vibrating modes (excited at different frequencies) present along the length of the link. Due to 

change in payload, the flexible modes (at higher frequencies) are excited giving rise to 

uncertainties in the dynamics of the FLM. To achieve effective tip trajectory tracking whilst 

quickly suppressing tip deflections when the FLM carries varying payloads adaptive control is 

necessary instead of fixed gain controller to cope up with the changing dynamics of the 

manipulator. Considerable research has been directed in the past to design adaptive controllers 

based on either linear identified model of a FLM or error signal driven intelligent supervised 

learning e.g. neural network, fuzzy logic and hybrid neuro-fuzzy. However, the dynamics of the 

FLM being nonlinear there is a scope of exploiting nonlinear modeling approach to design 

adaptive controllers. The objective of the thesis is to design advanced adaptive control strategies 

for a two-link flexible manipulator (TLFM) to control the tip trajectory tracking and its 

deflections while handling unknown payloads. 
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To achieve tip trajectory control and simultaneously suppressing the tip deflection quickly 

when subjected to unknown payloads, first a direct adaptive control (DAC) is proposed. The 

proposed DAC uses a Lyapunov based nonlinear adaptive control scheme ensuring overall 

system stability for the control of TLFM. For the developed control laws, the stability proof of 

the closed-loop system is also presented. The design of this DAC involves choosing a control 

law with tunable TLFM parameters, and then an adaptation law is developed using the closed 

loop error dynamics. The performance of the developed controller is then compared with that of 

a fuzzy learning based adaptive controller (FLAC). The FLAC consists of three major 

components namely a fuzzy logic controller, a reference model and a learning mechanism. It 

utilizes a learning mechanism, which automatically adjusts the rule base of the fuzzy controller 

so that the closed loop performs according to the user defined reference model containing 

information of the desired behavior of the controlled system.  

Although the proposed DAC shows better performance compared to FLAC but it suffers from 

the complexity of formulating a multivariable regressor vector for the TLFM. Also, the adaptive 

mechanism for parameter updates of both the DAC and FLAC depend upon feedback error based 

supervised learning. Hence, a reinforcement learning (RL) technique is employed to derive an 

adaptive controller for the TLFM. The new reinforcement learning based adaptive control 

(RLAC) has an advantage that it attains optimal control adaptively in on-line. Also, the 

performance of the RLAC is compared with that of the DAC and FLAC. 

In the past, most of the indirect adaptive controls for a FLM are based on linear identified 

model. However, the considered TLFM dynamics is highly nonlinear. Hence, a nonlinear 

autoregressive moving average with exogenous input (NARMAX) model based new Self-Tuning 

Control (NMSTC) is proposed. The proposed adaptive controller uses a multivariable 
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Proportional Integral Derivative (PID) self-tuning control strategy. The parameters of the PID 

are adapted online using a nonlinear autoregressive moving average with exogenous-input 

(NARMAX) model of the TLFM. Performance of the proposed NMSTC is compared with that 

of RLAC. 

The proposed NMSTC law suffers from over-parameterization of the controller. To overcome 

this a new nonlinear adaptive model predictive control using the NARMAX model of the TLFM 

(NMPC) developed next. For the proposed NMPC, the current control action is obtained by 

solving a finite horizon open loop optimal control problem on-line, at each sampling instant, 

using the future predicted model of the TLFM. NMPC is based on minimization of a set of 

predicted system errors based on available input-output data, with some constraints placed on the 

projected control signals resulting in an optimal control sequence. The performance of the 

proposed NMPC is also compared with that of the NMSTC.  

Performances of all the developed algorithms are assessed by numerical simulation in 

MATLAB/SIMULINK environment and also validated through experimental studies using a 

physical TLFM set-up available in Advanced Control and Robotics Research Laboratory, 

National Institute of Technology Rourkela. It is observed from the comparative assessment of the 

performances of the developed adaptive controllers that proposed NMPC exhibits superior 

7performance in terms of accurate tip position tracking (steady state error ≈ 0.01°) while 

suppressing the tip deflections (maximum amplitude of the tip deflection ≈ 0.1 mm) when the 

manipulator handles variation in payload (increased payload of 0.3 kg).  

The adaptive control strategies proposed in this thesis can be applied to control of complex 

flexible space shuttle systems, long reach manipulators for hazardous waste management from 

safer distance and for damping of oscillations for similar vibration systems. 
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Chapter 1 

Introduction 

The Chapter is organized as follows. Section 1.1 gives a background of a flexible-link 

manipulator highlighting its applications, advantages over rigid-link manipulators and control 

complexities associated with these robots are also illustrated. Section 1.2presents a literature 

survey on the adaptive control strategies of flexible-link manipulators. Motivation of the present 

work is given in Section 1.3. Objective of the thesis are presented in Section 1.4. Finally, the 

organization of the thesis is presented in Section 1.5. 
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1.1. Background 

Rigid-link manipulators are usually made of strong materials consequently, the manipulator is 

heavy. Also, the rigid structures require a large power to operate since the dynamics is sluggish 

and slow. These drawbacks are avoided by making the links light. Manipulators constructed with 

light and thin links/arms are called as flexible-link manipulators (FLMs). Due to lightweight, 

these manipulators exhibit many advantages such as achieving high-speed operation, lower 

energy consumption, and increase in payload carrying capacity over their rigid counterparts. 

FLMs are preferred in applications requiring large workspace where rigid ones may not be 

suitable, for example assembly of free-flying space structures and hazardous material 

management from safer distance [1]. Research on flexible manipulators is motivating and 

interestingdue to the fact that field of robotics and automation has advanced significantly in 

recent years, driven by industrial requirements for quicker response times and lower power 

consumption. These demands have led to changes in robot arm design, using lightweight 

materials and modifying the physical configuration of a robot such that the links are longer and 

thinner. The FLMs have also several other potential applications in space exploration. In space 

robotics, it is in particular emphasized to use FLMs that are suitable to move pay-loads and to 

carry out specialized jobs (Shuttle Manipulator that is used to help the Astronauts during extra 

vehicular activities). Also, use of light weight flexible structured robots in space is necessary 

when the weight of the robots is a concern to prevent unnecessary energy consumption and to 

achieve higher payload-to-mass ratio. 

Tip position control of a FLM is challenging due to distributed link flexibility, which makes 

the system non-minimum phase, under-actuated and infinite dimensional [2]. But controlling a 
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flexible manipulator is more difficult compared to a rigid one. The control complexities are as 

follows. The motion control of flexible manipulators is difficult owing to occurrence of 

oscillation due to flexibility distributed along the links and thus it is difficult to achieve accuracy 

in positioning of the end-effector. It may be noted that if one applies the control design for a 

rigid-manipulator to a FLM, it may lead to nonlinear control spill over into the flexible modes 

causing poor performance and instability. Thus, applying rigid-link manipulator control 

strategies to flexible robots (elasticity in both links and joints) may lead to significant deflections 

and the endpoint/tip/end-effector oscillates around the desired path. Thus, the static deflections 

could lead to non-zero values of the tip deflections due to these flexibilities. Therefore, to 

improve tip trajectory tracking and dynamic response near the target point, the elastic properties 

of the manipulator have to be taken into account when developing a control strategy for this class 

of robots. Tip trajectory tracking control of flexible manipulators is also difficult owing to the 

non-minimum phase problems due to non-collocation of actuator torques at the base of the 

manipulator and sensor at the end-effector. But in space applications, the use of non-collocated 

servo-control is essential for any automated satellite servicing module. As the manipulator is 

expected to maneuver with unanticipated payload at the end-effector, thus payload variability is 

also an important concern. Further, due to sudden change in payload, there may be large 

variation in manipulator parameters and that in turn adds further complexities to the FLM 

dynamics. It can be observed from Fig.1.1 and Fig.1.2 that due to change in payload, the rigid 

modes remain unchanged whereas there is a large variation in the shape of the flexible modes. 

Thus it becomes very difficult to control a FLM under variable payload condition using 

conventional fixed gain controllers. Hence, the torque applied to the actuators of a FLM to 

control the tip position and its deflection with changes in payload should be adaptive in nature.  
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Fig.1.1 Flexible modes of the FLM with initial payload 

 

Fig.1.2 Flexible modes of the FLM with an additional payload 
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The controller is to be designed such that the effect of change in payload will be incorporated in 

the control parameter using an adaptive mechanism. 

1.2. Literature Survey on Adaptive Control for Flexible-Link 

Manipulator 

A number of approaches in the past have been reported on the development of different 

adaptive controller strategies for controlof the tip position and its deflections of a FLM under 

different uncertainties for instance changes in payload and friction etc. The reported adaptive 

control schemes can be broadly categorized into following types: i) Self-tuning control, ii) Model 

reference adaptive control, iii) Lyapunov based Robust adaptive control, iv) Adaptive input 

shaping control, and v) Intelligent control based on neural network (NN), fuzzy logic control 

(FLC) and neuro-fuzzy control. This section reviews the various results obtained using different 

adaptive control schemes to control tip position and its deflections when a FLM handles variable 

payload at its tip. Several observations are made the reported approaches on adaptive control of a 

FLM, these are i) control structure adopted, ii) control law formation, iii) choice of control 

parameter updated and iv) choice of parameter adaptation law. 

1.2.1. Self-tuning control for a FLM 

A self-tuning controller (STC) has three main elements namely a control law generator, an on-

line dynamic FLM parameter estimator that uses measured system output and input values and 

an algorithm that relates the on-line estimated parameters and control parameters. The trade-off 

between choices of control law, manner in which the self-tuning control law is derived, choice of 

the FLM parameters  to be estimated and its governing adaptation rule decides the performance 
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of the STC for a FLM. There have been numerous attempts since last two decades to design an 

efficient STC law for a FLM by many researchers for example; a STC for a two-link flexible 

manipulator with a flexible fore-arm has been reported in [3], where the unknown parameters of 

the model were estimated using an autoregressive exogenous (ARX) model of the manipulator. 

In [4], a frequency domain model of the single-link flexible manipulator is employed to design a 

proportional derivative based STC. A STC for a single–link and two-link flexible manipulator is 

designed to control the tip position using a time domain transfer function model in the presence 

of joint friction and changes in payload in [5] and [6] respectively. A nonlinear STC for a two-

link flexible manipulator is presented in [7] while handling unknown payload. In [8] a digital 

STC for a robotic manipulator with a sliding flexible link is presented. The most important 

feature of the STC is its capability to vary the order of the control law adaptively. Order of the 

control law is varied using a lattice filter via adaptive parameter estimation. A STC is proposed 

for a single-link flexible manipulator with unknown load in [9]. The STC scheme reported in [9] 

essentially comprises a least-squares identification algorithm and a self-tuning pole placement 

controller. An adaptive control scheme for the tip position control of a single-link flexible 

manipulator handling unknown changing loads and its experimental verification is presented in 

[10]. The scheme essentially comprises a least squares identification algorithm and a self-tuning 

pole placement controller. The controller uses a recursive algorithm which constrains the control 

signal not to respond immediately to any sudden changes in the control gains due to changes in 

the parameter estimate vector. A self-tuning approach to computed torque control of a two link 

flexible manipulator has been proposed in [11] in which gains Kp, Kd and Ki of the STC are 

adopted by using neural networks. The learning method developed in the proposed STC not only 

adjusts the connection weights of the NN with change in payloads but simultaneously damps the 
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tip vibration. An effective method for controlling flexible-link robot developed and demonstrated 

experimentally for end- point controller under high-frequency uncertainties in the plant and 

parametric uncertainties of the payload in [12]. The methodology is to design a controller that is 

robust to the high-frequency uncertainties, and adapt to the parametric uncertainties. Robustness 

to the high-frequency uncertainties is obtained using LQG control with frequency weighting of 

the cost function. Real time identification is effectively merged with the robust control in a self-

tuning regulator approach to adapt to the parametric uncertainties of the payload. In [13], an 

adaptive augmented state feedback control approach to end-effector tracking of two-link flexible 

manipulator is presented. The highly nonlinear dynamic model of flexible manipulator has been 

linearized around a set of nominal operating points first. Two disturbance variables, which 

present the unmodeled dynamics of the manipulator, are proposed. The un-measurable 

disturbance variables are on-line adaptively estimated by employing a recursive filter. In [14], a 

STC has been developed for a discrete-time model of a single-link flexible manipulator when 

subjected to unknown payload. The unknown payload is then identified by using a regressor 

form of the system dynamics and the multi-output recursive-least-square (RLS) algorithm. 

Indirect adaptive control method to control single-link lightweight flexible manipulators in the 

presence of payload changes is presented in [15]. The overall control scheme proposed consists 

of three nested control loops. Once the friction and other nonlinear effects have been 

compensated, the inner loop is designed to give a fast motor response. The middle loop 

simplifies the dynamics of the system and reduces its transfer function to a double integrator. A 

fractional derivative controller is used to shape the outer loop into the form of a fractional order 

integrator. In [16] and [17], a STC comprising of a fast on-line closed-loop identification method 
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combined with an output-feedback controller of the generalized proportional integral (GPI) type 

for the control is presented for a flexible robotic arm.  

 

1.2.2. Model reference adaptive control for a FLM 

In model reference adaptive control (MRAC), the closed loop performs according to the user 

defined reference model containing information of the desired behavior of the controlled system. 

Based on a MRAC approach, a robust controller for a one link flexible arm moving along a pre-

defined trajectory while subjected to handle unknown in payloads is proposed in [18]. In order to 

satisfy the perfect model following conditions, a linearized model of the FLM system is chosen. 

In [19], a discrete-time MRAC has been proposed for a flexible-link manipulator assuming as 

rigid model with collocated actuators and sensors. In [20], a nonlinear extension of MRAC 

technique to guide a double arm non-linearizable robot manipulator with flexible links, driven by 

actuators collocated with joints subject to uncertain payload and inertia is presented. The 

objective is to track a given simple nonlinear, rigid but compatible dynamical model in real, 

possibly stipulated time and within stipulated degree of accuracy of convergence, while avoiding 

collision of the arms. Fuzzy logic based MRAC has been proposed in [21]. MRAC gives 

satisfactory performance in case of a single-link flexible manipulator, whereas in case of more 

degrees of freedom (multi-link flexible manipulator), the nonlinear coupling terms in the joint 

variables (which are not present in the one link case) become dominant, particularly at high 

speed, and control performance may be degraded. Also, the choice of the reference model for a 

FLM dynamics is very difficult. Hence, MRAC based adaptive control design for a FLM is not 

popular. 
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1.2.3. Lyapunov  based Robust adaptive control 

A nonlinear adaptive control for a FLM has been employed in [22]. The nonlinear model of the 

FLM is based on a quasi-static approximation which consists of the transports subsystem and the 

motor equations are corrected for the elastic compliance. The adaptive control scheme presented 

in the paper exploits the fact that unknown parameters appear linear in dynamic equations as 

coefficients of known functions. The motor controller updates all unknown rigid manipulator 

parameters as well as elastic parameters and ensures global asymptotic stability of the tracking 

errors with all signals in the system remaining bounded. In [23], adaptive control law has been 

presented for the motion control of flexible manipulators. Asymptotical stability of the closed-

loop system has been ensured by using the well-known Lyapunov theory. For preventing the 

observation spillover problem, a second-order analog filter in the strain gauge amplifier and a 

first order digital filter in the state measurement were also incorporated. In [24], an adaptive 

control algorithm for a single flexible link robot with a payload mass at the link’s free-end is 

proposed. The proposed dynamic model takes into account the nonlinearities, the actuator hub 

dynamics, and the payload mass dynamics. The control objective is to regulate the link 

displacement while driving the hub position to a desired set-point. A Lyapunov-based design 

procedure has been employed to develop a model-based control law which fulfills the control 

objectives. The adaptive control strategy is composed of a boundary control torque applied to the 

actuator hub and a boundary control force at the link’s free-end. A robust sliding mode adaptive 

control scheme for a flexible link robotic manipulator is presented in [25]. The design has 

considered the flexible dynamics as a singular perturbed system with a slow (rigid) sub systems 

and a fast (flexible) systems. These subsystems are separately controlled. The slow control was 
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achieved by means of a robust sliding adaptive approach. The flexible dynamics was controlled 

using H
∞ 

technique, which successfully handles the interaction between the slow and fast 

subsystems. A nonlinear adaptive and robust controller for a two-link flexible robot arm is 

developed in [26]. A dynamic state feedback controller is used to achieve robust regulation of the 

rigid modes as well as suppression of elastic vibrations. In [27], an adaptive-robust control 

scheme was applied to control the three axes maneuver of a flexible satellite. This controller 

successfully suppresses the vibrations of the flexible appendages. The piezoelectric layers were 

attached to the appendages and worked as actuators. The proposed adaptive-robust method is a 

combination of adaptive and robust controllers, and performs well in the presence of parameter 

uncertainty and disturbance. Advantage of these nonlinear adaptive controllers is that they 

provide closed-loop stability of FLMs through the nonlinear model based approach. However 

there lies great deal of computational complexity and presence of unmolded dynamics.   

 

1.2.4. Adaptive input shaping 

An adaptive input shaper is a particular case of a finite impulse response filter that obtains the 

command reference by adaptively convolving the desired trajectory with a sequence of impulses 

[28]. An adaptive precompensation scheme is suggested in [29] which is implemented by 

combining a frequency domain identification scheme that is used to estimate the modal 

frequencies on-line. The combined adaptive input shaping scheme provides the most rapid slew 

that results in a vibration-free output for a single-link flexible manipulator. Adaptive input 

precompensators in conjunction with nonlinear controllers for multi-link flexible manipulators 

are presented in [30]. This is achieved by estimating the time of application of the impulses for 

on-line preshaping and in the case of payload uncertainty, estimation of the payload and real-
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time adjustment of the nonlinear inner-loop based controller. In [31], an adaptive robust control 

approach is presented by combining the input shaping technique with sliding-mode control to 

reduce the residual vibration. In [32], a time-delay command shaping filter using a commuted 

shaping order approach is proposed, which leads to the development of a simple and effective 

adaptive command shaping technique for both single and multi-mode cases. The adaptive filter 

coefficients leaving fixed the number of impulses and the time delay to completely cancel the 

residual vibration of the given system. The work proposed in [33] describes a practical approach 

to investigate and develop a hybrid iterative learning control scheme with input shaping for a 

single-link flexible manipulator. An adaptive controller has been designed in two phases for a 

FLM in [34]. In which collocated position controller on the basis of a proportional-derivative 

feedback control technique is developed first and then an adaptive command-filter vibration 

controller is developed based on the dominant vibration modes of the system and placed inside 

the position control loop. In [35], an adaptive input shaping technique is used to control a FLM. 

A frequency domain identification scheme is proposed to adjust time separation of shaper 

impulses. This method requires a little knowledge of the FLM dynamics and is directly 

applicable to multimode systems, which would introduce considerable complications for 

identification-based schemes. Adaptive pre input shaping is an open-loop adaptive control. 

Major drawback of these schemes is that it does not incorporate the FLM dynamics to design the 

control law, hence fails to adapt when there are on-line parametric uncertainties.  

1.2.5. Intelligent control based on Soft-computing techniques 

Soft computing techniques (Neural Network (NN), Fuzzy Logic Control (FLC) and Hybrid 

fuzzy-neuro control (HFNC)) have been exploited by several researchers to develop intelligent 
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control strategies for FLMs. It is well known that neural networks can be trained for achieving 

good control performances of a system without having an accurate model [36-38]. Practical 

implementation of a NN tracking controller on a single-link flexible manipulator is proposed in 

[39]. The NN controller is composed of an outer PD tracking loop, a singular perturbation inner 

loop for stabilization of the fast flexible-mode dynamics, and an NN inner loop used to feedback 

linearize the slow pointing dynamics. No off-line training or learning is needed for the NN. In 

[40], a NN-based controller for tip position tracking of flexible-link manipulators. The 

controllers are designed by utilizing the modified output re-definition approach. Four different 

neural network schemes are proposed. The first two schemes are developed by using a modified 

version of the ‘feedback error-learning’ approach to learn the inverse dynamics of the flexible 

manipulator. In the third scheme, the controller is designed based on tracking the hub position 

while controlling the elastic deflection at the tip. In the fourth scheme which employs two neural 

networks, the first network (referred to as the ‘output neural network’) is responsible for 

specifying an appropriate output for ensuring minimum phase behavior of the system. The 

second neural network is responsible for implementing an inverse dynamics controller. In [41] an 

intelligent-based control strategy for tip position tracking control of a single-link flexible 

manipulator is presented. The well-known inverse dynamics control strategy for rigid-link 

manipulators is used to design two feed-forward neural networks (NNs) are proposed to learn the 

nonlinearities of the flexible arm associated with the inverse dynamics controller. In [42], a 

neural network approach is presented for the motion control of constrained flexible manipulators, 

where both the contact force exerted by the flexible manipulator and the position of the end-

effector contacting with a surface are controlled. Experimental results involving the control of a 

manipulator with one flexible link, using a conventional nonlinear harmonic drive actuator is 
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shown in [43], where, anadaptive control law is developed for compensating the nonlinear 

friction by using NNs. In [44], combined sliding mode control (SMC)-neural network (NN) 

approach has been employed to design a tracking control of a flexible-link manipulator. The 

chattering phenomenon in conventional SMC is eliminated by incorporating a saturation function 

in the proposed controller, and the computation burden caused by model dynamics is reduced by 

applying a two-layer NN with an analytical approximated upper bound, which is used to 

implement the uncertain function describing the FLM dynamics. A NN-based intelligent 

adaptive controller that introduces a new concept of intelligent supervisory loop is proposed in 

[45]. The scheme consists of an on-line radial basis-function NN (RBFNN) in parallel with a 

model reference adaptive controller (MRAC) and uses a growing dynamic RBFNN to augment 

MRAC. Updatation of the RBFNN width, center, and weight characteristics is performed such 

that error reduction and improved tracking accuracy are accomplished. In [46], a scheme of 

multiple neural networks (MNNs) with a new strategy of combination is proposed. This 

combination can obtain an accumulative learning: the knowledge is increased by gradually 

adding more neural networks to the system. This scheme is applied to flexible link control via 

feedback-error-learning strategy, which is known as multi-network-feedback-error-learning. 

Three different neural control approaches are used to control a flexible manipulator. Advantage 

of a using NN based adaptive control is that it can approximate the complex nonlinear dynamics 

of the FLM under uncertainties, but it also suffers from prior tuning of its neural weights via a 

learning mechanism driven by a cost function. 

Fuzzy logic uses human experience in developing control law which relies mainly on the 

experience of the designer when dealing with a particular system. The fuzzy logic technique has 

also been exploited for designing controllers for single-link flexible manipulators in [47]. 
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Moudgal et al. in [21] proposed two FLC schemes for a two-link flexible manipulator namely, an 

uncoupled FLC and a coupled FLC. They showed that the coupled FLC outperformed the 

uncoupled one by compensating inter-action between the two flexible links. However, the 

coupled FLC involved more tuning factors and a huge rule base. In [48], an adaptive fuzzy 

controller for flexible link robot arm is derived. The design technique is a hybrid scheme 

involving both frequency and time domain techniques. The eigenvalues of the open loop plant 

can be estimated through application of a frequency domain based identification algorithm. The 

region of the eigenvalue space, within which the system operates, is partitioned into fuzzy cells. 

Membership functions are assigned to the fuzzy sets of the eigenvalue universe of discourse. The 

degree of uncertainty on the estimated eigenvalues is encountered through these membership 

functions. The knowledge data base consists of feedback gains required to place the closed loop 

poles at predefined locations. A rule based controller infers the control input variable weighting 

each with the value of the membership functions at the identified eigenvalue. A fuzzy logic 

using the singular perturbation approach for flexible-link robot arm control is proposed in [49]. 

To reduce the spillover effect, a singular perturbation approach has been exploited to derive the 

slow and fast subsystems. A composite control design is then adopted by superimposing both 

slow and fast subsystem controllers. The fast-subsystem controller damps out the vibration of the 

flexible structure by the linear quadratic regulator (LQR) approach. The slow-subsystem 

controller is a fuzzy controller that accomplishes the trajectory tracking. To guarantee the 

stability of the internal dynamics a boundary-layer correction based on singular perturbations has 

been added. In [50],a fuzzy logic controllers has been designed with a less number of 

membership functions (MFs)using a heuristic approach for high tracking precision and fast 

execution time control of a two-link flexible space robot. In [51], an adaptive fuzzy output 
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feedback approach is proposed for a single-link robotic manipulator coupled to a brushed direct 

current (DC) motor with a non-rigid joint. The controller is designed to compensate for the 

nonlinear dynamics associated with the mechanical subsystem and the electrical subsystems 

while only requiring the measurements of link position. Using fuzzy logic systems to 

approximate the unknown nonlinearities, an adaptive fuzzy filter observer is designed to estimate 

the immeasurable states. By combining the adaptive backstepping and dynamic surface control 

(DSC) techniques, an adaptive fuzzy output feedback control approach is developed. Stability 

proof of the overall closed-loop system is given via the Lyapunov direct method. In spite of 

numerous advantages fuzzy logic based adaptive controller for a FLM suffer from the need of 

expert rule base. 

Subsequently, soft computing methods such as fuzzy logic and neural networks techniques 

were used to develop of hybrid fuzzy neural control schemes [52-53]. The above Hybrid fuzzy-

neuro control (HFNC) scheme generates control actions combining contributions from both a 

fuzzy controller and a neural controller. The primary loop of the proposed HFNC contains a 

fuzzy controller and a neural network controller in the secondary loop to compensate for the 

coupling effects due to the rigid and flexible motion along with the inter-link coupling. A 

composite control using hierarchical fuzzy logic technique together has been used in [54] to 

control a flexible manipulator. A neuro-fuzzy controller has been used as a nonlinear 

compensator for a flexible four-link manipulator in [55]. Two classes of neuro-fuzzy models, the 

Takagi–Sugeno fuzzy model and the rectangular local linear model network have been applied 

for designing feed-forward controllers to compensate the nonlinearities (change in payload and 

joint friction). The first model incorporates expert-based fuzzy rules into the controller, whereas 

the second model structure automatically partitions the input space. An adaptation algorithm is 
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developed to train the controller in order to stabilize the whole system. Design and properties of 

an intelligent optimal control for a nonlinear flexible robot arm that is driven by a permanent-

magnet synchronous servo motor is proposed in [56]. The intelligent optimal control system a 

fuzzy neural network controller is used to learn a nonlinear function in the optimal control law, 

and a robust controller is designed to compensate the approximation error. A simple adaptive 

algorithm is proposed by the authors to adjust the uncertain bound in the robust controller 

avoiding the chattering phenomena. The control laws of the intelligent optimal control system 

are derived in the sense of optimal control technique and Lyapunov stability analysis, so that 

system-tracking stability can be guaranteed in the closed-loop system. Design and 

implementation of active vibration control based on fuzzy logic and NNs is used in [57]. The 

proposed controller dampens the end-point vibration in a single-link flexible manipulator 

mounted on a two degrees-of-freedom platform. The inputs to the FLC are the angular position 

of the hub and the end point deflection of the flexible beam. A NN predicting the deflection was 

obtained using a set of three strain gauge pairs mounted on the beam and a linear-variable 

differential transformer placed at the tip. It also discusses how to build the rule base for the 

flexible beam based on the relation between the angular displacement of the hub and the end-

point deflection, as well as the approach that was used to develop the NN model. Active 

vibration control of a single-link flexible beam using intelligent learning algorithm based on 

Adaptive neuro-fuzzy inference system (ANFIS) is proposed in [58]. 
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1.3. Motivation of the present work 

Intelligent controllers based on neural networks (NN) consume considerable amount of time for 

training. While the performance of a fuzzy logic controller (FLC) depends on the rules, and 

formulating appropriate rules is difficult. Also, the intelligent controllers using NN, FL and 

hybrid neuro-fuzzy based adaptive controllers (HNFAC) for a FLM are based on supervised 

learning [39]-[44], where the learning is driven by an error signal (difference between desired 

and current response). A learning method called reinforcement learning (RL), which occurs 

when an agent learns behavior through trial-and-error interaction with the environment based on 

“reinforcement” signals from the environment [59] can be introduced to design an adaptive 

controller for a FLM. The benefits of RL based adaptive control are that it generates adaptive 

optimal control online. Also, in past RL has been applied successfully for many complex systems 

such as an acrobat, elevator dispatching, dynamic cellular channel allocation and inverted 

pendulum etc. [60]. Hence, there is an immediate motivation to design a real-time adaptive 

controller based on RL technique.  

A lot of research has been directed in the past to design an indirect adaptive controller for a 

FLM are based on linear identified model [46-49]. The limitation of such methods is that a linear 

model is considered to estimate the two-link flexible manipulator (TLFM) dynamics which is 

complex and nonlinear. Thus, there is a motivation to propose a nonlinear identified model based 

adaptive controller which will capture the change in TLFM dynamics due to change in payload 

and it will be incorporated in the tuning of the controller parameters adaptively. There is an 

opportunity to design a nonlinear adaptive controller using nonlinear autoregressive moving 

average with exogenous input (NARMAX) model of the TLFM. Also, there are some initiatives 
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in past to design a predictive controller for FLM, but either they consider a linear model or there 

is lack of adaptive tuning of control parameters in real-time. Hence a nonlinear adaptive model 

predictive control based on NARMAX model can be developed for the TLFM. 

1.4. Objectives of the Thesis 

The objectives of the thesis are as follows. 

 To derive a mathematical model of a physical TLFM set-up and to validate the obtained 

model and later which model will be used for developing the adaptive controllers. 

 To design and implement a direct adaptive controller (DAC) and a fuzzy learning based 

adaptive controller (FLAC) for controlling the tip trajectory while suppressing its 

deflection when subjected to handle varying payloads for a TLFM. 

 To exploit reinforcement learning (RL) technique for designing a new RL based adaptive 

controller (RLAC) to control the tip trajectory and its deflection when subjected to handle 

varying payloads and compare its performances by numerical simulation and 

experimental validation with that of DAC and FLAC. 

 To design a new self-tuning PID control by exploiting the NARMAX model (NMSTC) 

of the TLFM such that good tip trajectory tracking performance be achieved while 

quickly suppressing its deflection with varying payloads and to compare its performance 

with that of the RLAC. 

 To design a new nonlinear adaptive model predictive control (NMPC) based on 

NARMAX model of the TLFM and study its performance in controlling the tip trajectory 

and its deflection while the end effector is subjected to carry payloads. 
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1.5. Thesis Organization 

Chapter 1gives an overview of a flexible-link manipulator highlighting its applications and 

advantages over rigid-link manipulators. The control complexities associated with these robots 

are also illustrated. A literature survey on the adaptive control strategies of flexible-link 

manipulators is presented. Motivation and objectives of the thesis are described also given. 

Subsequently the thesis organization is presented. 

Chapter 2 develops a mathematical model of a physical two-link flexible manipulator (TLFM) 

available in Advanced Control and Robotics Research Laboratory, National Institute of 

Technology Rourkela. The resulting mathematical model will be used for development of 

different adaptive controllers in subsequent Chapters. The dynamic equations of the studied 

TLFM are derived. The resulting mathematical model is validated using open-loop response 

obtained from the experiment and simulation. 

Chapter 3 develops a direct adaptive controller (DAC) for achieving the tip trajectory tracking 

and damping its deflection while the TLFM is subjected to carry different payloads. The 

performances of the developed controller are then compared with that of a fuzzy learning based 

adaptive controller (FLAC). These two adaptive controllers are implemented on both the 

developed mathematical model of the TLFM and on the physical TLFM as described in Chapter 

2. The simulation and experimental results show that DAC performs better than FLAC. 

Chapter 4 describes the development of a real-time adaptive controller for the TLFM by 

exploiting reinforcement learning (RL) technique. The proposed reinforcement learning based 

adaptive controller (RLAC) along with its actor-critic block and critic weights convergence are 

reported. Tip trajectory tracking and suppression of tip deflection performances of the proposed 
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RLAC are compared with that of a DAC and a FLAC developed in Chapter 3. The simulation 

and experimental results show that RLAC outperformers DAC and FLAC in terms of tip 

trajectory tracking and suppression of tip deflections.  

Chapter 5 develops a nonlinear autoregressive moving average with exogenous-input 

(NARMAX) model of the TLFM. Subsequently, a NARMAX model based multivariable PID 

self-tuning control (NMSTC) strategy is developed. The parameters of the PID are adapted on-

line using the NARMAX model of the TLFM.NMSTC is applied to the developed mathematical 

model and to the physical set-up. The results envisage that NMSTC shows better performance 

(tip trajectory tracking and suppression of tip deflections) compared to RLAC developed in 

Chapter 4 while subjected to an unknown payload.  

Chapter 6 provides a NARMAX model-based nonlinear adaptive model predictive control 

(NMPC) strategy. The nonlinear predicted model is based on the NARMAX model is derived in 

Chapter 5. NMPC is applied to the developed mathematical model and to the physical TLFM set-

up. The simulation and experimental results show that the tip trajectory tracking and suppression 

of tip deflections while subjected to an unknown payload are minimized compared to NMSTC 

proposed in Chapter 5. 

 

Chapter 7 summarizes the work described in the thesis. This chapter also includes a brief note on 

scope of further research that can be pursued in future as extension of this thesis work. 

Appendix A provides details of the dynamic equations of the TLFM obtained using AMM 

method described in Chapter 2. 
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Chapter 2 

Experimental Set-up of a Two-Link Flexible 

Manipulator and its Modeling 

In this chapter, a mathematical model for a two-link flexible manipulator (TLFM) available in 

Advanced Control and Robotics Research Lab., National Institute of Technology Rourkela is 

developed. This model will be used for development of different adaptive controllers in 

subsequent Chapters. Section 2.2 presents the hardware and software details of the experimental 

TLFM set-up. The dynamic equations of this physical TLFM are derived in Section 2.3. The 

derivation for the dynamic model of studied TLFM is given in Section 2.4. Finally in Section 

2.5, the obtained mathematical model is validated using open-loop response of the physical robot 

exciting with different bang-bang torque signals. 
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2.1. Introduction 

Unlike rigid manipulators, the dynamics of FLMs possess mechanical flexibilities in the links. 

Link flexibility is a consequence of the lightweight constructional feature in manipulator arms 

that are designed to operate at high speed with low inertia [61-64]. Thus, FLM undergo two 

types of motion, i.e. rigid and flexible motion. Because of the interaction of these motions, the 

resulting dynamic equations of FLM are highly complex and in turn, the control task becomes 

more challenging compared to that for rigid robots. Therefore, a first step towards designing an 

efficient control strategy for these manipulators must be aimed at developing accurate dynamic 

models that can characterize the above flexibilities along with the rigid dynamics. Because of the 

distributed link flexure, the dynamics of FLM is difficult than rigid ones. Due to the distributed 

link flexure, the dynamics of the FLM becomes distributed parameter system. A number of 

approaches to model such distributed parameter system has been reported in literature. Modeling 

of the flexible robots using both assumed mode method (AMM) and finite element methods 

(FEM) are very efficient approaches as these method model the distributed link flexure with 

good accuracy. In [65], the dynamics of a single-link flexible manipulator using Lagrange's 

equation and the AMM was studied. A nonlinear model of flexible link is derived and then 

linearized it to design a linear controller design in [66]. A complete nonlinear model for a single 

flexible link robot using AMM model is also carried out by Luca and Siciliano in [67]. Their 

work is concerned with different modes of vibration and an inversion controller design based on 

the AMM. They have also extended the model to the two link flexible manipulator in [68] and 

same work has been again extended with payload variation by Ahmad [69].  
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Therefore in this Chapter the dynamic equations of a TLFM are derived using Lagrangian 

dynamics and AMM model. The links are modeled using Euler-Bernoulli’s beam equation. The 

following assumptions are made in order to simplify the TLFM dynamics for the development of 

a dynamic model of the TLFM [70]: 

 Each link is assumed to be long and slender. Therefore, transverse shear and the rotary 

inertia effects are negligible. 

 The motion of each link is assumed to be in the horizontal plane. 

 Links are considered to have constant cross-sectional area and uniform material 

properties, i.e. with constant mass density and Young’s modulus, etc. 

 Motion of the links can have deformations in the horizontal direction only. 

 

2.2. Experimental set-up of the TLFM 

In this section, the experimental flexible robot hardware set-up with the sensors, actuators, and 

digital processor etc. are described in detail. This set up is manufactured by m/s Quanser pvt. 

Ltd., USA. The set-up has two links and two joints and an end effecter to carry payload. There is 

an arrangement available for connecting payload at the end effector. The photograph of the 

experimental set-up is shown in Fig.2.1. The hardware and software components for the 

experimental set-up are described next. 
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Fig.2.1 Photograph of the experimental set-up of the TLFM 

2.2.1. Hardware Components 

The hardware components of the TLFM experimental set-up are shown in Fig.2.2 which 

constitute of a data acquisition board, two-channel linear current amplifier, a personal computer 

(PC) with Intel(R) core (TM) 2 DUO E7400 processor and operates at 2.8 GHz clock cycle., an 

interface board, a two-link flexible manipulator with digital optical encoders and two strain 

gauges at the base of each link. TLFM is provided with one pair of flexible links. This pair is 

made of one three-inch wide steel beam and another beam which is one-and-a-half-inch wide. 

Data acquisition board (DAQ) provides two Analog-to-Digital (A/D) converters on board. Each 

A/D converter handles four channels, for a total of 8 single-ended analog inputs. Each A/D 

samples signal from all four channels simultaneously and holds the sampled signals while it 

converts the analog value to a 14-bit digital code. Each channel includes anti-aliasing filtering 

and input protection against electrostatic discharge (ESD) and improper connections. The input 

voltage ranges from -10V to +10V. Also there are two 12-bit digital-to-analog (D/A) converters 

on board. Each D/A converter outputs four channels, for a total of 8 analog outputs. The D/A 
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converters are double buffered, so new output values can be preloaded in to the D/A converters, 

and all analog outputs updated simultaneously. DAQ board has 32 channels of digital input-

output (I/O). The channels are individually programmable as an input or an output port. All 32 

channels may be read or written simultaneously.  

 

 

Fig.2.2 Schematic of the experimental set-up showing each hardware and payload arrangement 
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The outputs are TTL and CMOS compatible [71]. DAQ board contains four encoder chips, for 

position measurement each handles two channels, for a total of 8 encoder inputs. All four 

encoder chips can be accessed in a single 32-bit operation, and both channels can be accessed at 

the same time per chip. Hence, all eight encoder inputs may be processed simultaneously. There 

are two 32-bit general purpose counters on the DAQ board which can be used as PWM outputs 

with 30 ns resolution. For example, each counter can generate a 10-bit, 16 kHz, PWM signal. 

The TLFM is driven by two DC servo motors located at the bottom of the hub and between the 

joint of two links. They are permanent magnet, brush type DC servo motors which generate a 

torque τi= KtiIi(t), where Ii(t) is motor current for i
th

 joint whereas Kt1= 0.119Nm/A and Kt2= 

0.0234Nm/A. Since the motors are high-speed and relatively low-torque actuators, they are 

coupled to the joints through a harmonic drive speed increaser with a gear ratio of 1:100 and 

1:50 for joint-1 and joint-2 respectively. They facilitate in increase in the speed of the motors, 

needed to accelerate the links. The optical incremental encoder is attached to the DC servo motor 

making the hub position θi digitally available. This digital signal is decoded through an 

integrated circuitry on the interface board for feeding back. In addition to 32 digital I/O channels, 

the DAQ board has four additional channels for special two digital inputs and two digital 

outputs. One strain gauge sensor to measure the bending deformation of the link is mounted at 

the clamped base of each flexible link. Each strain gauge sensor is connected to its own signal 

conditioning and amplifier board. The amplifier board is equipped with two 20-turn 

potentiometers.  

Physical parameters of the experimental TLFM together with its drive mechanism are given in 

Table 2.1. 
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Table 2.1: Physical Parameters of the TLFM 

Parameter Link-1 Link-2 

Link length 0.201m 0.2m 

Elasticity 2.068410
11

(N/m
2
) 2.0684 10

11
(N/m

2
) 

Rotor moment of Inertia 6.28 10
-6

(kg m
2
) 1.03 10

-6
(kg m

2
) 

Drive moment of Inertia 7.36110
-4

(kg m
2
) 44.5510

-6
 (kg m

2
) 

Link moment of Inertia 0.17043 (kg m
2
) 0.0064387(kg m

2
) 

Gear ratio 100 50 

Maximum Rotation (+/-90, +/-90)deg. (+/-90, +/-90)deg. 

Drive Torque constant 0.119(Nm/A) 0.0234(Nm/A) 

 

2.2.2. Software Components 

 

 

Fig.2.3 Interfacing of signals for the TLFM set-up. 

Fig.2.3 shows the interfacing of signals for the TLFM set-up which works on MS Windows 

operating system with the MATLAB/SIMULINK 2007a software. There is a provision of real-

time target logic code builder to interface the SIMULINK model [72]. The MATLAB code for 

controller is built up in the real-time set up by using the real-time target logic code in C language 

The PC program written in Matlab uses C language as an user interface program for the host PC 
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which starts up the DAQ board to interact with it and with the user. This program calls functions 

from the High Level Language Interface (provided by the DAQ board). 

2.3. Description of the TLFM 

The schematic diagram of a planar TLFM is shown in Fig.2.4, where τi is the actuated torque of 

the i
th

 link, θi is the joint angle of the i
th

 joint and di (li, t) represents the deflection along i
th

 link. 

The outer free end of the TLFM is attached with payload mass Mp.  i i
X Y, is the rigid body co-

ordinate frame associate with i
th

 link and  i i
X Yˆ ˆ, is flexible moving co-ordinate frame. The rigid 

body motion is described by the θi is the joint angle and transversal flexible motion is due to di 

(li, t). The dynamic model of the TLFM is derived by first utilizing the Euler-Bernoulli beam 

theory to obtain a partial differential equation with the corresponding boundary conditions 

representing the motion of the links.  

 

Fig.2.4 Schematic diagram of a planar TLFM 
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2.4. Dynamic model of the TLFM 

Then, considering the system energy, the Lagrangian formulation approach along with the 

assumed modes method the dynamics of the TLFM are derived. The dynamic model is 

developed to reveal the dynamic behavior of the system using the Lagrangian approach which is 

defined as 

i

i i

d

d t q q

L L 
  

 
   (2.1) 

where 

L= (KT)i- (UT)i : Lagrangian expressed as difference between total kinetic energy KT 

andtotal potential energy UT of the TLFM. 

τi : Generalized force at the i
th

 joint. 

qi : Generalized coordinate of the i
th

 link. 

The generalized coordinate’s qi comprise of joint angles, joint velocities and modal 

coordinates. The total kinetic energy of the i
th

 link can be expressed as Ti
K   (Total kinetic 

energy due to i
th

 joint) + (Total kinetic energy due to i
th

 link) + (Total kinetic energy due to 

payload Mp) and in absence of gravity. The Links are modeled as Euler-Bernoulli beams with 

deformation  i i
d tl , satisfying the i

th
 link partial differential equation 

 
   4 2

i i i i

i4 2i
i i

d t d t
0

t

l , l ,
EI

l

 
 

 
   (2.2) 

where 
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ρi : Density of the i
th

 link (i=1, 2). 

di(li,t) : Deflection of the i
th

 link. 

(EI)i : Flexural rigidity of the i
th

 link. 

li : Length of the i
th

 link. 

t : Time. 

A solution of equation (2.3) can be obtained by applying proper boundary conditions at the base 

and at the end of each link. The three boundary conditions are shown in Fig.2.5 where, Fig.2.5 

(a) shows the clamped-free boundary condition i.e. one end is blocked in both angular and 

vertical direction and the other end is free. The next boundary condition is the clamped-inertia 

(Fig.2.5 (b)), i.e. one end is blocked clamped-free case but the other end carriers and inertia load. 

The last boundary condition i.e. pinned is shown in Fig.2.5 (c). Inertia-Inertia (often referred to 

as the pseudo pinned) and, it is locked in the vertical direction but free to move in the angular 

direction with the help of a rotary actuator mounted on the base that did not provide a torque to 

the link. 

 

Fig.2.5 Three different boundary conditions (a) Clamped-free, (b) Clamped-inertia (c) Pinned 

Considering that each link is clamped at the and mass of the link is negligible compared to the 

mass of the payload, it can be found that 

(a) (b) (c) 
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where Jeqi and Meqi are mass and moment of inertia at the end of i
th

 link. Since, (2.3) is a partial 

differential equation with respect to time and space coordinate. A finite dimensional expression 

for the link flexibility  i i
d tl ,  of i

th
 link can be represented using an assume mode method 

(AMM) [81] as 

     
n

i i ij i ij

j 1

d t tl , l


     (2.4) 

where 

φij : j
th

 mode shapes (spatial coordinate) of the i
th

 link. 

δij : j
th

 modal coordinates (time coordinate) of the i
th

 link. 

n : Number of assume modes. 

Putting the expression for link flexibility  i i
d tl , given in (2.5) to (2.1) a general solution is 

derived, which is a product of time harmonic function of the form 

  ijj

ij
t

t
e


    (2.5) 

and of a space eigen function of the form 

       

 

i i 1 i i i 2 i i i 3 i i i

4 i i i

C C C

C

, , ,

,

l sin ,l cos ,l sinh ,l

cosh ,l

     

 



  (2.6) 
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where ωi natural frequency of the i
th

 link and βi
4
= ωi

4
ρi/(EI)i. By applying the boundary condition 

given in Fig.2.5 (a) the constant coefficients in (2.6) can be determined as 

3 i 1 i 4 i 2 i
C C C C

, , , ,
, ,       (2.7) 

and from Fig.2.5 (b),one gets 

 
1 i

i i

2 i

C
0

C

,

,

f ,l
 

    
 

   (2.8) 

Putting (2.7) in (2.6) and solving (2.8), one obtains the first m positive roots which in turn gives 

values of βi. Hence, a finite solution to the link deformation as well as to (2.2) is obtained. As a 

result, using the initial Lagrangian equation in (2.1) a matrix representation for the dynamic 

model of the TLFM is (see Appendix A for further details) 

 
 

 

i i i i
ii

i i

i ii i i i i

0 0

0

, , ,
,

, , ,

                                        

1

2

c
M K D

c
   

(2.9) 

where  

τi : Actuated torque of the i
th

 link (i=1, 2). 

i i
,   : Joint angle and velocity of the i

th
 joint. 

i i
,   : Modal displacement and velocity of the i

th
 link. 

M : Inertia matrix. 

c1,c2 : Vectors containing of Coriolis and Centrifugal forces. 

K : Stiffness matrix  

D : Damping matrix. 

The TLFM dynamics (2.10) can be rewritten in state space form as 
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   i i i
x f x g x u 

     
 (2.10) 

with x as the state vector i.e. 
T

i i i i
x , , ,        

and    
 

 

i i i i1

i i i

i i
i i i i

0 0, , ,
f x ,

, , ,



                                 

1

2

c
M K D

c
 

   
1

i i i
g x ,



  M
 

and 
i

i
0

u
 

  
 

i
 and i

  being the modal displacement and modal velocity for the i
th

 link 

respectively. It is known from [73-76] transfer function from the torque input to the tip position 

output of a FLM is, in general, nonminimum phase. For a feedback controller, the nonminimum 

phase property hinders perfect asymptotic tracking of a desired tip trajectory. Thus for perfect tip 

trajectory tracking, the TLFM should be minimum phase. The minimum phase property may be 

achieved by output redefinition [77, 41] or splitting the dynamics of the TLFM into two time 

scale by using singular perturbation method [78]. The actual output vector ypi is considered as 

the output for i
th

 link instead of θi to avoid the difficulty of non-minimum phase behavior of the 

TLFM. Assuming that beam deflection is usually small with respect to link length, from Fig.2.4 

the output is redefined as 

 
i

i i

p i

i

t
y

d l ,

l

 
    

        

 (2.11) 

where  i i
d tl ,  is the link flexibility of i

th
 link, whose expression is given in (2.5). 
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2.5. Model validation 

To validate the correctness of the dynamic equations of the TLFM derived in Section 2.3,it is 

excited by different bang-bang input torque signals. Bang-Bang input torque signal is chosen 

because in order to excite the all the flexible modes as well as coupling terms. The open-loop 

responses of both physical and derived model of the TLFM are validated by comparing joint-1 

position, joint-2 position and link-2 tip deflection of the TLFM. 

2.6. Results and Discussions 

To extract the open loop response of the developed mathematical model of the TLFM in eq. 

(2.9), numerical simulation has been performed using MATLAB/SIMULINK
® 

software. The 

bang-bang torque profiles applied to the TLFM are shown in Fig.2.6 and Fig.2.7 is symmetric and 

their values are 0.042 Nm for joint-1 and 0.008 Nm for joint-2 respectively. In Fig.2.8, thejoint-1 

position is shown for which it is seen that the joint responses has a maximum amplitude of 10
°
 

and minimum amplitude of -5
°
. The joint-2 position response is shown in Fig. 2.9. The maximum 

and minimum joint-position responses observed for joint-2 are 9.8
°
 and -4

° 
respectively. In 

Fig.2.10 link-2 tip deflection trajectory response obtained from experiments are compared with 

that of obtained from simulation are shown. Fig.2.10 shows that the maximum deflection of 1.2 

mm is noted in case of experimental results while, the simulation model shows maximum 

deflection of 1 mm. 

From Fig.2.8-Fig.2.10 in it can be verified that the derived dynamic equation approximate the 

dynamics of the physical set up. 
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Fig.2.6 Torque profiles-1 for (joint-1)  

 

Fig.2.7 Torque profiles-1 for (joint-2) 
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Fig.2.8 Joint-1 position: Torque profiles-1 

 

Fig.2.9 Joint-2 position: Torque profiles-1 
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Fig.2.10 Link-2 tip deflection: Torque profiles-1 
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actuators. Fig.2.11and Fig.2.12 show the torque profile-2for joint -1 and joint-2 respectively. The 
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deflections are given in Fig.2.15. Fig.2.13 shows joint-1 position response, which show 
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°
 and minimum amplitude of -10

°
. The maximum and minimum joint-

position responses observed for joint-2 are 5.2
°
 and -10

° 
respectively as shown in Fig.2.14. In 

Fig.2.15 link-2 tip deflection trajectory response obtained from experiments are compared with 

that of obtained from simulation are shown. Fig.2.15 shows that the maximum deflection of 1 

mm is observed in case of experimental results while, the simulation model shows maximum 

deflection of 0.85 mm. 
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Fig.2.11 Torque profiles-2 for (joint-1)  

 

Fig.2.12 Torque profiles-2 for (joint-2) 
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Fig.2.13 Joint-1 position: Torque profiles-2 

 

Fig.2.14 Joint-2 position: Torque profiles-2 
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Fig.2.15 Link-2 tip deflection: Torque profiles-2 

2.7. Chapter Summary 

The chapter described the software and hardware components of the experimental two-link 

flexible manipulator (TLFM) set-up. The dynamic equations of the physical TLFM have been 

derived which will be used in subsequent chapters for realization of new adaptive control 

algorithms for the TLFM. The dynamic equations of the TLFM are obtained using Lagrangian 

dynamics and assume mode method. Also, the derived mathematical model has been validated using 

open loop responses such as joint position, tip deflection of the physical TLFM when excited by different 

bang-bang input torque signals. From the results obtained, it is confirmed that the model obtained is 

appropriate enough to represent physical TLFM. 
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Chapter 3 

Direct Adaptive Control of a Two-Link Flexible 

Manipulator 
 

In this Chapter, a direct adaptive control (DAC) is developed to control the tip position while 

simultaneously suppressing its deflection for the two-link flexible manipulator (TLFM) when 

subjected to carry different payloads. The performance of the developed controller is then 

compared with a fuzzy learning based adaptive controller (FLAC). FLAC is chosen for 

comparisons, since fuzzy logic is an intelligent rules based method that uses human experience 

in the control law, which relies mainly on the experience of the designer. The chapter is 

organized as follows. Section 3.2 presents the design of a direct adaptive controller. The design 

of the fuzzy learning based adaptive control is described in Section 3.3. These two adaptive 

controllers namely DAC and FLAC are simulated using the mathematical model derived in 
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Chapter 2 and the real-time implementations of these control algorithms were performed on a 

physical TLFM. The obtained simulation and experimental results are analyzed in Section 3.4. 

3.1 Introduction 

As discussed in introduction (Chapter 1), controlling a flexible-link manipulator is difficult 

owing to distributed link flexibility which makes this type of manipulator system dynamics 

under-actuated and non-collocated [78]. Further, control of a flexible-link manipulator becomes 

more challenging when it has to handle variable payloads In order to achieve good tip trajectory 

tracking while suppressing tip deflection with varied payloads, adaptive control should be 

employed, which can provide appropriate control torques to the actuators to achieve the above 

two-control tasks (good tip trajectory tracking and suppression of tip deflection). 

In this thesis a Lyapunov based adaptive control scheme assuring system stability has been 

proposed for the control of a TLFM. For the developed control laws, the stability proof of the 

overall system is also given. The design of this direct adaptive controller involves in choosing a 

control law with tunable TLFM parameters and then an adaptation law is to be developed using 

the closed loop error dynamics. The objective of this chapter is to develop a direct adaptive 

control law such that even there is a change in TLFM dynamics due to payload variation, good 

tip trajectory tracking along with suppression of tip deflection can be achieved. 

3.2 Direct adaptive control (DAC) 

The structure of the direct adaptive control for a TLFM is shown in Fig.3.1. An adaptive scheme 

is then developed to cope up with the parametric uncertainty due to change in payload. The 

adaptive controller proposed here is a direct adaptive controller, in the sense that parameter 
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adaptation mechanism is driven directly by the motion tracking error whereas in case of indirect 

adaptive control the control parameters are updated using the online estimated FLM parameters. 

The direct adaptive control law is derived as follows. Define a as a vector containing the 

parameters of the TLFM given by 

a = [Jl1Jl2Jh1Jh2m1eqm2eqmc]
T
 

with parameters a defined as 

a1 : Link-1 inertia. 

a2 : Link-2 inertia. 

a3 : Hub-1 inertia. 

a4 : Hub-2 inertia. 

a5 : Link-1 equivalent mass 

a6 : Link-2 equivalent mass 

a7 : Total coupling mass between the links 

The choice of vector a is made so as to keep the number of manipulator parameter to minimum. 

Let â be the estimate of a. 

 

 

Fig.3.1 Direct adaptive control structure 
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Then, the TLFM dynamics (2.7) can be written in the linear parameterized form as 

 
T

i p p r r
y y y y

, ,
Y , ,  
 

a
      (3.1) 

With ã being parameter estimation error and the regressor vector Y(∙) in (3.1) consist of the tip 

position yp, tip velocity and relative error yr defined as 

r p
y y e 

      
 (3.2) 

where 

Λ : Positive definite matrix. 

e : Tip trajectory error (θd-yp) 

The adaptive control law for TLFM system is derived as suggested in [79] as 

 
T

i r r D i
y y y y s

, , , ,
Y K    a

      
(3.3) 

where KD is the positive definite matrix and vector siis a measure of tracking accuracy of the i
th

 

link and is defined as 

i ii i i p r
s e e y y   

   (3.4) 

The parameter adaptation rule is given by 

TY sˆ  a
        (3.5) 

where Г is a symmetric positive definite matrix. A nonlinear adaptive control law given in (3.3) 

with the adaption law in (3.5) will provide the desired tip trajectory tracking under payload 

variation. To prove closed-loop stability of the proposed nonlinear adaptive controller, we define 

a Lyapunov candidate function, V(t) as 
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  T T 11
V t s s a a

2

    M
     

 (3.6) 

where M be the inertia matrix in and Г is a symmetric positive definite matrix. Differentiating 

(3.6) with respect to time leads to 

   T T T 1

r

1
V t s s s a a

2

    My My M
    

(3.7) 

Substituting for My  from the TLFM dynamics (2.7) and using the linear parameterization of the 

TLFM dynamics in (3.1), one obtains 

  T T T 1
V t s aY a a

         (3.8) 

Substituting the adaptive control law 
T

DaY K sˆ    into (3.5) gives 

 

 

T T T T 1

D

T T T 1

D

T T T 1

D

T T 1 T

D

V t s aY K s aY a a

s a a Y K s a a

s aY K s a a

s K s a aY s

ˆ

ˆ

ˆ









      

      

     

    
 

  

 (3.9) 

the parameter adaptation rule TY sˆ  a is used which leads to 

  T

DV t s K s 0 
   

 (3.10) 

It can be seen from (3.10) that for some positive values of KD, s converges to zero. An explicit 

form of the control law for the i
th

 link in terms of parameter vector a is given by 

1 1 11 3 12 4 13 5 14 6 15 7 16 D 1

2 2 21 3 22 5 23 6 24 7 25 D 2

a Y a Y a Y a Y a Y a Y K s

a Y a Y a Y a Y a Y K s

       

          
(3.12) 
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where Yij are the ij
th

 element of regressor vectors for i=1,2 and j=1,2⋯7. The adaptation law can 

be explicitly written as 

 

   

   

1 1 11 1 4 4 13 1 2 2 21 2

5 5 14 1 23 2 3 3 12 1 22 2

6 6 15 1 24 2 7 7 16 1 25 2

Y s Y s , Y s

Y s Y s Y s Y s

Y s Y s Y s Y s

ˆ ˆ ˆ, ,

ˆ ˆ ,

ˆ ˆ,

     

     

     

a a a

a a

a a
   

(3.13) 

The feedback gain matrix KD and the adaptation gain matrix Г are diagonal as defined below 

Г=diag(Г1, Г2, Г3, Г4, Г5, Г6, Г7,) and KD= diag(KD1, KD2,). To test the performances of the DAC 

with change in payload, it is compared with that of the FLAC which is discussed in the next 

Section. 

3.3 Fuzzy learning based adaptive control (FLAC) 

It is observed from Chapter 2 that the dynamics of the TLFM is highly nonlinear due to 

distributed-link flexure. Further uncertainties lie in the dynamics of a TLFM when it has to 

operate under variable payloads by exciting its infinite modes along the links. Because when 

payload is attached to a FLM its flexible modes get excited. Ideally infinite numbers of modes 

are necessary to represent the dynamics of a FLM. But for controller realization higher modes 

are truncated. This also gives rise to uncertain FLM dynamics. Fuzzy logic being a suitable 

candidate for controlling uncertain systems it is applied to develop an adaptive controller in this 

section. The proposed fuzzy logic based adaptive controller (FLAC) utilizes a learning 

mechanism which automatically adjusts the rule base of the controller so that the closed loop 

performs according to the user defined reference model containing information of the desired 

behavior of the TLFM. 
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Fig.3.2 Fuzzy logic based adaptive controller for TLFM 

FLAC consists of three components namely a fuzzy logic controller, a reference model and a 

learning mechanism described as follows. Fig.3.2 shows the structure of the FLAC.  

3.3.1 The fuzzy logic controller  

The fuzzy logic controller (FLC) has ei and Δei as inputs and τi as output for i
th

 link, where Δei is 

defined as eik-eik-1, eik-1 are the tip trajectory error terms for link-1 and link-2 at (k-1)
th

 instants 

respectively. To design a FLC one needs to specify membership function for the fuzzy sets used 

for input and output variables. A membership function is a graphical representation of the 

magnitude of participation of each input i.e. ei and Δei which associates a weighting with each of 

the inputs that are processed, by defining a functional overlap between inputs, and ultimately 

determines an output response for τi. In the design of the FLC, triangular membership functions 

on a normalized universe of discourse of the input and output variables are used from the 

experience gained from section 3.2. Fig.3.3-Fig.3.5 show the membership functions for link-1 

and link-2 respectively. 
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Fig.3.3 Membership function for Link-1 inputs e1 and Δe1 

 

Fig.3.4 Membership function for outputs τ1and τ2 

 

Fig.3.5 Membership function for Link-2 inputs e2, Δe1 and Δe2 
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For link-1,after observing the open-loop and closed-loop response one get the input universe of 

discourse chosen to be [-1, 1]. The output universe of course is chosen as [-10, +10]Nm so that 

the link motion be kept within reasonable limit. A fuzzy rule-base is formulated using the 

following constraints. For link-1, if there is a positive error i.e. e1, and a positive change in error 

Δe1, then the controller will input a positive torque τFLAC1 for this situation, so that the link is not 

properly aligned but is moving in the proper direction. As the error and the acceleration decrease, 

the controller applies smaller torque to avoid overshoot. The rule-base array used for the link-1 

controller is shown in Table 3.1. The rule-base is an 11 x 11 array, as there are 11 fuzzy sets on 

the input universes of discourse for link-1. The top most row shows the indices for the eleven 

fuzzy sets for the link-1 change in error input Δe1 and the column at extreme left shows the 

indices for the eleven fuzzy sets for the link-1 position error input e1. The rule base used for the 

link-1 fuzzy term set for the input variables e1 and Δe1 and output variable was τFLAC1assumed to 

have same cardinality of 11 as: F={PVB, PB, PM, P S, PZ, ZE, NZ, NS, NM, NB, NVB}, where 

NVB, NB, NM, NS, NZ, ZE, PZ, PS, PM and PB denote Negative Very Big, Negative Big, 

Negative Medium, Negative Small, Negative Zero, Zero, Positive Zero, Positive Small, Positive 

Medium and Positive Big respectively. The body of the array shows the indices i
th

 link for τFLACi 

in fuzzy implications of the form 

If <ei and Δei>Then <τFLACi> 

Similarly rules were derived for the link-2, although it should be noted that the link-2 FLC 

involves the change in error (Δe1) of the first link. Therefore, the rule base is a three-dimensional 

array. There are three inputs and, to keep the rule base to a reasonable size, 7 fuzzy sets were 

used for the inputs e2, Δe1 and Δe2 and output τFLAC2 such that F= {PB, PM, PS, ZE, NS, NM, 

NB}, where NB, NM, NS, ZE, PS, PM and PB denote Negative Big, Negative Medium, 
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Negative Small, Zero, Positive Small. Table 3.2-3.8 depict a three dimensional rule-base for link-

2. 

Table 3.1: Link-1 Rule Base of the TLFM 

Torque  Δ e1 

e1 NVB  NB  NM  NS  NZ  ZE  PZ  PS  PM  PB  PVB  

NVB  NVB  NVB  NVB  NB  NB  NM  NM  NS  NS  NZ  ZE  

NB  NVB  NVB  NB  NB  NB  NM  NS  NS  NZ  ZE  PZ  

NM  NVB  NB  NB  NM  NM  NS  NS  NZ  ZE  PZ  PS  

NS  NB  NB  NM  NM  NM  NS  NZ  ZE  PZ  PS  PS  

NZ  NB  NM  NM  NS  NS  NZ  ZE  PZ  PS  PS  PM  

ZE  NB  NM  NS  NS  ZE  ZE  ZE  PZ  PS  PM  PB  

PZ  NM  NS  NS  NZ  ZE  PZ  PS  PS  PM  PM  PB  

PS  NS  NS  NZ  ZE  PZ  PS  PS  PM  PM  PB  PVB  

PM  NS  NZ  ZE  NS  PS  PS  PM  PM  PB  PB  PVB  

PB  NZ  ZE  PZ  NM  PS  PM  PM  PB  PB  PVB  PVB  

PVB  ZE  PZ  PS  PB  PM  PM  PB  PB  PVB  PVB  PVB  

 

Table 3.5 represents the case when the Δe2=0 from the shoulder link is zero and is the center of 

the rule-base (the body of the table denotes the indices m) for τFLAC2. Tables 3.2-3.4 are for the 

case when the change in error for link-2 tip position error i.e. Δe2 is negative and Table 3.6-3.8 

are for the case where change in error for link-2 tip position error i.e. Δe2 is positive. The central 

portion (portion where Δe2 is zero or small) of the rule base makes use of the entire output 
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universe of discourse. As one move away from the center of the rule base (to the region where 

the link-2 tip position error is large), only a small portion of the output universe of discourse is 

used to keep the output of the controller small. Thus tip position error of the link-1 is dependent 

on the Δe2from the link-2 tip position. The tip position error of the link-2 is decreased if the Δe2 

is large and is increased as the Δe2decreases.The FLC designed above is incorporated with an 

adaptive mechanism which automatically adjusts the knowledge base of the fuzzy controller so 

that the closed-loop system performs according to the specifications given by the reference 

model. 

 

Table 3.2: Link-2 Rule Base of the TLFM when Δ e2= (NB) 

Torque  Δ e2 

 e1 NB  NM  NS  ZE  PS  PM  PB  

NB  NB  NB  NB  NM  NM  NS  ZE  

NM  NB  NB  NM  NS  NS  ZE  PS  

NS  NB  NM  NM  NS  ZE  PS  PS  

ZE  NM  NM  NS  ZE  PS  PM  PM  

PS  NM  NS  ZE  PS  PS  PM  PM  

PM  NS  ZE  PS  PS  PM  PM  PM  

PB  ZE  PS  PS  PM  NM  PM  PB  
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Table 3.3: Link-2 Rule Base of the TLFM when Δ e2= (NM) 

Torque  Δ e2 

 e1 NB  NM  NS  ZE  PS  PM  PB  

NB  NB  NB  NB  NM  NM  NS  ZE  

NM  NB  NB  NM  NS  NS  ZE  PS  

NS  NB  NM  NM  NS  ZE  PS  PS  

ZE  NM  NM  NS  ZE  PS  PM  PM  

PS  NM  NS  ZE  PS  PS  PM  PM  

PM  NS  ZE  PS  PS  PM  PM  PM  

PB  ZE  PS  PS  PM  PM  PM  PB  

 

Table 3.4: Link-2 Rule Base of the TLFM when Δ e2= (NS) 

Torque  Δ e2 

 e1 NB  NM NS ZE PS PM PB 

NB  NB  NB NB NB NM NS ZE 

NM  NB  NM NM NM NS ZE PS 

NS  NM  NM NM NS ZE PS PS 

ZE  NM  NM ZE ZE ZE PS PM 

PS  NM  NS ZE PS PM PM PB 

PM  NS  ZE PS PM PB PB PB 

PB  ZE  PS PM PM PB PB PB 
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Table 3.5: Link-2 Rule Base of the TLFM when Δ e2= (ZE) 

Torque  Δ e2 

 e1 NB  NM  NS  ZE  PS  PM  PB  

NB  NB  NB  NB  NB  NB  NM  ZE  

NM  NB  NB  NB  NB  NS  ZE  PS  

NS  NB  NM  NM  NS  ZE  PS  PM  

ZE  NM  NS  ZE  ZE  ZE  PS  PM  

PS  NM  NS  ZE  PS  PM  PM  PB  

PM  NS  ZE  PM  PM  PB  PB  PB  

PB  ZE  PS  PM  PB  PB  PB  PB  

 

Table 3.6: Link-2 Rule Base of the TLFM when Δ e2= (PS) 

Torque Δ e2 

e1 NB NM NS ZE PS PM PB 

NB NB NB NB NM NM NS ZE 

NM NB NB NM NM NS ZE PS 

NS NB NM NM NS ZE PS PM 

ZE NM NS ZE ZE ZE PS PM 

PS NM NS ZE PS NM PB PB 

PM NS ZE PS PM NB PB PB 

PB ZE PS PM PB NB PB PB 
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Table 3.7: Link-2 Rule Base of the TLFM when Δ e2= (PM) 

Torque Δ e2 

e1 NB NM NS ZE PS PM PB 

NB NB NM NM NS NS NS ZE 

NM NB NM NM NS NS ZE PS 

NS NM NM NS NS ZE PS PM 

ZE NM NS NS ZE PS PS PM 

PS NS NS ZE PS PS PM PB 

PM NS ZE PS PS PM PB PB 

PB ZE PS PM PM PB PB PB 

 

Table 3.8: Link-2 Rule Base of the TLFM when Δ e2= (PB) 

Torque Δ e2 

e1 NB NM NS ZE PS PM PB 

NB NM NM NM NS NS NS ZE 

NM NM NM NS NS NS ZE PS 

NS NM NM NS NS ZE PS PM 

ZE NM NS NS ZE PS PS PM 

PS NS NS ZE PS PS PM PM 

PM NS ZE PS PS PM PM PB 

PB ZE PS PS PM PM PB PB 
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Now, fuzzy sets for both link-1 and link-2 FLC are all initially centered at zero resulting in rule-

bases filled with zeros. This implies that the fuzzy controller by itself has no knowledge about 

how to control the plant. As the algorithm executes, the output fuzzy sets are rearranged by the 

learning mechanism, filling up the rule-base. For instance, once a desired trajectory is 

commanded the learning mechanism described below will move the centers of the activated rules 

away from zero and begin to synthesize the fuzzy controller. 

3.3.2 Reference model 

Through reference model, the desired closed-loop system behavior is specified. It is used to 

characterize closed-loop specifications such as rise-time, overshoot, and settling time. The 

performance of the overall system is computed with respect to the reference model by generating 

error signals between the reference model output and the plant outputs. The choice of the 

reference model is very important as it dictates the FLAC to perform in the desired manner.  

3.3.3 Learning mechanism 

Learning Mechanism performs the function of modifying the knowledge base (made by 

observing data from the controlled process, the reference model, and the fuzzy controller)of the 

fuzzy controller so that the closed loop system behaves as the reference model. The learning 

block constitutes a fuzzy inverse model and a knowledge base modifier. These are explained 

next. 

The fuzzy inverse model takes input as emi (error between the current closed loop TLFM 

behavior from the specified behavior of the reference model reference model for i
th

 link) and 

gives output pi(factor by which change is necessary in the TLFM inputs for i
th

 joint). The design 
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of the fuzzy inverse model requires the knowledge of the closed loop on-line TLFM tip position 

error profile and change in error profile. Fuzzy inverse model accomplices two works  i) it 

initially synthesizes the direct fuzzy controller by also using information gathered during on-line 

operation, and ii) subsequent tuning of the fuzzy controller by using on-line information about 

plant behavior changes. The rule bases of the fuzzy inverse model are same as fuzzy control 

block and they are given. Fuzzy inverse model rules capture knowledge such as: i) if the position 

error emi= ymi- ypi is small, but the link is moving in the correct direction to reduce this error, 

then a smaller change (or no change) is made to the direct fuzzy controller than if the link is 

moving to increase the emi; and ii) if the emi is large, then the fuzzy controller must be adjusted to 

avoid overshoot.  

Next, given the information about the necessary changes in the control input (fuzzy inverse 

model output) as expressed by the vector pi, the knowledge base modifier changes the 

knowledge base of the fuzzy controller so that the previously applied control action will be 

modified by the amount pi. Hence, the knowledge base modifier performs the function of 

modifying the fuzzy controller so that the better payload adaptability can be achieved for a 

TLFM. By modifying the fuzzy controller’s knowledge base we may force the fuzzy controller 

to produce a desired output. It is important to note that our rule-base modification procedure 

implements a form of local learning and hence utilizes memory. In other words, different parts of 

the rule-base are “filled in” based on different operating conditions for the system, and when one 

area of the rule-base is updated, other rules are not affected. Hence, the controller adapts to 

change in payload and also remembers how it has adapted to past situations. Knowledge-base 

modification is achieved by shifting the centers of the rules (initialized at zero) that were “on” 

during the previous control action by the amount pi for the i
th

 link.  
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Suppose we have the fuzzy inverse model output pi = p0(is the amount by which the rule base 

will be modified) indicating that the value of the output to the plant (τFLACi + p0) to improve 

performance instead of τFLACi. The knowledge-base modification procedure consists of two 

steps: i) determine the rules that are “on,” i.e., the rules that produced the previous control action 

and, ii) modify the entries in the knowledge-base array for those rules by the amount pi. The 

entries of the rule base are modified by shifting the center of the fuzzy rule base using the 

following rule [21]. 

 

3.4 Results and Discussions 

The numerical simulations of the DAC and FLAC have been performed using 

MATLAB/SIMULINK
®
. To validate the tip trajectory tracking performances of these 

controllers, the desired trajectory vector for two the joints, θdi(t) i=1,2 is chosen as 

        
i

5 4 3

d 0 f 05 4 3

d d d

t t t
t t 6 15 10 t t

t t t

 
        

 
 (3.14) 

where θdi(t) =[θd1, θd2]
T
, θd(0) ={0,0} are the initial positions of the links and θf(0) ={π/4, π/6} 

are the final positions for link-1 and link-2, td is the time taken to reach the final positions which 

is taken 4 sec. The physical parameters of the studied TLFM are given in chapter 2 (Table 2.1) 

and the controller parameters for FLAC and DAC are given in Table 3.9. Here to keep the model 

simple a first order system is taken as a reference model. The reference model is taken as 
5

5s 

for both the links [21].  
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3.4.1 Simulation results for an initial payload of 0.157 kg 

Simulation results after comparing the performances exhibited by two adaptive control 

schemes (FLAC and DAC) while carrying a 0.157 kg payload are shown in Fig.3.6-3.11. Fig. 3.6 

and Fig. 3.7 show the tip deflection trajectories for link-1 and link-2 carrying 0.157 kg of 

payload. From these figures it is seen that the FLAC suppresses the tip deflection faster 

compared to the DAC by damping it within 4sec.  

Fig.3.8 and Fig.3.9 show the tip trajectory tracking error curves for link-1 and link-2 

respectively. From Fig. 3.8, it is seen that there exists a tracking error 0.4° in case of the FLAC 

and 1° in case of DAC for link-1. Link-2 tracking error profiles in Fig. 3.9 reveal that the 

tracking errors of 0.3°and 0.4° for DAC and FLAC respectively. 

Fig. 3.10 and Fig. 3.11 show the control torque profiles generated by DAC and FLAC for joint-1 

and joint-2 respectively. From Fig. 3.10 and Fig. 3.11, it seen that the control input generated by 

the FLAC becomes zero compared to DAC for link-1 and link-2 when the desired tip position is 

tracked. But, it is observed that the FLAC control signal exhibits some amount of chattering 

compared to DAC. 

 

Sl. 

No. 

 

Type of 

Controller 

 

Controller Parameters 

 

1. 

 

DAC 

Г=diag([20, 0.2, 0.5, 0.2, 20, 50, 10]), Λ= 0.5, KD1=20 

and KD2=15 

 

 

2. 

 

 

 

FLAC 

k11=0.5, k12= 1.25, k21=0.75, k22= 2.25 (Scaling gains 

for TLFM) k11=0.5, g12= 1.25, k21=0.75, k22= 2.25 

(Scaling gains for Learning Mechanism). 

 

Table 3.9: Controller Parameters for TLFM 
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Fig.3.6Simulation results (time domain) for link-1 tip deflection performances (0.157 kg): DAC 

and FLAC 

 

Fig.3.7Simulation results (time domain) for link-2 tip deflection performances (0.157 kg) DAC 

and FLAC 
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Fig.3.8Simulation results (time domain) for tip trajectory tracking errors (Link-1) (0.157 kg) 

DAC and FLAC 

 

Fig.3.9Simulation results (time domain) for tip trajectory tracking errors (Link-2) (0.157 kg): 

DAC and FLAC 
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Fig.3.10Simulation results (time domain) for torque profiles (joint-1) (0.157 kg): DAC and 

FLAC 

 

Fig.3.11 Simulation results (time domain) for torque profiles (joint-2) (0.157 kg): DAC and 

FLAC 
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In addition to time-domain analysis, frequency domain representations of the various controller 

performances were carried out plotting the power spectral densities versus frequencies of 

different signals such the deflection and tracking errors. Figs. 3.12 to 3.15 show the PSDs of the 

for tip deflections of link-1 and link-2 and tip trajectory tracking errors of both links. From Fig. 

3.12 it is observed that in case of FLAC the average power of the PSD is -22dB less compared to 

that of the DAC for link-1, thus it is concluded that the modes are less excited hence, and there is 

reduction in vibration in case of FLAC compared to DAC for link-1. Similarly for link-2 in Fig. 

3.13, the average power for the FLAC is -45dB less compared to that of the DAC showing less 

excitation to the link-2 modes by FLAC resulting reduced vibration. The average power of the 

tip trajectory error is calculated from its PSDs in Fig. 3.14 and Fig. 3.15 respectively, and it was 

found that there is a considerable reduction in average power i.e. -6dB and 21.4dB for link-1 and 

link-2 respectively in case of FLAC compared to DAC. 

 

Fig.3.12 Simulation results (frequency domain) link-1 tip deflection performances (0.157 kg): 

DAC and FLAC 
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Fig.3.13 Simulation results (frequency domain) for link-2 tip deflection performances (0.157 kg) 

DAC and FLAC 

 

Fig.3.14Simulation results (frequency domain) for tip trajectory tracking errors (Link-1) (0.157 

kg) DAC and FLAC 
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Fig.3.15Simulation results (frequency domain) for tip trajectory tracking errors (Link-2) (0.157 

kg): DAC and FLAC 

3.4.2 Simulation results for an additional payload of 0.3 kg 

Next, the payload mass of the end-effector of the TLFM is varied by an additional payload of 0.3 

kg to the existing initial payload of 0.157 kg making the overall payload 0.457 kg. Performances 

of three controllers FLAC and DAC for 0.457 kg payload were compared in Fig. 3.16-3.21. 

Fig.3.16 and Fig.3.17 depict the deflection trajectory for link-1 and link-2. From Fig.3.16, it is 

seen that tip deflection is maximum (0.5 mm) in case of FLAC compared to DAC (0.1 mm) 

when a payload of 0.457 kg is attached to link-1. 

From Fig.3.17, it is seen that the tip deflection trajectories for link-2 is more oscillatory when 

carrying 0.457 kg of payload in case of DAC compared to FLAC. From Fig.3.18, it can be seen 
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value (1°) compared to the FLAC (0.4°). Thus a conclusion can be drawn that under additional 

payload FLAC successfully damps the tip deflections more efficiently compared to DAC. 

Fig.3.19 shows that FLAC has yielded (0.12°) value compared to the DAC controllers. Joint 

torque signals generated from DAC and FLAC are compared in Fig.3.20 and Fig.3.21. Torque 

profiles for joint-1 generated by employing the two controllers are shown in Fig.3.20, and that 

for joint-2 is shown in Fig.3.21. The joint torque control input for joint-1 obtained by DAC 

reaches to a maximum value (2.5 Nm) at 2 sec when the tip reaches to the final position at 4 sec 

the control input reduces to 0.5 Nm. In case of FLAC where control input reaches to a maximum 

value (0.5 Nm) at 2 sec and 0.15 Nm. From Fig.3.21, the joint control torque signals generated 

by DAC and FLAC for link-2 have maximum values of 1.3 Nm and 0.2 Nm respectively. 

Further, the frequency domain analysis was carried out by plotting the PSDs of the link 

deflections and tracking errors. From Fig. 3.22, it can be observed that the average power of 

FLAC is -12dB less compared to DAC for link-1, which signifies that there is a reduction in 

vibration compared to FLAC. Fig. 3.23 shows the average power for the FLAC is -45dB less 

compared to DAC in case of link-2 tip deflection, i.e. FLAC exhibits less average power at same 

particular frequency. Thus, it can be concluded that with FLAC, the link vibration is effectively 

suppressed compared to DAC. The average power of the tip trajectory error is calculated from its 

PSDs in Fig. 3.24 and Fig. 3.25 respectively, and it was found that there is a considerable 

reduction in average power of -5dB and -4dB for link-1 and link-2, respectively, in case of 

FLAC compared to DAC. 
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Fig.3.16 Simulation results (time domain) for link-1 tip deflection performances (0.457 kg): 

DAC and FLAC 

 

Fig.3.17 Simulation results (time domain) for link-1 tip deflection performances (0.457 kg): 

DAC and FLAC 
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Fig.3.18Simulation results (time domain) for tip trajectory tracking errors (Link-1) (0.457 kg) 

DAC and FLAC 

 

Fig.3.19Simulation results (time domain) for tip trajectory tracking errors (Link-2) (0.457 kg) 

DAC and FLAC 
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Fig.3.20Simulation results (time domain) for torque profiles (joint-1) (0.457 kg): DAC and 

FLAC 

 

Fig.3.21Simulation results (time domain) for torque profiles (joint-2) (0.457 kg): DAC and 

FLAC 
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Fig.3.22 Simulation results (frequency domain) for link-1 tip deflection performances (0.457 kg): 

DAC and FLAC 

 

Fig.3.23 Simulation results (frequency domain) for link-1 tip deflection performances (0.457 kg): 

DAC and FLAC 
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Fig.3.24 Simulation results (frequency domain) for tip trajectory tracking errors (Link-1) (0.457 

kg) DAC and FLAC 

 

Fig.3.25 Simulation results (frequency domain) for tip trajectory tracking errors (Link-2) (0.457 

kg) DAC and FLAC 
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3.4.3 Experimental results for an initial payload of 0.157  

Fig.3.26-3.31 shows comparison of the experimental results for TLFM obtained by employing 

FLAC and DAC with an initial payload of 0.157 kg. Fig.3.26and Fig.3.27 shows the tip 

deflection trajectories for the link-1 and link-2 when loaded for a 0.157 kg payload. From 

Fig.3.26, it can be seen that initial deviation for FLAC and DAC are 0.16 mm and 0.18 mm for 

link-1. Link-2 tip deflection characteristics are shown in Fig.3.27, from which it is seen that an 

initial deviation of 0.18 mm and 0.22 mm of for FLAC and DAC respectively.  

Fig.3.28 and Fig.3.29 show the comparison of the tip trajectory tracking, after 4 sec when the 

tip attains the final position, the steady sate error for DAC and FLAC are 0.1° and 0.2° for link-1 

and link-2 respectively after 4sec. Although DAC show more amplitude in the tip deflection 

trajectory compared to FLAC, but manage to show better tip trajectory tracking error. Torque 

profiles for joint-1 generated by employing the DAC and FLAC controllers are shown in 

Fig.3.30, and that for joint-2 is shown in Fig.3.31. The joint torque control input for link-1 

obtained by DAC reaches to a maximum value (9 Nm) at 2 sec when the tip reaches to the final 

position at 4 sec the control input reduces to 5 Nm. In case of FLAC where control input reaches 

to a maximum value (2 Nm) at 2 sec. From Fig.3.31, the joint control torque signals generated by 

DAC and FLAC for link-2 have maximum of 12 Nm and 10 Nm respectively. The reason of 

DAC being generating more torque compared to FLAC is that the parameters of the TLFM are 

updated using the error dynamics. PSDs (frequency domain) analysis was pursued and results 

presented in Figs. 3.32 to 3.35. From Fig. 3.32 and Fig. 3.33 it can be seen that the average 

power of the PSD for FLAC is -1dB and -0.6dB less compared to DAC for link-1and link-2 

respectively. The reduction in average power in case of FLAC signifies that a better damping is 

achieved for link deflection compared to DAC for the same payload. Also, the average power of 
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the tip trajectory error is calculated from its PSD in Fig. 3.34 and Fig. 3.35 respectively. From 

these figures it is observed that there is a reduction in average power of -1.5dB and -1.4dB for 

link-1 and link-2 respectively. Thus, FLAC suppresses the flexible mode vibration significantly. 

 

Fig.3.26Experiment results (time domain) for link-1 tip deflection performances (0.157 kg): 

DAC and FLAC 
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Fig.3.27Experiment results (time domain) for link-2 tip deflection performances (0.157 kg): 

DAC and FLAC 

 

Fig.3.28Experiment results (time domain) for tip trajectory tracking errors (Link-1) (0.157 kg): 

DAC and FLAC 
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Fig.3.29Experiment results (time domain) for tip trajectory tracking errors (Link-2) (0.157 kg): 

DAC and FLAC 

 

Fig.3.30Experiment results (time domain) for torque profiles (joint-1) (0.157 kg): DAC and 

FLAC 
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Fig.3.31 Experiment results (time domain) for torque profiles (joint-2) (0.157 kg): DAC and 

FLAC 

 

Fig.3.32 Experiment results (frequency domain) for link-1 tip deflection performances (0.157 

kg): DAC and FLAC 
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Fig.3.33 Experiment results (frequency domain) for link-2 tip deflection performances (0.157 

kg): DAC and FLAC 

 

Fig.3.34 Experiment results (frequency domain) for tip trajectory tracking errors (Link-1) (0.157 

kg): DAC and FLAC 
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Fig.3.35 Experiment results (frequency domain) for tip trajectory tracking errors (Link-2) (0.157 

kg): DAC and FLAC 

3.4.4 Experimental results for an additional payload of 0.3 kg: 

The payload mass is now changed by adding an additional payload of 0.3 kg to the initial 

payload of 0.157 kg. Fig.3.36-41 shows comparison of the experimental results for TLFM 
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compared to DAC where a maximum deviation is 0.32 mm. 
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Fig.3.36Experiment results (time domain) for link-1 tip deflection performances (0.457 kg): 

DAC and FLAC 

 

Fig.3.37Experiment results (time domain) for link-2 tip deflection performances (0.457 kg): 

DAC and FLAC 
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Fig.3.38Experiment results (time domain) for Tip trajectory tracking errors (Link-1) (0.457 kg): 

DAC and FLAC 

 

Fig.3.39Experiment results (time domain) for tip trajectory tracking errors (Link-2) (0.457 kg): 

DAC and FLAC 
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Fig.3.40Experiment results (time domain) for torque profiles (joint-1) (0.457 kg): DAC and 

FLAC 

 

Fig.3.41Experiment results (time domain) for torque profiles (joint-2) (0.457 kg): DAC and 

FLAC 
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Fig.3.38 and Fig.3.39 compare the tip trajectory tracking performances for link-1 and link-2 

respectively. From Fig.3.38 and Fig.3.39 it is clear that when the final position is attained, FLAC 

and DAC show a finite steady sate error of 0.7 sec and 0.4 sec respectively.  

The TLFM is an infinite dimensional system due to distributed link flexure. Higher modes have 

been neglected in modeling therefore there is a difference in steady state error for simulation and 

experimental results. 

Torque profile generated for joint-1 by the DAC and FLAC controllers are shown in Fig.3.39 

and Fig.3.41. From Fig.3.39 it is seen that the DAC torque signal reaches to a maximum value of 

9.5 Nm and reduces to 5 Nm at 4 sec when the final position is tracked. Torque signal generated 

in case of FLAC becomes maximum (2.5 Nm) at 2 sec and almost reduces to zero at the final 

position. From Fig.3.41, torque profile generated for joint-2, it is seen that the torque signal in 

case of DAC reaches to maximum value of 15 Nm at 1 sec and reduces to 6 Nm at 4 sec when 

the final position is tracked. Torque signal obtained by FLAC reaches to maximum value of 9 

Nm at 1.5 sec and reduces to 2 Nm at 4 sec. The performance of the FLAC in time domain 

responses are again verified in frequency domain, from Fig. 3.42 and Fig. 3.43 the average 

power of the PSDs for FLAC was found to be  -0.1dB and -2.3dB less compared to DAC for 

link-1and link-2 respectively. Also, the average power of the tip trajectory error is calculated 

from its PSDs in Fig. 3.44 and Fig. 3.45 respectively. There is a reduction in average power of -

1.5dB and -0.4dB for link-1 and link-2 respectively. By analyzing the frequency domain 

responses it can be concluded that there is a large reduction achieved in the average power 

resulting suppression of modal vibration effectively in case of FLAC compared to DAC.  
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Fig.3.42 Experiment results (frequency domain) for link-1 tip deflection performances (0.457 

kg): DAC and FLAC 

 

Fig.3.43 Experiment results (frequency domain) for link-2 tip deflection performances (0.457 

kg): DAC and FLAC 
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Fig.3.44 Experiment results (frequency domain) for Tip trajectory tracking errors (Link-1) (0.457 

kg): DAC and FLAC 

 

Fig.3.45 Experiment results (frequency domain) for tip trajectory tracking errors (Link-2) (0.457 

kg): DAC and FLAC 
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3.5 Chapter Summary 

This chapter has presented development, implementation and comparison performances of two 

adaptive control schemes i.e. direct adaptive control (DAC) and fuzzy learning based adaptive 

control (FLAC) for tip trajectory tracking and suppressing tip deflection of a two-link flexible 

manipulator (TLFM) while it is subjected to handle different unknown payload. The 

performances of the DAC and FLAC have been obtained after successfully implementing these 

control algorithms to both a physical flexible robot set-up in the Lab., and to the dynamic model 

of the TLFM. The simulation and experimental results obtained show that with change in 

payloads the DAC exhibited superior performance compared to the FLAC in real-time. 

The superior performance of the DAC over FLAC may be due to the former’s ability to 

incorporate the estimated TLFM parameters directly into the controller unlike in FLAC where 

the controller adapts based on a reference model output. 
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Chapter 4 

Reinforcement Learning based Adaptive Control 

of a Two-Link Flexible Manipulator 
 

Most of the intelligent controllers which are based on neural network, fuzzy logic and hybrid 

neuro-fuzzy for FLMs as discussed in Chapter 1are based on supervised learning [36-58], where 

the learning is driven by error signal (difference between desired and current response), whereas 

another learning method called reinforcement learning (RL), which occurs when an agent learns 

behavior through trial-and-error interaction with the environment based on “reinforcement” 

signals from the environment [59]. The benefits of RL based adaptive control are that it 

generates adaptive optimal control online. Also, in past RL is applied successfully for many 

complex systems such as in retail inventory management [80], intelligent databases [81], 

electrical power systems control [82], flight control studies [83], dynamic power management 
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[84], UAVs [85], robotics [86], traffic signal control and optimal adaptive control [87, 88]. This 

Chapter exploits RL technique for developing real-time adaptive control of tip trajectory and 

deflection of a two-link flexible manipulator handling variable payloads. This proposed adaptive 

controller consists of a proportional derivative (PD) tracking loop and an actor-critic based 

reinforcement learning loop that adapts the actor and critic weights in response to payload 

variations while suppressing the tip deflection and tracking the desired trajectory. Tip trajectory 

tracking and suppression of tip deflection performances of the proposed reinforcement learning 

based adaptive controller are compared with that of a nonlinear regression based direct adaptive 

controller and a fuzzy learning based adaptive controller developed in Chapter 3. The Chapter is 

organized as follows. In Section 4.2 the development of the proposed reinforcement learning 

based adaptive controller is presented. Simulation and experimental results are discussed in 

Section 4.3. Section 4.4 presents the chapter summary. 

4.1. Introduction 

In Chapter 3, adaptive controllers for flexible manipulators with variable payloads have been 

described using a direct adaptive controller (DAC) and also a fuzzy learning based adaptive 

control (FLAC). The DAC suffers from dependency on identification procedure and excessive 

tuning of adaptive gains. FLAC design depends upon proper formulation of control rule base. 

Also, intelligent controllers based on supervised learning using neural networks and fuzzy logic 

have been designed by some investigators [41] and [21] for flexible-link manipulators under 

parametric uncertainty. However, neural network based controllers require training of the 

synaptic weights to an optimal value which consume considerable amount of time and 

computational complexity. A hybrid neuro-fuzzy based adaptive controller has been proposed in 
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[54]. Although, the above hybrid neuro-fuzzy controller shows better performance compared to 

neural network and fuzzy logic based adaptive controllers but it needs a priori information about 

the input output relationship, i.e. supervised and off-line learning are essentially required. Also 

adaptive control of a multi-link flexible manipulator is more complex compared to a single-link 

flexible manipulator control problem owing to interlink coupling effects.  

Thus, there is a need for a precise real-time adaptive control for flexible-link manipulators under 

payload variation. Hence, development of a real-time adaptive control for both tip trajectory 

tracking and suppression of tip deflection for a two-link flexible manipulator (TLFM) handling 

variable payload is the objective of this Chapter.  

The contribution of this Chapter lies in developing a new reinforcement learning (RL) based 

real-time adaptive control for a TLFM. This work attempts to exploit actor-critic based 

reinforcement learning with modification in critic as well as in actor to develop an adaptive 

control for a TLFM. Many of the previous works on RL based control use least square (LS) 

approach to estimate the weights of the value function [89]. But as the LS are batch processing 

technique it is unsuitable for real-time control. Therefore, the proposed actor-critic reinforcement 

learning based adaptive control (RLAC) uses a recursive least-square based temporal difference 

learning to obtain the optimal weights of the value function in the critic. Further, a mechanism of 

eligibility trace [90] and adaptive memory are embedded to this temporal difference algorithm to 

enhance learning what we call as Recursive Least Square-Eligibility Trace-Adaptive Memory 

algorithm (RLS-ET-AM) algorithm. The proposed algorithm calculates the initial critic 

parameters off-line in order to reduce the computational overhead in real-time unlike previous 

approaches where either zero or random values were taken [91]. To ensure stability of the 

RLAC, a discrete time PD controller is supplemented with the above RL learning. The proposed 
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RLAC is compared with a nonlinear direct adaptive controller (DAC) and a fuzzy learning based 

adaptive controller (FLAC) to validate the performances of the proposed RLAC. 

4.2. Reinforcement Learning based adaptive control 

Reinforcement learning takes places when an agent (TLFM in this work) understands and learns 

by observing the environment workspace) based on a scalar internal reinforcement signal called 

reward rk and TDk
 (temporal difference error (TD error) at k

th 
instant. TD error is the external 

reinforcement signal that comes from the environment to minimize a long term value function 

described next. Fig.4.1 shows the actor-critic based reinforcement learning adaptive controller 

for real-time implementation of the TLFM carrying a variable payload. It consists of two 

important components such as an actor-critic block and a PD control loop.  

 

 

Fig.4.1 Structure of reinforcement learning based adaptive control for a TLFM 
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The actor-critic block adapts the actor and critic weights, 
kaW and

kcW  in order to compensate for 

the joint torque input under payload uncertainties. The PD controller provides stable closed loop 

performance by regulating the desired tip trajectory. A zero order hold (ZOH) block is used to 

achieve a discrete value of the desired tip trajectory ydi and redefined output ypi. Thus, the net 

adaptive torque τrl for i
th

 link is given by 

rl ak k
y u 

    
 (4.1) 

where k
u is the proportional derivative control action and ak

y  is the estimated actor output. The 

PD control law uses the past values of tip trajectory tracking error 
k 1i

e


 for i
th 

link and the past 

value of the PD control output
k 1i

u


. Thus, the i
th

 digital PD control action is generated using the 

following recursive law. 

   
k k k 1 k 1 k 2 k 1

i p i i d ik i i i
u K e e K e 2e e u

- - - -

- -   
  

 (4.2) 

where Kp and Kd are proportional and derivative gain respectively and 
k 1i

e


and 
k 2i

e


are the 

tracking errors at sampling instants (k-1) and (k-2), respectively, 
k 1i

u
  

is the control action at (k-

1)
th

 instant for i
th

 link. 

4.2.1. Actor-Critic block 

Fig.4.2 describes the actor-critic based reinforcement learning, where yak denotes the control 

policy applied to the actuators of the TLFM, 
k ki pi

y   represents the state vector comprising of 

measured redefined tip trajectory given in (2.6) for the i
th

 link at k
th

 instant. Reward at 
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((k+1)
th

instant, rk+1 is the result of the transition (
ki

 ,yak, k 1i 
 ) where 

k 1i 
 is the successive value 

of 
ki

 at (k+1)
th

 instant. 

Let a value or cost be assigned to the total cumulative reward function say 
 k k 

expressed as 

  k

k k

k 0

k 1r




   
     

 (4.3) 

where γ
k
is the discount factor at the k

th
 instant. The value of the discount factor decides as how 

much weightage is to be given tofuture rewards. The reinforcement learning searches for a 

control policy, yak in the actor so that it minimizes the value function defined in eq. (4.4) 

  k

k k

k 0
k 1r

y
ak

min






 
    

 


    
(4.4) 

It is difficult to achieve minimization of the value function  k k
   in real-time as eq. (4.4) needs 

evaluation of an infinite sum backward in time. To provide forward in time solution of (4.4) 

approximation of the value function  k k
   is necessary. 

 

Fig.4.2 Actor-Critic based Reinforcement learning 
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In order to approximate the value function
 k k

 
 Eq. (4.4) can be rewritten as sum of k

th 
step 

reward rk and discount times infinite sum of the future value function in compact form as 

  k 1

k k k

k 1
k 1r r





    

    

(4.5) 

The difference equation equivalent of (4.5) is given by [9] as 

   k k k k k 1r     

    

(4.6) 

where 

  k 1

k k 1

k 1
k 1r







   

 

Eq. (4.6) is also known as Bellman equation [9]. Based on this equation, 
kTD can be defined as  

   
k k k k 1 k kTD r      

   
 (4.7) 

kTD is a prediction error between predicted and observed performance. If (4.7) holds good for 

some value of yak, then 
kTD must approach to zero. Thus, eq. (4.7) becomes 

   k k k 1 k k0 r      
   

 (4.8) 

The RLAC based actor-critic reinforcement learning consists of two separate blocks, actor and 

critic. In actor, the policy yakis updated and on critic, the value function 
 k k 

is updated using 

a linear function approximator based on recursive least square algorithm (RLS). Hence, the value 

function
 k k 

relating the critic weights Wck can be expressed as 

 
k k

T

k k c cx W 
     

 (4.9) 
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where k

T

c
 is the regressor vector,

 
kc k k

x x  
, where is the Kronecker product. Similarly, yak 

can be expressed in regressor form as 

k k

T

ak a ay W 
      

 (4.10) 

where 
kaW is the matrix of actor weight estimates and k

T

a
is the actor regressor vector. Signals 

kTD  and rk play vital role in determining the performance of the control policy by minimizing 

kTD  defined in (4.8). The performance measure of the TLFM control is attributed to achieve the 

desired tip trajectory tracking while simultaneously damping out the tip deflection. Therefore, si 

defined in Chapter 3 (3.7) which measures the accuracy of the tip trajectory tracking for i
th

 link is 

used to formulate the rk and is given as 

 2

k i

k

else

r 0 if s

r 0 5

,

.

  

 





      

 (4.11) 

where ε is a predefined tolerance value and a reward (negative)  is taken in (4.11) to improve the 

closed loop performance. Substituting for 
 k k 

from (4.9) in (4.6), one obtains 

 
k kk 1 kk

T T

k c c c cTD r W W


    

     
(4.12) 

4.2.2. Critic weight update using the proposed reinforcement learning algorithm 

The objective of the critic is to estimate the value function
 k k 

using proposed (RLS-ET-

AM) algorithm. Let 
 k k̂ 

be the estimate of the value function 
 k k 

and a cost function J 
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for N measurements is chosen so as to minimize the temporal difference error 
kTD defined in 

(4.7). J is given as 

    
2N 1

k k k k 1 k k

k 1

J z r ˆ ˆ






      
 

  
 (4.13) 

where rk is the reward function,  k k̂ 
 is the estimate value of the value function  k k 

and 

 k kz   is the eligibility trace used to improve the temporal difference learning by selecting the 

eligible state embedded in  k . Let this algorithm be termed as RLS-ET algorithm. The 

eligibility trace is being defined as 

 
 
 

k k k di

k k

k k k di

z 1 if
z

z if

      
  

    
, 

where γ is discount factor, λ is the value of the eligibility trace and θdi is the desired tip trajectory 

for i
th

 link, it is to be noted that both the values of γ and λ are less than unity. Substituting the  

value of  k k 
 from (4.9) in (4.13) gives  

 
k 1 k 1 k k

2N 1
T T

k k c c c c

k 1

J z r W Wˆ ˆ
 





    
 

  
 (4.14) 

Equation (4.14) can be modified in terms of predicted critic weights 
k 1cŴ


 as 

  
k 1 k 1 k

2N 1
T T

k k c c c

k 1

J z r Ŵ
 





    
  

  
 (4.15) 

The least square solution [92] of (4.15) is given as  

    
k k k kk 1

1
N NT

c c c c c k k

k 1 k 1

W r zˆ




 

   
       

   
  

   
(4.16) 
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A recursive form of the above equation with forgetting factor, μ [92] can be obtained easily as 

follows. 

 
k k k 1 kk 1

T T

c c k 1 k c c c
W W G r W




     
 



   
(4.17) 

with the Kalman gain Gk+1 and covariance matrix k 1
P

 updatation are given as follows. 

   
k k 1 k k 1

1
T T T T

k 1 k k k c c k k c c k

1
P P P z P z P

 




 

         
    



  
(4.18) 

  
k k 1

1
T T

k 1 k k c c k k
G P z P z






    

    
(4.19) 

Equations (4.17)-(4.19) constitute the recursive least square based temporal difference learning 

with eligibility trace. Further, an incremental adaptive memory am can be added to the above 

RLS-ET algorithm to enhance the learning speed of the critic. The resulting weight updatataion 

expressions with recursive least square based temporal difference learning with eligibility trace 

and an adaptive memory (RLS-ET-AM) are given in equations (4.20)-(4.23). 

 
k k k 1 kk 1

T T

c c k 1 k c c c
W W G r W




     
 



   
(4.20) 

  
k k k 1 k

1
1 T T 1

k 1 k k m c c k k m
G P z P z




 


    a a

   
(4.21) 

 

 
k k 1

k

k k 1

1
T T

k k k c c k k1

k 1 m
T T

c c k

P P z P z1
P

P















           
         

 a

  
(4.22) 

k k k k

1 T

m m r k c TDk ˆ    
 

 a a

     
(4.23) 

The gradient vector k
̂ is updated using following expression 

k 1 k 1 k

T

k 1 k 1 c k k 1 c TDI G Sˆ ˆ
 

  
      

 
 

   
(4.24) 
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where I is the identity matrix and  

k 1 k k 1k 1

1 T 1 T

k 1 m k 1 c k c k 1 m k 1 k k 1
S I G S I G G G P

 

 

    
            

 a a

 
(4.25) 

4.2.3. Actor weight update using gradient based estimator and the proposed 

reinforcement learning algorithm 

The actor weight vector
kcW can be updated using gradient based estimator as described below. 

The control policy yak can be written in parametric form as  

k

T

ak ka ay W
       

(4.26) 

and 
k k k

T

a a ay Ŵˆ   be its estimate. Then the control policy estimation error can be written as 

 
k k k k k k

T

a a a a a ay y y W Ŵˆ   
   

 (4.27) 

  
k 1 k k k

T

a a a a k k a
W W K yˆ ˆ ˆ


    

   
 (4.28) 

The control policy yak can also be rewritten in terms of the critic parameter 
kcW as follows 

 
k 1 k k k k k

T T

a a a a c c a
W W K W yˆ ˆ ˆ ˆ


   

   
 (4.29) 

0 < Ka ≤ 1 is the adaptation gain.  
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By measuring the external reinforcement signal 
kTD and internal reinforcement signal rk, the 

critic as well as actor weights are updated. The learning terminates as soon as approximation 

error tends towards zero. The proposed RLS-ET-AM algorithm is shown in Table 4.1. 

4.2.4. Convergence analysis of the critic weights using the proposed 

reinforcement learning algorithm 

The existing RLS_TD learning algorithm [103] is modified by adding an incremental adaptive 

memory to RLS based linear function approximator with off-line calculated critic weights. In 

order to prove the convergence of above RLS-ET-AM algorithm, certain assumptions are used. 

These are as follows. 

Assumption 1: The discrete event of states {ζk}, with transition probability matrix P, and 

distribution χ satisfy  

T TP  
       (4.30) 

Assumption 2: The transition reward r (ζk, ζk+1) satisfies 

Step 1: for k=0 

begin { 

Define the performance index as given in (4.13) 

Step 2: Initialize initial values of  Wck, Pk, Sk, am, µ , Ka, γ, zk 

Step 3: Observe the transition states of ypi, ydi, rk+1 and δTD 

Step 4: Apply equations (4.20)-(4.25) to update critic weights 

Step 5: Apply equations (4.27)-(4.29) to update actor weights 

Step 6: Check the termination criteria from step: 1 update k=k+1 till criteria is 

satisfied 

} end 

 

Table 4.1: Proposed RLS-ET-AM algorithm  
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 2

0 k k 1
E r ,


           

 (4.31) 

where E0[ ] is the expectation with respect to distribution χ. 

Assumption 3: The matrix Φ
T

ck is linearly independent. 

Assumption 4: For every ‘k’ the function Φ
T

ck satisfies 

 2

0 ck k
E            

 (4.32) 

Assumption 5: The matrix  
K

1

k k

k 1

1
P

k





 
   

 
  is non-singular ∀ k>0 

Theorem 1: Considering the above assumptions (1-5) and using the proposed RLS-ET-AM 

algorithm given in (4.20)-(4.23), the critic weights Wck converge to Wck
*
 (optimal critic 

weights). 

Proof: Applying matrix inversion Lemma (A+BC)
-1

=A
-1

-A
-1

B(I+C A
-1

B)
-1

CA
-1

 (I is the identity 

matrix) to equation (4.21), it can be rewritten as 

 
k k k 1

1
1 1 T T

k 1 m k k c c
P P z




 


     

 
a

    
(4.33) 

where 1

k
A P  ;

k
B z ,  

k k 1

T T

c c
C


    and assuming μ=1.The Kalman gain vector Gk given in (4.20) 

is multiplied by Pk
-1

 giving 
 

  
k k k 1

1
1 1 1 T T

k k 1 k k k m c c k k
P G P P z 1 P z




  


    a

    
(4.34) 

  
k k k 1

1
1 1 T T

k 1 k m k c c k
G z P z




 


    a

    
(4.35) 

Eq. (4.35) can be rewritten using the expression for Pk+1 from (4.33) as 

k

1

k 1 k 1 k m
G P z 

 
 a

       
(4.36) 
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Using the results obtained for updatation of covariance matrix of the TD error Pk+1 in (4.33) and 

Kalman gain vector Gk+1 in (4.36), the updatation of the critic weights Wck+1 defined in (4.20) 

can be rewritten as 

 

 

  

k k k k 1 kk 1

k k k k 1 k k

k k 1 k k

1 T T

c c k 1 k m k c c c

1 T T 1

c k 1 k k m c c c k m

1 T T 1

k 1 k 1 k c c c k k m

W W P z r W

W P z r W z

P P z W z r











 



 

 







     
 

     
 

     
  







a

a a

a

   
(4.37)

 

Substituting for  
k 1

P


 from (4.33) in (4.37)  gives 
 

    k k 1 k k 1 k k

1 T T T T 1

k 1 k k c c k c c c k k m
P P z z W z r

 

 


          

 
 a

  
(4.38) 

Using (4.33) in equation (4.38) gives
 

   
k k 1 k kk 1

1
1 T T 1 1

c k k c c k c k k m
W P z P W z r




  

      
 

a

   
(4.39) 

denoting    
k k 1

T T

k k c c
z


      ,

k

1

k k k m
p z r  a in (4.39) and Wck+1 as W RLS-ET-AM  one obtains 

 

 
k

1
K K

1 1

k k k ck k

k 1 k 1

1
N N

1 1

k k k c k

k 1 k 1

W P P W p

1 1 1 1
P P W p

N N N N

RLS ET AM



 

 

 



 

 

   
       
   

   
       
   

 

 
 

 (4.40) 

since 

   
N

0 k k
k

k 1

1
E

N
lim




       
    

 (4.41) 

 
N

0 k k
k

k 1

1
E p p

K
lim




 
     

 (4.42) 

where N denotes the number of measurements and from assumptions (1-5), it is known that 

 0 k
E     is invertible i.e.  

  0 k 0 k
k

E W E p W
RLS ET AM

lim 

 


          
(4.43) 
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Thus, from (4.43) it is clear that WRLS-ET-AM converges to W
*
 (optimal critic weights). 

4.3. Results and Discussions 

The numerical simulation of the DAC and FLAC controllers has been performed using 

MATLAB/SIMULINK
®
. To validate the tip trajectory tracking performances, the desired 

trajectory vector for two joints, θdi(t) i=1,2 are same as (3.14). The physical parameters of the 

studied TLFM are given in Table 2.2 and the controller parameters for RLAC are given in Table 

4.2. Gains of the discrete PD controller for the RLAC were determined by assuming the 

manipulator‘s links to be rigid i.e. for di(li, t) =0 .  

 

The gains were obtained from the following closed loop error equation knowing the values of

ni
  

i k i k i keq i d i p i
I e K e K e 0 i 1 2, ,        (4.44) 

where Ieqi denotes the equivalent inertia of the i
th

 joint. From (4.44), assuming critical damping, 

Kpi and Kdi can be determined as 

i

i

2

pi eq ni

di eq ni

K I

K 2I

  


        

 (4.45) 

 

Controller Parameters 

Link-1 Link-2 

ωn1= 3.15rad/sec, 

(Link-1 natural frequency) 

ωn2=10.054rad/sec, 

(Link-2 natural frequency) 

Ieq1= 0.17043Kg/m
2
, Ieq2= 0.0064Kg/m

2
 

Kp1=1.75, Kd1=1.25, Kp2=0.65, Kd2=0.15 

P0=1000×I
4×4

, α=0.5, z=0.25, γ=0.98 

 

Table 4.2: Controller Parameters for RLAC 
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where ωni is the i
th

 link’s natural frequency.  

4.3.1. Simulation results for an initial payload of 0.157 kg 

Comparisons of performances exhibited by three adaptive control schemes (FLAC, DAC and 

RLAC) while carrying a 0.157 kg payload are shown in Figs 4.3-4.8. Fig.4.3 and Fig.4.4 show 

the tip trajectory tracking error curves for link-1 and link-2 respectively. From Fig.4.3, for link-1, 

it is seen that there exists a tracking error of 0.4° in case of the FLAC and 1° in case of DAC. 

However, the tracking error by the RLAC is almost zero. Link-2 tracking error profiles in Fig.4.4 

reveal that the tracking errors are 0.45° for both DAC and FLAC whereas it is almost zero in 

case of the RLAC. Thus, RLAC provides excellent tracking performance. Fig.4.5 and Fig.4.6 

show the tip deflection trajectories for link-1 and link-2 carrying 0.157 kg of payload. From 

these figures it is seen that the RLAC suppresses the tip deflection faster compared to the DAC 

and FLAC by damping it within 4 sec.  

Fig.4.7 and Fig.4.8 show the control torque profiles generated by DAC, FLAC and RLAC for 

joint-1 and joint-2 respectively. From Fig. 4.7 and Fig.4.8, it seen that the control input generated 

by the RLAC becomes zero compared to DAC and FLAC for link-1 and link-2 when the desired 

tip position is tracked. Thus, RLAC needs less control excitation for handling a payload of 0.157 

kg compared to DAC and FLAC. In order to verify the performance of the RLAC compared to 

FLAC and DAC, further a frequency domain analysis has been performed. From Fig. 4.9 and 

Fig. 4.10 it is seen that the average power for RLAC is -15dB and -23dB less compared to DAC. 

The average power for RLAC is -18dB and -28dB less compared to FLAC for link-1and link-2 

respectively. Also, the average power of the tip trajectory error is calculated from its PSD. Fig. 

4.11 and Fig. 4.12 indicate that there is a reduction in average power of -15dB and -22dB for 
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link-1 and -17dB and -16dB for link-2 less for RLAC compared to DAC and FLAC respectively. 

The reduction in average power in case of PSDs of link deflection and tip trajectory signifies that 

RLAC generates effective adaptive control to suppress the overall link deflection when subjected 

to 0.157 kg payload.  

 

 

Fig.4.3 Simulation results (time domain) for tip trajectory tracking errors (Link-1) (0.157 kg): 

DAC, FLAC and RLAC 
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Fig.4.4 Simulation results (time domain) for tip trajectory tracking errors (Link-2) (0.157 kg): 

DAC, FLAC and RLAC 

 

Fig.4.5 Simulation results (time domain) for comparison of link-1 tip deflection performances 

(Link-1) (0.157 kg): DAC, FLAC and RLAC 
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Fig.4.6 Simulation results (time domain) for comparison of link-2 tip deflection performances 

(Link-1) (0.157 kg): DAC, FLAC and RLAC 

 

Fig.4.7 Simulation results (time domain) for torque profiles (joint-1) (Link-1) (0.157 kg): DAC, 

FLAC and RLAC 
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Fig.4.8 Simulation results (time domain) for torque profiles (joint-2) (Link-1) (0.157 kg): DAC, 

FLAC and RLAC 

 

Fig.4.9 Simulation results (frequency domain) for tip trajectory tracking errors (Link-1) (0.157 

kg): DAC, FLAC and RLAC 
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Fig.4.10 Simulation results (frequency domain) for tip trajectory tracking errors (Link-2) (0.157 

kg): DAC, FLAC and RLAC 

 

Fig.4.11 Simulation results (frequency domain) for comparison of link-1 tip deflection 

performances (Link-1) (0.157 kg): DAC, FLAC and RLAC 
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Fig.4.12 Simulation results (frequency domain) for comparison of link-2 tip deflection 

performances (Link-1) (0.157 kg): DAC, FLAC and RLAC 
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compared to the FLAC and RLAC. Fig.4.14 shows that FLAC has yielded maximum overshoot 
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deflection is maximum in case of DAC compared to FLAC and also RLAC when a payload of 

0.457 kg is attached for link-1. From Fig.4.16, it is seen that the tip deflection trajectories for 

link-2 is more oscillatory when carrying 0.457 kg of payload in case of DAC compared to FLAC 

and RLAC. Joint torque signals generated from DAC, FLAC and RLAC are compared in Fig. 

4.17 and Fig.4.18. The adaptation of the actor and critic weights for RLAC carrying payload of 

0.457 kg using simulation model is shown in Fig.4.19.The results show that as the learning 

progresses, the updated critic weights converge to their optimal values. RLAC performance is 

further analyzed by carrying out frequency domain analysis. The PSD of the time domain 

responses are given in Fig. 4.20 to Fig. 4.24. From Fig. 4.20 and Fig. 4.21 it can be seen that the 

average power of the PSD for RLAC is -5dB and -13dB less compared to DAC and is -18dB and 

-28dB less compared to FLAC for link-1 and link-2 respectively. The average power of the tip 

trajectory error is calculated from its PSDs in Fig. 4.22 and Fig. 4.23 respectively. The PSDs of 

tip trajectory errors show reduction in average power of -5.8dB and -7dB for link-1 and -7dB and 

-6dB for link-2 less for RLAC compared to DAC and FLAC respectively. Thus, a conclusion can 

be drawn that RLAC generates better adaptive control torques which damp the link deflections 

by effectively damping the mode excitations compared to FLAC and DAC. 
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Fig.4.13Simulation results (time domain) for tip trajectory tracking errors (Link-1) (0.457 kg): 

DAC, FLAC and RLAC 

 

Fig.4.14Simulation results (time domain) for tip trajectory tracking errors (Link-2) (0.457 kg): 

DAC, FLAC and RLAC 
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Fig.4.15Simulation results (time domain) for comparison of link-1 tip deflection performances 

(Link-1) (0.457 kg): DAC, FLAC and RLAC 

 

Fig.4.16Simulation results (time domain) for comparison of link-2 tip deflection performances 

(Link-1) (0.457 kg): DAC, FLAC and RLAC 
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Fig.4.17Simulation results (time domain) for torque profiles (joint-1) (0.457 kg): DAC, FLAC 

and RLAC  

 

Fig.4.18Simulation results (time domain) for torque profiles (joint-2) (0.457 kg): DAC, FLAC 

and RLAC  
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Fig.4.19 Simulation results for adaptation of the actor and critic weights to optimal values 

 

Fig.4.20 Simulation results (frequency domain) for tip trajectory tracking errors (Link-1) (0.457 

kg): DAC, FLAC and RLAC 
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Fig.4.21 Simulation results (frequency domain) for tip trajectory tracking errors (Link-2) (Link-

1) (0.457 kg): DAC, FLAC and RLAC 

 

Fig.4.22 Simulation results (frequency domain) for comparison of link-1 tip deflection 

performances (Link-1) (0.457 kg): DAC, FLAC and RLAC 
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Fig.4.23 Simulation results (frequency domain) for comparison of link-2 tip deflection 

performances (Link-1) (0.457 kg): DAC, FLAC and RLAC 
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RLAC has 0.15 mm of initial deviation as compared to who have 0.18 mm and 0.22 mm of 

initial deviation respectively for FLAC and DAC. 

Torque profiles for joint-1 generated by employing the three controllers are shown in Fig. 4.28, 

and that for joint-2 is shown in Fig. 4.29. The joint torque control input for link-1 obtained by 

DAC reaches to a maximum value (9 Nm) at 2 sec when the tip reaches to the final position at 4 

sec the control input reduces to 5 Nm. In case of FLAC where control input reaches to a 

maximum value (2 Nm) at 2 sec and 0.5 Nm for RLAC and torque becomes zero when the tip 

reaches the final position at 4sec. From Fig. 4.28 and Fig. 4.29, the joint control torque signals 

generated by DAC, FLAC and RLAC for link-2 have maximum of 12 Nm, 10 Nm, and 2.5 Nm 

respectively. 

The time domain analysis show that the controller RLAC shows better performance compared to 

FLAC and DAC. Further in order to get more insight, a frequency domain analysis (PSDs) is 

carried out for the link deflection and tip trajectory error. From Fig. 4.30 and Fig. 4.31 it is seen 

that the average power of the PSD for RLAC is -0.5dB and -1.3dB less compared to DAC and is 

-1.4dB and -2.84dB less compared to FLAC for link-1and link-2 respectively. Also, the average 

power of the tip trajectory error is calculated from its PSDs in Fig. 4.32 and Fig. 4.33 

respectively, which shows reduction in average power of -1.8dB and -1.7dB for link-1 and -

0.57dB and -0.26dB for link-2 less for RLAC compared to DAC and FLAC respectively. The 

results obtained signify that RLAC exhibits superior performance i.e. it provides damping the 

modal vibration by generating minimum average power signal compared to FLAC and DAC. 
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Fig.4.24Experiment results (time domain) for tip trajectory tracking errors (Link-1) (0.157 kg): 

DAC, FLAC and RLAC 

 

Fig.4.25Experiment results (time domain) for tip trajectory tracking errors (Link-2) (0.157 kg): 

DAC, FLAC and RLAC 
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Fig.4.26Experiment results (time domain) for comparison of link-1 tip deflection performances 

(0.157 kg): DAC, FLAC and RLAC 

 

Fig.4.27Experiment results (time domain) for comparison of link-2 tip deflection performances 

(0.157 kg): DAC, FLAC and RLAC 
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Fig.4.28 Experiment results (time domain) for torque profiles (joint-1) (0.157 kg): DAC, FLAC 

and RLAC 

 

Fig.4.29Experiment results (time domain) for torque profiles (joint-2) (0.157 kg): DAC, FLAC 

and RLAC 
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Fig.4.30 Experiment results (frequency domain) for tip trajectory tracking errors (Link-1) 

(0.157 kg): DAC, FLAC and RLAC 

 

Fig.4.31 Experiment results (frequency domain) for tip trajectory tracking errors (Link-2) 

(0.157 kg): DAC, FLAC and RLAC 
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Fig.4.32 Experiment results (frequency domain) for comparison of link-1 tip deflection 

performances (0.157 kg): DAC, FLAC and RLAC 

 

Fig.4.33 Experiment results (frequency domain) for comparison of link-2 tip deflection 

performances (0.157 kg): DAC, FLAC and RLAC 
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4.3.4. Experiment results for an additional payload of 0.3 kg 

An additional payload of 0.3 kg is added to the initial payload of 0.157 kg. Figs. 4.34-4.39 show 

comparison of the experimental results for TLFM obtained by employing RLAC, FLAC and 

DAC with a payload of 0.457 kg. Fig.4.34 and Fig.4.35 compare the tip trajectory tracking 

performances for link-1 and link-2 respectively. From Fig.4.34 and Fig.4.35 it is clear that when 

the final position is attained, the steady state error in case of RLAC is almost zero, whilst a finite 

steady sate error exists in case of both DAC and FLAC. The TLFM is an infinite dimensional 

system due to distributed link flexure. Higher modes have been neglected in modeling therefore 

there is a difference in steady state error for simulation and experimental results.Fig.4.36 and 

Fig.4.37 show the tip deflection trajectories for the link-1 and link-2 when asked for a payload of 

0.457 kg.  

 

 

Fig.4.34Experiment results (time domain) for tip trajectory tracking errors (Link-1) (0.457 kg): 

DAC, FLAC and RLAC 
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Fig.4.35 Experiment results (time domain) for tip trajectory tracking errors (Link-2) (0.457 kg): 

DAC, FLAC and RLAC 

 

Fig.4.36Experiment results (time domain) for comparison of link-1 tip deflection performances 

(0.457 kg): DAC, FLAC and RLAC 
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Fig.4.37Experiment results (time domain) for comparison of link-2 tip deflection performances 

(0.457 kg): DAC, FLAC and RLAC 

 

Fig.4.38Experiment results (time domain) for torque profiles (joint-1) (0.457 kg): DAC, FLAC 

and RLAC 
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Fig.4.39Experiment results (time domain) for torque profiles (joint-2) (0.457 kg): DAC, FLAC 

and RLAC 
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Fig.4.41 Experiment results (frequency domain) for tip trajectory tracking errors (Link-1) (0.457 

kg): DAC, FLAC and RLAC 

 

Fig.4.42 Experiment results (frequency domain) for tip trajectory tracking errors (Link-2) (0.457 

kg): DAC, FLAC and RLAC 
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Fig.4.43 Experiment results (frequency domain) for comparison of link-1 tip deflection 

performances (0.457 kg): DAC, FLAC and RLAC 

 

Fig.4.44 Experiment results (time domain) for comparison of link-1 tip deflection performances 

(0.457 kg): DAC, FLAC and RLAC 
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From Fig.4.36 it is seen in case of RLAC there exists an initial deviation of 0.2 mm as 

compared to FLAC and DAC in which deflections are 0.2 mm and 0.25 mm respectively for 

link-1. Link-2 tip deflection responses are shown in Fig.4.37. RLAC has 0.3 mm of initial 

deviation as compared to FLAC and DAC where initial deviations are 0.28 mm and 0.32 mm 

respectively. Torque profile generated for joint-1 by the three controllers is shown in Fig.4.38. 

From this figure it is seen that the DAC torque signal reaches to a maximum value of 9.5 Nm and 

reduces to 5 Nm at 4 sec when the final position is tracked. FLAC torque signal becomes the 

maximum (2.5 Nm) at 2 sec and almost reduces to zero at the final position. But RLAC 

generates control torque signal with less amplitude initially and zero magnitude while the desired 

position has been tracked. From Fig.4.39, torque profile generated for joint-2, it is seen that the 

DAC torque signal reaches to maximum value of 15 Nm at 1 sec and reduces to 6 Nm at 4 sec 

when the final position is tracked. FLAC torque signal reaches to maximum value of 9 Nm at 1.5 

sec and reduces to 2 Nm at 4 sec, whereas RLAC generates appropriate control torques with 

maximum value of 2 Nm at 1.5 sec with almost zero value at the final position. The experimental 

values while updating the actor and critic weights under payload of 0.457 kg are shown in 

Fig.4.40. The results show that despite changes in payload, the critic weights converge to their 

optimal values. However, there is difference in critic weights in experiment and simulations. 

This is because of approximations in modeling of the TLFM. From Fig. 4.41 and Fig. 4.42 it is 

seen that the average power of the PSD for RLAC is -0.15dB and -0.12dB less compared to 

DAC and is -0.7dB and -0.4dB less compared to FLAC for link-1and link-2 respectively. The 

average power of the tip trajectory error is calculated from its PSDs in Fig. 4.43 and Fig. 4.44 

respectively, reduction in average power of -2.5dB and -2.5dB for link-1 and -2.7dB and -2.6dB 

for link-2 less for RLAC compared to DAC and FLAC respectively. 
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4.4. Chapter Summary 

This Chapter has proposed a new real-time adaptive controller for tracking control of tip 

trajectory and suppressing tip deflection for a two-link flexible manipulator (TLFM) while 

subjected to handle variable payload based on reinforcement learning technique. The proposed 

RLAC provides better tracking and tip deflection damping performance compared to both a 

nonlinear direct adaptive controller (DAC) and a fuzzy learning based adaptive controller 

(FLAC) discussed in Chapter 3. The superiority of the RLAC over DAC and FLAC is its ability 

to adapt the actor and critic weights to an optimal value using the proposed Recursive Least 

Square-Eligibility Trace-Adaptive Memory algorithm (RLS-ET-AM) under variable payload.  

The proposed RLAC has been applied successfully to a laboratory flexible robot set-up. The 

RLAC has exhibited excellent performance in real-time control of this manipulator which has 

distributed flexure along it links.  
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Chapter 5 

Self-Tuning Control of a Two-Link Flexible 

Manipulator using NARMAX Model 
 

An adaptive control scheme using RL technique (RLAC) discussed in Chapter 4 exploits 

reinforcement learning for developing real-time adaptive control of tip trajectory and deflection 

of a two-link flexible manipulator handling variable payloads. However, RLAC depends upon a 

PD feedback loop for overall stability of the closed loop system. In this chapter a new adaptive 

controller is proposed to control the tip position and deflection of a flexible-link manipulator 

(FLM) while it is subjected to carry different payloads. The proposed adaptive controller uses a 

multivariable PID self-tuning control (STC) strategy. The parameters of the PID controller are 

adapted on-line using a nonlinear autoregressive moving average with exogenous-input 

(NARMAX) model of the two-link flexible manipulator (TLFM). The developed NATMAX 
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model based STC controller (NMSTC) is then compared with the RLAC. Section 5.2 presents 

the identification of the TLFM dynamics using NARMAX model. The design of the proposed 

STC scheme is presented in Section 5.3. STC is applied to the developed mathematical model 

and to the physical TLFM; the simulation and experimental results are discussed in Section 5.4. 

The summary of the chapter is presented in Section 5.5. 

5.1. Introduction 

It is described in Chapter 1 that due to sudden change in payload there may be large variation 

in manipulator parameters and that in turn adds further complexities to the FLM dynamics. 

Further, the dynamics of FLM is influenced by both rigid body motion and flexible motion. 

Usually while designing controllers for a flexible manipulator, its dynamics is derived by 

considering some finite number of flexible modes. When the payload changes, the mode shapes 

also change thus it is very difficult to obtain an accurate model of the FLM under varied payload 

conditions. Thus, the control problem of handling an unknown payload by a FLM is different 

and more complex than that of a rigid-link manipulator. In most of the reported adaptive 

controller schemes for FLM, linear identification is adopted, for example, a PID control law has 

been developed in [4] for a single-link flexible manipulator using an autoregressive moving 

average (ARMA) model with RLS algorithm to estimate parameters of the model. A simple 

decoupled self-tuning control law comprising of the estimation of link’s natural frequency for a 

single link flexible manipulator with varied payloads is proposed in [9]. In [10], an adaptive pole 

placement control law is proposed using a finite dimensional ARMA model of a single-link 

flexible manipulator to control the tip trajectory and tip deflection with under unknown payloads.  
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In the past, a number of indirect adaptive control schemes using linear models have been 

suggested for FLMs. But indirect adaptive controllers using a linear model fail to achieve precise 

real-time adaptive controller for FLMs for different payloads. Hence, an indirect control design 

using a nonlinear estimated model using a NARMAX model and a self-tuning controller is the 

focus of this paper. The NARMAX model is a popular nonlinear modeling paradigm which is 

different from non-linear time series representation like Volterra and Hammerstein model in the 

sense that the later models require large number of parameters to describe nonlinear system 

dynamics, hence involve with more computational burden [93]. Also, there have been several 

examples where NARMAX model based system identification have been successfully 

accomplished for very complex nonlinear systems, for example, In [94],a NARMAX model is 

used for representing nonlinear ankle dynamics systems. A rigid manipulator dynamics has been 

identified using a NARMAX model in [95]. Also, soft computing approaches such as differential 

evolution based neural network have been used for system identification using a NARMAX 

model in [96]. STC based on estimated NARMAX model has been employed in different 

systems for example, a continuous stirred-tank reactor in [97], a pilot-scale level plus 

temperature control system in [98], a predictive control strategy for nonlinear NOx 

decomposition process in thermal power plants in [99] and a state-space self-tuning control for 

an active fault-tolerant pulse-width-modulation tracker for unknown nonlinear stochastic hybrid 

systems [100]. Hence, in this chapter of a new NARMAX model based self-tuning controller 

(NMSTC) for a TLFM is developed by exploiting NARMAX modeling when the manipulator tip 

is subjected to handle unknown payloads. The proposed NMSTC is compared with that of the 

RLAC derived in chapter 4. 
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5.2 Identification of the TLFM using NARMAX model 

Equation (2.9) can be written after employing a forward difference discretization as 

 
   k 1 k

k 1
x x

x
T

 
 

     
(5.1) 

where T is the sampling-time, x(k)is the state vector, the TLFM dynamics derived in chapter 2 

can be represented as follows. Discrete-time nonlinear form can be written as 
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(5.2) 

where  
ip

y k  denotes the tip position of the i
th

 link, ui(k) is the input to the i
th

 joint, Ny and Nu 

represent the maximum delay in the output and input vectors respectively, and F
n
 [•] represents a 

multi-input multi-output (MIMO) nonlinear map of the TLFM input-output behavior. An 

additive noise term  i
k is added to (5.2) for representing the TLFM dynamics in form of 

NARMAX model. Hence, the NARMAX model for the TLFM is written as  
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 (5.3) 

The structure for discrete-time nonlinear MIMO representation of TLFM as a NARMAX model 

is shown in Fig.5.1, where 

Yi(k)   Nonlinear autoregressive (NAR) vector 
 

Ui(k)   Exogenous (X) vector 
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Fig.5.1 Structure of the NARMAX model of a planar TLFM 

 

Fig.5.2 Structure for estimation of NARMAX parameters for TLFM 
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N  Order of the nonlinearity 
 

Ny and Nu Order of NAR, MA, and X respectively  

The NARMAX model (5.3) can be rewritten using the on-line estimated parameters in its 

regressor form as  

       
i

T

i
Y k k w k kˆ ˆ  

    
 (5.4) 
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1
ŵ  : Link-1 inertia. 

2
ŵ  : Link-2 inertia. 

3
ŵ  : Hub-1 inertia. 

4
ŵ  : Hub-2 inertia. 

5
ŵ  : Link-1 equivalent mass 

6
ŵ  : Link-2 equivalent mass 

7
ŵ  : Total coupling mass between the links 

Fig.5.2 shows the structure for estimation of on-line NARMAX parameters where a ZOH is 

used to discretize the continuous signals. The estimated value of parameters  w kˆ of the 
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NARMAX model is  w kˆ  which can be estimated using a RLS algorithm given in equations 

(5.6)-(5.7). 
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(5.7) 

where λ is the forgetting factor and Pi(k) is the covariance matrix. 

5.3 Self-tuning control using NARMAX model 

A multivariable NMSTC has three main elements such as a control law generator in terms of 

multivariable difference equation, an on-line parameters estimator using NARMAX model that 

uses measured system output and input values and an algorithm that relates the estimated 

parameters and control parameters. The NMSTC algorithm for the TLFM is described as 

follows. Let us represent NARMAX output as 
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where the polynomials A(z
-1

), C(z
-1

) and b for i
th

 link are given as 
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The discrete time multivariable PID control law is given by  
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(5.9) 

where Δui(k) = ui(k)- ui(k-1) and ei(k) = ypi(k) (TLFM tip position)-θdi(k) (desired tip position). 

Further eq. (5.9) can be rewritten as 
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(5.10) 

Let Li(z
-1

) be a polynomial defined as  

 1 1 2D D i D

i i i

I

T 2T K TT
L z K 1 K 1 z z

T T T T

  
   

        
    

 
(5.11) 

Then, using (5.11) in (5.10) one gets 

    1

i i pi ri
u k L z y  

    
 

(5.12) 

Eq. (5.12) can be rewritten as 

            1 T 1

i i i i ri
L z k w k u k L z k 0     

   
(5.13) 

The polynomial Li(z
-1

) for the NMSTC law is tuned using minimum variance control law. 

Fig.5.3 shows structure of the proposed NARMAX based NMSTC for TLFM. In order to tune 

the PID parameters based on the principle of minimum variance, a performance index J1 is 

considered as follows 
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Fig.5.3 Structure of the NMSTC controller 

        1 T 1

1 i i i i i i ri
J Q z k w k u R z        

 
   

(5.14) 

where Ξ is the expectation operator, Гi is the weighting factor with respect to the control input in 

eq. (5.12) and Qi(z
-1

) user defined weighting polynomial with respect to the predicted input is the 

of the form 

 1 1 2

i i 1 i 2
Q z 1 q z q z

, ,
      

     
(5.15) 

The control law minimizing the performance index J2 in eq. (5.14) can be obtained as 

             1 T 1 1 1

i i i i i i i ri
F z k w k E z C z u Q z 0           

 
(5.16) 

where the Ei(z
-1

) and Fi(z
-1

) are found out by solving the following Diophantine equation  
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(5.17) 

where 
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(5.18) 

Let Ei(z
-1

)+Ci(z
-1

)+Λi is defined as vi in (5.17) and now multiplying by vi
-1

 (5.18) becomes  
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Let Ri(z
-1

)= Fi(z
-1

), then (5.19) can be rewritten as 
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Equating (5.20) with (5.13) leads to 
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(5.21) 

and based on (5.11), (5.18) and (5.19), the PID parameters i D i
K T T, , can be calculated as follows.  
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(5.22) 

 

Fig.5.4 Algorithm for NMSTC 

Step 1: (a) Choose the polynomial Qi(z
-1

) for i
th
 link as defined in (5.15)  

(b) Initialize the value of λi,, Гi used in (5.5) and (5.14) for i
th
 link. 

Step 2: Apply RLS algorithm defined in (5.5)-(5.7) to estimate the NARMAX 

parameters wi
s 
for i

th
 link.  

Step 3: Calculate the polynomials Fi(z
-1

) and Ei(z
-1

) of the Diophantine equation 

defined in (5.17) for i
th
 link in order to calculate the predicted tip position 

Step 4: Using the estimated polynomials Fi(z
-1

) and Ei(z
-1

), calculate the value of 

vi=Ei(z
-1

)+Ci(z
-1

)+Λi for k
th 

instant 

Step 5: 
si D i

K T T, , are calculated for i
th
 link using (5.22) 

Step 6: Using the value of 
si D i

K T T, ,  the self-tuning control law ui(k) is generated as 

input to the TLFM i
th
 joint on solving (5.19) as 
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5.4 Results and Discussions 

The numerical simulation of the NMSTC and RLAC controllers has been performed using 

MATLAB/SIMULINK
®
. To validate the tip trajectory tracking performances, the desired 

trajectory vector for two joints, θdi(t) i=1,2 are same as (3.16). The physical parameters of the 

studied TLFM are given in Table 2.2 in Chapter 2. And, the controller parameters for RLAC are 

given in Table 4.2 whereas gains of the discrete PD controller for the RLAC are taken from 4.44 

and 4.45 given in Chapter 4. 

5.4.1 Simulation results for an initial payload of 0.157 kg 

Comparisons of performances exhibited by adaptive controllers (NMSTC and RLAC) while 

carrying a 0.157 kg payload are shown in Fig.5.5-5.10. Fig.5.5 and Fig.5.6 show the tip 

deflection trajectories for link-1 and link-2 carrying 0.157 kg of payload. From these figures it is 

seen that the NMSTC suppresses the tip deflection faster compared to the RLAC by damping it 

within 4 sec. Fig.5.7 and Fig.5.8 show the tip trajectory tracking error curves for link-1 and link-

2 respectively. From Fig.5.7, it is seen that there is a tracking error of 0.025° in case of RLAC 

for link-1. However, the tracking error in case of NMSTC is 0.03°. Link-2 tracking error profiles 

in Fig.5.8 reveal that the tracking errors are 0.15° for RLAC whereas it is 0.155° in case of the 

NMSTC. Fig.5.9 and Fig.5.10 show the control torque profiles generated by RLAC and NMSTC 

for joint-1 and joint-2 respectively. From Fig.5.9 and Fig.5.10, it seen that the control input 

generated by the NMSTC becomes zero compared to RLAC for link-1 and link-2 when the 

desired tip position is tracked. Thus, NMSTC needs less control excitation for handling a 

payload of 0.157 kg compared to RLAC. Frequency domain analysis is carried out in order to 

further verify the performance of the NMSTC to suppress the overall link deflection. From Fig. 



Chapter 5-Self-Tuning Control of a TLFM using NARMAX Model 

139 

 

5.11 and Fig. 5.12 it is seen that the average power of the PSD for NMSTC is -10dB and -23dB 

less compared to RLAC for link-1 and link-2 respectively. Again the average power of the tip 

trajectory error is calculated from its PSDs in Fig. 5.13 and Fig. 5.14 respectively and they show 

reduction in average power of -15dB and -24dB for link-1 and link-2 respectively. The 

reductions of average power at the first and second mode by NMSTC compared to RLAC signify 

that the NMSTC exhibits better adaptive and optimal control performance.  

 

Fig.5.5 Simulation results (time domain) for comparison of link-1 tip deflection performances 

(0.157 kg): RLAC and NMSTC 
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Fig.5.6 Simulation results (time domain) for comparison of link-2 tip deflection performances 

(0.157 kg): RLAC and NMSTC 

 

Fig.5.7 Simulation results (time domain) tip trajectory tracking errors (Link-1) (0.157 kg): 

RLAC and NMSTC 
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Fig.5.8 Simulation results (time domain) for tip trajectory tracking errors (Link-2) (0.157 kg): 

RLAC and NMSTC 

 

Fig.5.9 Simulation results (time domain) for torque profiles (joint-1) (0.157 kg): RLAC and 

NMSTC  
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Fig.5.10 Simulation results (time domain) for torque profiles (joint-2) (0.157 kg): RLAC and 

NMSTC 

 

Fig.5.11 Simulation results (frequency domain) for comparison of link-1 tip deflection 

performances (0.157 kg): RLAC and NMSTC 
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Fig.5.12 Simulation results (frequency domain) for comparison of link-2 tip deflection 

performances (0.157 kg): RLAC and NMSTC 

 

Fig.5.13 Simulation results (frequency domain) tip trajectory tracking errors (Link-1) (0.157 kg): 

RLAC and NMSTC 
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Fig.5.14 Simulation results (frequency domain) for tip trajectory tracking errors (Link-2) (0.157 

kg): RLAC and NMSTC 

5.4.2 Simulation results for an additional payload of 0.3 kg 

An additional payload of 0.3 kg is now attached to the existing initial payload of 0.157 kg 

making the overall payload 0.457 kg. Performances of NMSTC and RLAC for 0.457 kg payload 

were compared in Figs 5.15-5.20. Suppressing the tip deflection performances of NMSTC and 

RLAC were compared in Fig.5.15 and Fig.5.16 for link-1 and link-2 respectively. From Fig.5.15, 

it is seen that tip deflection is maximum in case of RLAC compared to NMSTC when a payload 

of 0.457 kg is attached for link-1. From Fig.5.16, it is seen that the tip deflection trajectories for 

link-2 is more oscillatory when carrying 0.457 kg of payload in case of RLAC compared 

NMSTC.Fig.5.17 and Fig.5.18 depict the tip trajectory tracking performance for link-1 and link-

2. From Fig.5.18, it can be seen that the time evolution of the error trajectory achieved by 

employing RLAC has yielded maximum overshoot compared to the NMSTC.  
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Fig.5.15 Simulation results (time domain) for comparison of link-1 tip deflection performances 

(0.457 kg): RLAC and NMSTC 

 

Fig.5.16 Simulation results (time domain) for comparison of link-2 tip deflection performances 

(0.457 kg): RLAC and NMSTC 
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Fig.5.17 Simulation results (time domain) for tip trajectory tracking errors (Link-1) (0.457 kg): 

RLAC and NMSTC 

 

Fig.5.18 Simulation results (time domain) for tip trajectory tracking errors (Link-2) (0.457 kg): 

RLAC and NMSTC  
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Fig.5.19 Simulation results (time domain) for torque profiles (joint-1) (0.457 kg): RLAC and 

NMSTC 

 

Fig.5.20 Simulation results (time domain) for torque profiles (joint-2) (0.457 kg): RLAC and 

NMSTC 
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Fig.5.21 Simulation results (frequency domain) for comparison of link-1 tip deflection 

performances (0.457 kg): RLAC and NMSTC 

 

Fig.5.22 Simulation results (frequency domain) for comparison of link-2 tip deflection 

performances (0.457 kg): RLAC and NMSTC 
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Fig.5.23 Simulation results (frequency domain) for tip trajectory tracking errors (Link-1) 

(0.457 kg): RLAC and NMSTC 

 

Fig.5.24 Simulation results (frequency domain) for tip trajectory tracking errors (Link-2) 

(0.457 kg): RLAC and NMSTC  
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Fig.5.18 show that RLAC yields maximum overshoot compared to NMSTC controller. Joint 

torque signals generated from RLAC and NMSTC are compared in Fig.5.19 and Fig.5.20. From 

Fig. 5.21 and Fig. 5.22 it is seen that the average power of the PSD for NMSTC is -10dB and -

23dB less compared to RLAC for link-1and link-2 respectively. The average power of the tip 

trajectory error is calculated from its PSDs in Fig. 5.23 and Fig. 5.24 respectively and reduction 

in average power of -15dB and -24dB for link-1 and link-2 respectively. The simulation results 

for NMSTC and RLAC under 0.157 kg of nominal payload and with additional payload of 0.3 kg 

is summarized in Table 5.1. The comparison of performance indices such as settling time and 

maximum overshoot for tip trajectory tracking for NMSTC and RLAC were compared.  

Table 5.1: Comparison of simulation results for the controllers (RLAC and NMSTC) 

Controller 

Schemes 

Payload (Kg) Link Overshoot 

(%) 

Settling-

Time (ts) in 

sec 

Reference Figure 

RLAC  

0.157 

Link-1 4.5 5.0 Fig.5.7 

Link-2 5.5 5.2 Fig.5.8 

 

0.457 

Link-1 5.5 6.5 Fig.5.13 

Link-2 6.5 7.0 Fig.5.14 

 

NMSTC 

 

0.157 

Link-1 2 4.0 Fig.5.5 

Link-2 2.5 4.0 Fig.5.8 

 

0.457 

Link-1 2.5 6.0 Fig.5.13 

Link-2 3 6.5 Fig.5.14 

From Table 5.1 it is observed that RLAC yields a 4.5% maximum overshoot for link-1 and 5.5 % 

for link-2 under a nominal payload of 0.157 kg and in case of NMSTC the maximum overshoot 
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percentage are 2% and 2.5% respectively for link-1 and link-2. When an additional payload of 

0.3 kg is attached to tip, the maximum overshoots in case of NMSTC are 2.5% and 3% 

respectively for link-1 and link-2. But the RLAC yields 5.5% and 6.5% overshoots for link-1 and 

link-2. 

5.4.3 Experimental results for an initial payload of 0.157 kg 

Figs. 5.25-5.30 compare experimental results obtained by NMSTC and RLAC with an initial 

payload of 0.157 kg. The tip deflection trajectories for the link-1 and link-2 when loaded for a 

0.157 kg payload are shown in Fig 5.25 and Fig 5.26. From Fig.5.25, it can be seen that NMSTC 

yields 0.04 mm of initial deviation as compared to RLAC where the deflection is 0.18 mm for 

link-1. Link-2 tip deflection characteristics are shown in Fig.5.26, from which it is seen that 

NMSTC has 0.2 mm of initial deviation as compared to RLAC which has 0.6 mm of initial 

deviation. Fig.5.27 and Fig.5.28 show the comparison of the tip trajectory tracking, after 4 sec 

when the tip attains the final position, the steady sate error is zero in case of NMSTC for link-1 

and link-2, whereas the RLAC yield steady state error of 0.12° and 0.6° for link-1 link-2 

respectively after 4 sec. Torque profiles for joint-1 generated by employing the controllers are 

shown in Fig.5.29 and that for joint-2 is shown in Fig. 5.30. In Fig.5.29 the joint torque control 

input for link-1 obtained by RLAC reaches to a maximum value (0.5 Nm) at 2 sec and as the tip 

reaches to the final position the control input reduces to 0.2 Nm. While in case of NMSTC there 

is 0.15 Nm initial torque and it becomes zero when the tip reaches the final position at 4 sec. 

From Fig. 5.31 and Fig. 5.32 shows the average power of the PSD for NMSTC is -1.7dB and -

2.4dB less compared to RLAC for link-1and link-2 respectively. The average power of the tip 

trajectory error is calculated from its PSDs in Fig. 5.33 and Fig. 5.34 respectively, reduction in 

average power of -1.6dB and -2.8dB for link-1 and link-2 respectively. 
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Fig.5.25 Experimental results (time domain) for comparison of link-1 tip deflection 

performances (0.157 kg): RLAC and NMSTC 

 

Fig.5.26 Experimental results (time domain) for comparison of link-2 tip deflection 

performances (0. 157 kg): RLAC and NMSTC 
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Fig.5.27 Experimental results (time domain) for tip trajectory tracking errors (Link-1) (0.157 

kg): RLAC and NMSTC 

 

Fig.5.28 Experimental results (time domain) for tip trajectory tracking errors (Link-2) (0.157 

kg): RLAC and NMSTC 
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Fig.5.29 Experimental results (time domain) for torque profiles (joint-1) (0.157 kg): RLAC and 

NMSTC) 

 

Fig.5.30 Experimental results (time domain) for torque profiles (joint-2) (0.157 kg): RLAC and 
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Fig.5.22 shows the joint control torque signals generated by RLAC and NMSTC for link-2 have 

which has maximum of 2 Nm and 0.2 Nm and reduces to 0.2 Nm and zero respectively as the tip 

attains the final position. 

 

Fig.5.31 Experimental results (frequency domain) for comparison of link-1 tip deflection 

performances (0.157 kg): RLAC and NMSTC 
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Fig.5.32 Experimental results (frequency domain) for comparison of link-2 tip deflection 

performances (0. 157 kg): RLAC and NMSTC 

 

Fig.5.33 Experimental results (frequency domain) for tip trajectory tracking errors (Link-1) 

(0.157 kg): RLAC and NMSTC 
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Fig.5.34 Experimental results (frequency domain) for tip trajectory tracking errors (Link-2) 

(0.157 kg): RLAC and NMSTC 
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Fig.5.35 Experimental results (time domain) for comparison of link-1 tip deflection 

performances (0.457 kg): RLAC and NMSTC 

 

Fig.5.36 Experimental results (time domain) for comparison of link-2 tip deflection 

performances (0.457 kg): RLAC and NMSTC 
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NMSTC has 0.06 mm of initial deviation as compared to RLAC where an initial deviation is 

0.25 mm. Fig.5.37 and Fig.5.38 compare the tip trajectory tracking performances for link-1 and 

link-2 respectively. From Fig.5.37 and Fig.5.38 it is clear that when the final position is attained, 

the steady state error in case of NMSTC is almost zero, whilst a finite steady sate error exists in 

case of RLAC.  

Torque profile generated for joint-1 by the controllers is shown in Fig.5.39. From this figure it is 

seen that the RLAC torque signal reaches to a maximum value of 0.55 Nm and reduces to 0.05 

Nm at 4 sec when the final position is tracked. But NMSTC generates control torque signal with 

0.2 Nm in amplitude initially and zero magnitude while the desired position has been tracked. 

From Fig.5.40, torque profile generated for joint-2, it is seen that the RLAC torque signal 

reaches to maximum value of 1.5 Nm at 1sec and reduces to 0.6 Nm at 4sec when the final 

position is tracked, whereas NMSTC generates appropriate control torques with maximum value 

of 0.5 Nm at 1.5 sec with 0.05 Nm value at the final position. Fig. 5.41 and Fig. 5.42 shows the 

average power of the PSD for NMSTC is -1.2dB and -2.4dB less compared to RLAC for link-

1and link-2 respectively. The average power of the tip trajectory error is calculated from its 

PSDs (Fig. 5.43 and Fig. 5.44 respectively). It is observed that there is a reduction in average 

power of -1.7dB and -1.8dB for link-1 and link-2 respectively. Table 5.2 shows the comparisons 

of the experiment results for NMSTC and RLAC under 0.157 kg of nominal payload and 

additional payload of 0.3 kg. 
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Fig.5.37 Experimental results (time domain) for tip trajectory tracking errors (Link-1) (0.457 

kg): RLAC and NMSTC 

 

Fig.5.38 Experimental results (time domain) for tip trajectory tracking errors (Link-2) (0.457 

kg): RLAC and NMSTC 
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Fig.5.39 Experimental results (time domain) for torque profiles (joint-1) (0.457 kg): RLAC and 

NMSTC 

 

Fig.5.40 Experimental results (time domain) for torque profiles (joint-2) (0.457 kg): RLAC and 

NMSTC 
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Fig.5.41 Experimental results (frequency domain) for comparison of link-1 tip deflection 

performances (0.457 kg): RLAC and NMSTC 

 

Fig.5.42 Experimental results (frequency domain) for comparison of link-2 tip deflection 

performances (0.457 kg): RLAC and NMSTC 
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Fig.5.43 Experimental results (frequency domain) for tip trajectory tracking errors (Link-1) 

(0.457 kg): RLAC and NMSTC 

 

Fig.5.44 Experimental results (frequency domain) for tip trajectory tracking errors (Link-2) 

(0.457 kg): RLAC and NMSTC 
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The comparison of performance indices such as settling time and maximum overshoot for tip 

trajectory tracking for NMSTC and RLAC were compared. From Table 5.2 it is observed that 

RLAC yields a 6.5% maximum overshoot for link-1 and 5.5 % for link-2 under a nominal 

payload of 0.157 kg and in case of NMSTC the maximum overshoot percentage are 0.5% and 

1% respectively for link-1 and link-2. When an additional payload of 0.3 kg is attached to tip, the 

maximum overshoots in case of NMSTC are 1% and 1.5% respectively for link-1 and link-2. But 

the RLAC yields 4.5% and 4% overshoots for link-1 and link-2.  

Table 5.2: Comparison of experimental results for the controllers (RLAC and NMSTC) 

Controller 

Schemes 

Payload 

(Kg) 

Link Overshoot 

(%) 

Settling-Time 

(ts) 

Reference Figure 

RLAC 0.157 Link-1 6.5 4.0 Fig.5.19 

Link-2 5.5 5.2 Fig.5.20 

0.457 Link-1 4.5 4.8 Fig.5.25 

Link-2 4.0 6.0 Fig.5.26 

NMSTC 0.157 Link-1 0.5 4.2 Fig.5.19 

Link-2 1 5.0 Fig.5.20 

0.457 Link-1 1 4.5 Fig.5.25 

Link-2 1.5 4.6 Fig.5.26 

 

5.5 Chapter Summary 

The Chapter has presented a new self-tuning multivariable PID controller (NMSTC) to control 

tip trajectory and tip deflection of a two-link flexible manipulator while handling variable 
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payloads based on NARMAX model. The proposed NMSTC has been applied successfully to a 

flexible robot set-up in the laboratory. From the simulation and experimental results it is 

established that the proposed NMSTC generates appropriate adaptive torque when the 

manipulator is asked to handle additional payload of 0.3 kg compared to RLAC proposed in 

Chapter 4.  

As in case of NMSTC, parameters are adapted due to change in payload by directly estimating 

the NARMAX model parameters on-line whereas in case of RLAC is based on the actor and 

critic weights adaptation using the Recursive Least Square-Eligibility Trace-Adaptive Memory 

algorithm (RLS-ET-AM). 
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Chapter 6 

Nonlinear Adaptive Model Predictive Control of 

a Two-Link Flexible Manipulator using 

NARMAX Model 
 

The adaptive control scheme described in Chapter 5 uses a PID self-tuning control using 

NARMAX model to control the tip position and its deflection for a TLFM.  However, in this 

control only one-step ahead prediction is used in the NMSTC but considerable time is needed to 

find an optimum tuning of control parameters. In this work a NARMAX model-based MPC 

control strategy is proposed i.e. NMPC which incorporates a nonlinear regressor and parameters 

in linear representation of the TLFM model. The Chapter is organized as follows. Section 6.2 

presents the design of the proposed NMPC scheme. NMPC is verified both through simulation 
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and experiment. The simulation and experimental results are discussed in Section 6.4. The 

summary of the chapter is presented in Section 6.5. 

 

6.1 Introduction 

In MPC, the current control action is obtained by solving a finite horizon open loop optimal 

control problem online, at each sampling instant. The optimization yields an optimal control 

sequence, and only the first control in this sequence is applied to the plant. MPC attracted 

attention of many researchers to exploit it as one of the most recommended advanced control 

algorithms [101-107]. This control methodology has been applied successfully in control of 

many complex systems such as inverse unstable systems, open loop unstable systems, and 

variable dead time processes [108-110]. From the results obtained in [111-114], it can be verified 

that MPC provide robustness with respect to modeling errors, over- and under parameterization, 

and sensor noise. Also recently nonlinear model predictive control is being applied to many 

nonlinear systems in [115-120]. Hence, in this Chapter a new NARMAX model based nonlinear 

adaptive multivariable model predictive control (NMPC) has been developed. The performances 

of the proposed controller are also compared with a nonlinear NMSTC using both simulation and 

experimental studies. Fig.6.1 shows the basic nonlinear model predictive control concept, where 

Np is the prediction horizon and Nc is the control horizon. The basic idea in a model predictive 

control is to predict the vector of future outputs so that the norm of future error vector is 

minimized over a specific number of future control inputs.  
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Fig.6.1 Basic Nonlinear model predictive control concept 

6.2 Nonlinear Adaptive Model Predictive Control using NARMAX 

Model 

The NARMAX model for the TLFM estimated in Chapter 5 is  
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  (6.1) 

The j-step-ahead predicted output can be constructed with the available sequence of past 

inputs, past outputs and noise at sampling time T of the NARMAX model in (6.1) as  
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Eq. (6.2) can be represented in a generalized form as 

     S k G k HU kˆ ˆ ˆ    
     

(6.3) 

where 

Past Future 

k-1        k+1   ⋯        ⋯  ⋯    ⋯     ⋯    ⋯    k+Nc 

Nc 

Np 

 Reference Signal 

 Predicted Output 

 Predicted Control Input 
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The predicted output (6.3) consists of control inputs U(k)(present values) and U(k-1), ⋯,U(k-Nu), 

(past values). The nonlinear functions  G kˆ   and  H U kˆ is written in parametric form as 

     
j

jk jk

N

if i

k 1

G k w k ̂


    
       

(6.4) 

      
jl

jlk jlk

N

ig i

k 1

HU k w k ̂


   
       

(6.5) 

Hence, the j-step ahead prediction for the TLFM-NARMAX model (6.3) is rewritten using the 

parametric representation of  G kˆ   and  H U kˆ  given in (6.4) and (6.5) respectively as  

 

Fig.6.2 Structure of the proposed adaptive NMPC 
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(6.6) 

Eq. (6.6) can be rewritten as 

       
j jl

jk jlk jk jlk

N N

if ig i i ip ip

k 1 k 1

Y k w w k wˆ ˆ 
 

      
  

 

 
(6.7) 

where 

     

     

j jl

jk jlk jk jlk

j jl

jk jlk

N N

ip if ig i i

k 1 k 1

N N

ip i i

k 1 k 1

w w w k

k

ˆ ˆ ˆ 
 

 

    
 

     
 

 



 
The structure of the proposed NMPC is shown in Fig. 6.2. Using the predicted output in (6.7) 

along with control input U(k)and the desired tip trajectory R(k)for i
th

 link, a cost function J2 is 

defined as 
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T

2 Q R
J R k Y k K R k Y k U k K U kˆ ˆ        

   

  

(6.8) 
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The optimal control sequence over the prediction horizon Ny can be obtained by minimizing the 

cost function J1 with respect to the control input U(k), This can be achieved by setting 2
J

0
U





. 

Taking the derivative of the performance index (6.8) with respect to the control input, one gets 
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Solving for the partial derivatives w.r.t. U(k) gives 
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(6.10) 

  R R
K U k K

U
 



       

(6.11) 

and 
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(6.12) 

Using (6.10), (6.11) and (6.12) in (6.9) gives 
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2K K R k Y k 2K U k

U
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(6.13) 

Setting 2
J

U




 to zero in order minimize the performance index with respect to U(k), and 

substituting  Y kˆ from (6.7) in (6.13), we have 

  
Y

T T

Q ip ip R
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(6.14) 

Hence, the control input U(k) can be obtained as 
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Define a constant KU as 
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(6.16) 

and the difference operator Δ=1-q
-1

 to calculate the change in control input ΔU(k). Now, using 

(6.15) in (6.16), (6.14) can be rewritten in terms of ΔU(k) as 
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(6.17) 

The desired adaptive torque to the actuator of the i
th

 joint is given by (6.17). The proposed 

algorithm of the NMPC is described in Fig.6.3. 

 

 

Fig.6.3 Algorithm for proposed adaptive NMPC 

 

Step 1: Initialize λi, KR and KQ in (5.5) and (6.8) for i
th
 link respectively. 

Step 2: Employ RLS algorithm (5.5)-(5.7) to estimate the NARMAX parameters wi
s
for 

i
th
 link.  

Step 3: Calculate the j-step prediction of the redefined tip position using the NARMAX 

parameters and measured input and output values 
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Step 5: 

Calculate the gain matrix 
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Step 6: Using the value of KY, the NMPC control law is generated as input to i
th
 joint 

for k
th 

instant till an control signal U(k) is achieved else go to Step 2 
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 where ∆U(k) is the incremental control signal obtained by 

solving (6.17) as     U ip ip
U k K R k ŵ      
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6.3 Results and Discussions 

The numerical simulation of the NMSTC and RLAC controllers has been performed using 

MATLAB/SIMULINK
®
. To validate the tip trajectory tracking performances, the desired 

trajectory vector for two joints, θdi(t) i=1,2 are same as (3.16). The physical parameters of the 

studied TLFM are given in Table 2.2.  

6.3.1 Simulation results for an initial payload of 0.157 kg 

The comparison of performances obtained using NMPC and NMSTC adaptive controllers while 

carrying a nominal payload of 0.157 kg are shown in Figs 6.4-6.9. Fig.6.4 and Fig.6.5 show the 

tip deflection trajectories respectively for link-1 and link-2 carrying a nominal payload 0.157 kg. 

From these figures it is seen that the tip deflection amplitude for link-1 is almost same for both 

NMPC and NMSTC. But in case of link-2, the maximum tip deflection amplitude is 0.035 mm in 

case of NMSTC and 0.01 mm for NMPC. The tip deflection is damped out within 4sec before 

the tip attains the final position. 

Fig.6.6 and Fig.6.7 show the tip trajectory tracking error curves for link-1 and link-2 

respectively with a nominal payload of 0.157 kg. From Fig.6.6, it is seen that there is a maximum 

tip tracking error of 0.03° in case of NMSTC for link-1 whereas in case of NMPC it is 0.02°. 

Link-2 tip trajectory tracking error is shown in Fig.6.7 from which it is seen that maximum 

tracking error amplitude is 0.1° for NMSTC and 0.035° for NMPC. Fig.6.8 and Fig.6.9 show the 

control torque profiles generated by NMSTC and NMPC for joint-1 and joint-2 respectively. 

From Fig.6.8 and Fig.6.9, it seen that the control input generated by the NMSTC becomes 0.858 

Nm at 1 sec while on the other hand NMPC generates smooth control input with maximum 

amplitude of 0.6 Nm at 2 sec and then it goes to zero at 4 sec for link-1.  
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Fig.6.4 Simulation results (time domain) for comparison of link-1 tip deflection performances 

(0.157 kg): NMSTC and NMMPC 

 

Fig.6.5 Simulation results (time domain) for comparison of link-2 tip deflection performances 

(0.157 kg): NMSTC and NMMPC 
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Fig.6.6 Simulation results (time domain) for tip trajectory tracking errors (Link-1) (0.157 kg): 

NMSTC and NMMPC 

 

Fig.6.7 Simulation results (time domain) for tip trajectory tracking errors (Link-2) (0.157 kg): 

NMSTC and NMMPC 
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Fig.6.8 Simulation results (time domain) for torque profiles (joint-1) (0.157 kg): NMSTC and 

NMMPC 

 

Fig.6.9 Simulation results (time domain) for torque profiles (joint-1) (0.157 kg): NMSTC and 

NMMPC 
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For link-2, the control input is 1 Nm at 3 sec whereas for NMPC it is 0.5 Nm. Thus, NMPC 

needs less control excitation for handling a payload of 0.157kg compared to NMSTC. Fig. 6.10 

and Fig. 6.11 show the average power of the PSD for NMPC is -10dB and -18dB less compared 

to NMSTC for link-1and link-2 respectively. The average power of the tip trajectory error 

calculated from its PSDs shown in Fig. 6.12 and Fig. 6.13 envisage that there is a reduction in 

average power of -14dB and -24dB for link-1 and link-2 respectively. 

 

Fig.6.10 Simulation results (frequency domain) for comparison of link-1 tip deflection 

performances (0.157 kg): NMSTC and NMMPC 
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Fig.6.11 Simulation results (frequency domain) for comparison of link-2 tip deflection 

performances (0.157 kg): NMSTC and NMMPC 

 

Fig.6.12 Simulation results (frequency domain) for tip trajectory tracking errors (Link-1) (0.157 

kg): NMSTC and NMMPC 
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Fig.6.13 Simulation results (frequency domain) for tip trajectory tracking errors (Link-2) (0.157 

kg): NMSTC and NMMPC 
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tracking error profiles in Fig.6.17 reveal that the tracking errors are 0.05° for NMSTC whereas it 

is 0.02° in case of the NMPC. Fig.6.18 and Fig.6.19 show the control torque profiles generated 

by NMSTC and NMPC for joint-1 and joint-2 respectively.  

Fig.6.18 it seen that the control input generated by the NMSTC become maximum at 3 sec 

with amplitude of 0.8 Nm while on other hand in Fig.6.19 for link-2 with additional payload of 

0.3 kg the maximum control input is 1.2 Nm for NMSTC while for NMPC it is 0.2 Nm only. 

Thus, NMPC needs show better performance with a payload of 0.157kg compared to NMSTC. 

Fig. 6.20 and Fig. 6.21 show the average power of the PSD for NMPC is -12dB and -28dB less 

compared to NMSTC for link-1and link-2 respectively. The average power of the tip trajectory 

error calculated from its PSDs (Fig. 6.22 and Fig. 6.23 respectively). It is seen that there is a 

reduction in average power of -24dB and -44dB for link-1 and link-2 respectively. 

 

Fig.6.14Simulation results (time domain) for comparison of link-1 tip deflection performances 

(0.457 kg): NMSTC and NMMPC 
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Fig.6.15Simulation results (time domain) for comparison of link-2 tip deflection performances 

(0.457 kg): NMSTC and NMMPC 
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Fig.6.16Simulation results (time domain) for tip trajectory tracking errors (Link-1) (0.457 kg): 

NMSTC and NMMPC 

 

Fig.6.17Simulation results (time domain) for tip trajectory tracking errors (Link-2) (0.457 kg): 

NMSTC and NMMPC 
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Fig.6.18Simulation results (time domain) for torque profiles (joint-1) (0.457 kg): NMSTC and 

NMMPC 

 

0 1 2 3 4 5 6 7 8 9 10
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time in (sec)

J
o

in
t-

1
 c

o
n

tr
o

l 
to

rq
u

e
 (

N
m

)

 

 

NMSTC

NMPC

0 1 2 3 4 5 6 7 8 9 10
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
x 10

-3

Time in (sec)

J
o

in
t-

2
 c

o
n

tr
o

l 
to

rq
u

e
 (

N
m

)

 

 

NMSTC

NMPC



Chapter 6-Nonlinear Adaptive Model Predictive Control of a TLFM using NARMAX Model 

184 

 

Fig.6.19Simulation results (time domain) for torque profiles (joint-2) (0.457 kg): NMSTC and 

NMMPC 

Table 6.1: Comparison of simulation results for the controllers (NMPC and NMSTC) 

Controller Schemes Payload 

(Kg) 

Link Overshoot 

(%) 

Settling-Time 

(ts) in sec 

Reference 

Figure 

NMPC  

0.157 

Link-1 0.25 4.0 Fig.6.6 

Link-2 0.65 4.0 Fig.6.7 

 

0.457 

Link-1 0.5 4.0 Fig.6.12 

Link-2 0.75 4.5 Fig.6.13 

NMSTC  

0.157 

Link-1 2 4.0 Fig.6.6 

Link-2 2.5 4.0 Fig.6.7 

 

0.457 

Link-1 2.5 6.0 Fig.6.12 

Link-2 3 6.5 Fig.6.13 

 

The simulation results for NMSTC and NMPC under 0.157 kg of nominal payload and with 

additional payload of 0.3 kg is summarized in Table 6.1. The comparison of performance indices 

such as settling time and maximum overshoot for tip trajectory tracking for NMSTC and NMPC 

were compared. From Table 6.1 it is observed that NMPC yields a 0.25% maximum overshoot 

for link-1 and 0.65 % for link-2 under a nominal payload of 0.157 kg and in case of NMSTC the 

maximum overshoot percentage is 2% and 2.5% respectively for link-1 and link-2. When an 

additional payload of 0.3 kg is attached to tip, the maximum overshoots in case of NMSTC are 

2% and 2.5% respectively for link-1 and link-2. But the NMPC yield 0.5% and 0.75% 

overshoots for link-1 and link-2. 
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Fig.6.20 Simulation results (frequency domain) for comparison of link-1 tip deflection 

performances (0.457 kg): NMSTC and NMMPC 

 

Fig.6.21 Simulation results (frequency domain) for comparison of link-2 tip deflection 

performances (0.457 kg): NMSTC and NMMPC 
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Fig.6.22 Simulation results (frequency domain) for tip trajectory tracking errors (Link-1) (0.457 

kg): NMSTC and NMMPC 

 

Fig.6.23 Simulation results (frequency domain) for tip trajectory tracking errors (Link-2) (0.457 

kg): NMSTC and NMMPC 
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6.3.3 Experimental results for an initial payload of 0.157 kg 

Experimental results under a nominal payload of 0.157 kg are shown in Fig.6.24 to Fig.6.29. The 

experimental results showing the tip deflection obtained by NMPC and NMSTC with a nominal 

payload of 0.157 kg are shown in Fig.6.24and Fig. 6.25for link-1 and link-2 respectively. From 

Fig.6.24it is observed that maximum tip deflection of 0.25 mm in case of NMSTC while the 

maximum deflection is 0.05mm is seen in case of NMPC. Fig.6.25 shows that the maximum tip 

deflection amplitude is 0.1 mm for link-2 in case of NMPC whereas in case of NMSTC it is 0.15 

mm. Fig.6.26 and Fig.6.27 shows the tip trajectory tracking error curves for link-1 and link-2 

respectively. From Fig.6.26, it is seen that there is a tracking error of 0.015° in case of NMSTC 

for link-1. However, the tracking error in case of NMPC is 0.005°. Link-2 tracking error profiles 

in Fig.6.27 reveal that the tracking errors is 0.6° for NMSTC whereas it is 0.1° in case of the 

NMPC. Fig.6.28 and Fig.6.29 show the control torque profiles generated by NMSTC and NMPC 

for joint-1 and joint-2 respectively. The maximum value of control torque is 0.5 Nm and reduces 

to almost zero after 2 sec in case of NMPC, whereas for NMSTC the maximum value is 0.6 Nm 

and it is maintained till the tip attains its final position, consequently reducing to zero after 4 sec. 

On the other hand, the torque profiles for joint-2, the NMPC attains 1.5 Nm and reduces to 

almost zero after 4 sec whereas in case of NMSTC the maximum input control torque is 2 Nm 

initially, then rises to about 2.5 Nm and it is maintained till the tip attains its final position, 

consequently reducing to zero after 4 sec. Fig. 6.30 and Fig. 6.31 show the average power of the 

PSD for NMPC is -2.6dB and -1.8dB less compared to NMSTC for link-1and link-2 

respectively. There is a reduction in average power of -4dB and -3dB for tracking errors of link-1 

and link-2 respectively (Fig. 6.32 and Fig. 6.33). 
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Fig.6.24Experimental results (time domain) for comparison of link-1 tip deflection 

performances (0.157 kg): NMSTC and NMMPC 

 

Fig.6.25Experimental results (time domain) for comparison of link-2 tip deflection 

performances (0.157 kg): NMSTC and NMMPC 
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Fig.6.26Experimental results (time domain) for tip trajectory tracking errors (Link-1) (0.157 

kg): NMSTC and NMMPC 

 

Fig.6.27Experimental results (time domain) for tip trajectory tracking errors (Link-2) (0.157 

kg): NMSTC and NMMPC 
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Fig.6.28Experimental results (time domain) for torque profiles (joint-1) (0.157 kg): NMSTC and 

NMMPC 

 

Fig.6.29Experimental results (time domain) for torque profiles (joint-2) (0.157 kg): NMSTC and 

NMMPC 
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Fig.6.30 Experimental results (frequency domain) for comparison of link-1 tip deflection 

performances (0.157 kg): NMSTC and NMMPC 

 

Fig.6.31 Experimental results (frequency domain) for comparison of link-2 tip deflection 

performances (0.157 kg): NMSTC and NMMPC 
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Fig.6.32 Experimental results (frequency domain) for tip trajectory tracking errors (Link-1) 

(0.157 kg): NMSTC and NMMPC 

 

Fig.6.33 Experimental results (frequency domain) for tip trajectory tracking errors (Link-2) 

(0.157 kg): NMSTC and NMMPC 
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6.3.4 Experimental results for an additional payload of 0.3 kg 

An additional payload of 0.3 kg was added making the overall payload to 0.457 kg. 

Performances of NMPC and NMSTC with 0.457 kg payload were compared in Fig.6.34 to 

Fig.6.39. Fig.6.34 and Fig.6.35 show the tip deflections profile of the link-1 and link-2 

respectively. From Fig.6.34 it is revealed that in case of link-1, due to change in payload of 0.3 

kg, the maximum tip deflection amplitude becomes 0.25 mm and it takes 8 sec to damp out the 

tip deflection by the NMSTC, whereas NMPC damps out the tip deflection within 5 sec and the 

maximum tip deflection amplitude is 0.15 mm. Compensating of tip deflection performances for 

link-2 by the two controllers is shown in Fig.6.35. This figure depicts that NMSTC yields a 

maximum deflection up to 0.3 mm and damps out tip deflection at 8 sec whereas NMPC yields 

maximum deflection of 0.15mm and takes 6 sec to damp out link-2 tip deflection. Fig.6.36 and 

Fig.6.37 show the tip trajectory tracking error curves for link-1 and link-2 respectively. From 

Fig.6.36, it is seen that there is a maximum tracking error of 0.15° in case of NMSTC for link-

1,however, the maximum tracking error in case of NMPC is 0.05° while carrying an additional 

payload of 0.3 kg.Link-2 tracking error profiles are shown in Fig.6.37 reveal that the maximum 

tracking error is 0.5° for NMSTC whereas it is 0.2° in case of the NMPC. Fig.6.38 and Fig.6.39 

show the control torque profiles generated by NMSTC and NMPC for joint-1 and joint-2 

respectively. From Fig.6.26 and Fig.6.27 it seen that the maximum control input generated by 

NMSTC is 0.6 Nm and 1.5 Nm respectively, whereas the NMPC generate smooth control moves 

with maximum control input of 0.15 Nm and 0.1 Nm for both link-1 and link-2 respectively. 

Thus, it can be conclude from Fig.6.38 and Fig.6.39 that NMPC needs less control excitation to 

control tip position and suppress the tip deflection with an additional payload of 0.3 kg compared 

to NMSTC.  
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Fig.6.34 Experimental results (time domain) for comparison of link-1 tip deflection 

performances (0.457 kg): NMSTC and NMMPC 

 

Fig.6.35 Experimental results (time domain) for comparison of link-2 tip deflection 

performances (0.457 kg): NMSTC and NMMPC 
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Fig.6.36 Experimental results (time domain) for tip trajectory tracking errors (Link-1) (0.457 

kg): NMSTC and NMMPC 

 

Fig.6.37 Experimental results (time domain)  for tip trajectory tracking errors (Link-2) (0.457 

kg): NMSTC and NMMPC 
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Fig.6.38 Experimental results (time domain) for torque profiles (joint-1) (0.457 kg): NMSTC and 

NMMPC 

 

Fig.6.39 Experimental results (time domain) for torque profiles (joint-2) (0.457 kg): NMSTC and 

NMMPC 
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Fig. 6.40 and Fig. 6.41 show the average power of the PSD for NMPC is -2.6dB and -1.8dB less 

compared to NMSTC for link-1and link-2 respectively. There is a reduction in average power of 

-4dB and -3dB for tracking errors of link-1 and link-2 respectively (Fig. 6.42 and Fig. 

6.43).Table 6.2 shows the comparisons of the experiment results for NMSTC and RLAC under 

0.157 kg of nominal payload and additional payload of 0.3 kg. From Table 6.2 it is observed that 

NMPC yields a 0.15% maximum overshoot for link-1 and 0.5 % for link-2 under a nominal 

payload of 0.157 kg and in case of NMSTC the maximum overshoot percentage is 0.5% and 1% 

respectively for link-1 and link-2. When an additional payload of 0.3 kg is attached to tip, the 

maximum overshoots in case of NMSTC are 1% and 1.5% respectively for link-1 and link-2. But 

the NMPC yield 0.5% and 0.6% overshoots for link-1 and link-2.  

Table 6.2: Comparison of experimental results for the controllers (NMPC and NMSTC) 

Controller 

Schemes 

Payload 

(Kg) 

Link Overshoot 

(%) 

Settling-Time 

(ts) 

Reference Figure 

 

NMPC 

0.157 Link-1 0.15 4.0 Fig.6.18 

Link-2 0.5 4.0 Fig.6.19 

0.457 Link-1 0.5 4.0 Fig.6.24 

Link-2 0.6 4.5 Fig.6.25 

 

NMSTC 

0.157 Link-1 0.5 4.2 Fig.5.19 

Link-2 1 5.0 Fig.5.20 

0.457 Link-1 1 4.5 Fig.5.25 

Link-2 1.5 4.6 Fig.5.26 
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Fig.6.40 Experimental results (frequency domain) for comparison of link-1 tip deflection 

performances (0.457 kg): NMSTC and NMMPC 

 

Fig.6.41 Experimental results (frequency domain) for comparison of link-2 tip deflection 

performances (0.457 kg): NMSTC and NMMPC 
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Fig.6.42 Experimental results (frequency domain) for tip trajectory tracking errors (Link-1) 

(0.457 kg): NMSTC and NMMPC 

 

Fig.6.43 Experimental results (frequency domain) for tip trajectory tracking errors (Link-2) 

(0.457 kg): NMSTC and NMMPC 
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6.4 Chapter Summary 

The Chapter has presented a new nonlinear adaptive model predictive controller (NMPC) to 

control tip trajectory and suppression of tip deflection for a two-link flexible manipulator while 

handling variable payloads. The design of the proposed nonlinear adaptive model predictive 

controller is based on the on-line identified NARMAX model. Both a self-tuning controller 

(NMSTC) and the proposed NMPC have been applied successfully to a flexible robot set-up in 

the laboratory. From the simulation and experimental results it is established that the proposed 

NMPC generates appropriate adaptive torque to control tip trajectory tracking and suppression of 

tip deflection for the TLFM compared to NMSTC, when the manipulator is asked to handle a 

variable payload. The reason for its superiority is because NMPC generates optimal control 

sequence by optimum tuning of its control parameters in real time adaptively. 



 

201 

 

 

 

Chapter 7 

Conclusions and Suggestions for Future Work 
 

There has been great deal of interest for researchers in adaptive control of FLMs. In spite of 

advances from a control design perspective, this issue will remain an open research area in the 

years to come. As discussed previously that several factors contribute to the complexity of tip 

position tracking of a FLM under unknown payload mass. The distributed link flexibility, which 

makes the system under-actuated and infinite dimensional are the major factors. This thesis 

focused on the development of new adaptive control strategies to control the tip position and 

while simultaneously suppressing its tip deflection when subjected to unknown payloads. The 

adaptive control strategies were implemented and tested on an experimental physical two-link 

flexible manipulator setup and to the developed mathematical model. This Chapter concludes the 
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thesis and some future scope of extension of the work described in the thesis are also 

highlighted. 

 

7.1 Summary of the Thesis Work 

This thesis has mainly investigated on development of new adaptive control schemes to control 

the tip trajectory while quickly suppressing its deflection when subjected to handle unknown 

payloads for a two-link flexible manipulator (TLFM). A number of new adaptive control 

strategies namely direct adaptive control (DAC), fuzzy learning based adaptive control (FLAC), 

reinforcement learning based adaptive control (RLAC), NARMAX model based self-tuning 

control (NMSTC) and NARMAX model based nonlinear adaptive model predictive control 

(NMPC) have been developed. A summary of the developed controllers is presented here, 

 Complexities encountered for controlling a FLM and literature survey onits adaptive 

control schemes are described in Chapter 1. 

 A detailed study of a physical flexible robot with its hardware and software components 

was made in Chapter 2. Subsequently a dynamic model of the TLFM is derived using 

Euler-Lagrange approach together with the concept of assume mode, the mathematical 

model is validated using open-loop response of the physical TLFM by exciting its joint 

with different bang-bang input signals. From the responses i.e. Fig. obtained, it is 

confirmed that the derived model is appropriate enough to represent the dynamics of the 

physical TLFM. 
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 A new direct adaptive control (DAC) is developed to control the tip position of a TLFM 

while simultaneously suppressing its deflection quickly when subjected to carry different 

payloads in Chapter 3. The developed DAC uses a Lyapunov criterion ensuring the 

closed-loop system stability. The performance of the developed DAC is then compared 

with a fuzzy learning based adaptive controller (FLAC). The dynamics of a FLM being 

uncertain owing to distributed link flexure and payload variation, a fuzzy logic approach 

was chosen for controlling the TLFM. The performances of the DAC are compared both 

through simulation and experiments for different payloads i.e. with an initial payload of 

0.157 kg and an additional payload of 0.3 kg.  

 A new real-time adaptive control of tip trajectory tracking and deflection of a TLFM 

handling variable payloads using reinforcement learning techniques has been presented in 

Chapter 4. This proposed adaptive controller consists of a proportional derivative (PD) 

tracking loop and an actor-critic based reinforcement learning loop that adapts the actor 

and critic weights in response to payload variations while suppressing the tip deflection 

and tracking the desired trajectory. Tip trajectory tracking and suppression of tip 

deflection performances of the proposed reinforcement learning based adaptive controller 

are compared with that of a direct adaptive controller (DAC) and a fuzzy learning based 

adaptive controller (FLAC) developed in Chapter 3. Unlike supervised learning, where 

the learning is driven by error signal (difference between desired and current response), 

reinforcement learning, this occurs when an agent learns behavior through trial-and-error 

interaction with the environment based on “reinforcement” signals from the environment. 

The benefits of RL based adaptive control are that it generates adaptive optimal control 
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online. The simulation and experimental results show that RLAC indicate excellent 

accuracy (in terms of tip trajectory tracking and suppression of tip deflections) compared 

to DAC and FLAC. The superiority of the RLAC over DAC and FLAC is its ability to 

adapt the actor and critic weights to an optimal value using the proposed Recursive Least 

Square-Eligibility Trace-Adaptive Memory algorithm (RLS-ET-AM) under variable 

payload. The convergence critic weights of the RLAC using RLS-ET-AM algorithm have 

been proved.  

 A new multivariable PID self-tuning control (NMSTC) strategy using NARMAX model 

of the TLFM have been proposed in Chapter 5 to control the tip trajectory tracking and 

suppression of tip deflections under unknown payload. The parameters of the PID are 

adapted on-line using a nonlinear autoregressive moving average with exogenous-input 

(NARMAX) model of the two-link flexible manipulator (TLFM). Advantage of 

representing the TLFM dynamics as NARMAX model is that the noise term is in the 

form of coupled function unlike linear model. The developed controller is then compared 

with the developed reinforcement learning based adaptive controller (RLAC). The 

advantage of NMSTC is that its parameters are adapted due to change in payload by 

directly estimating the NARMAX model parameters on-line whereas in case of RLAC is 

based on the actor and critic weights adaptation using the Recursive Least Square-

Eligibility Trace-Adaptive Memory algorithm (RLS-ET-AM). The experimental and 

simulation results envisage that NMSTC outperforms RLAC. 

 Subsequently, a NARMAX model-based MPC control strategy is proposed in Chapter 6 

i.e. NMPC which incorporates a nonlinear linear representation of the TLFM model. The 

proposed NMPC the optimization problem is solved to obtain a new nonlinear model 
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online. NARMAX model based NMSTC uses only one-step ahead prediction and 

considerable time is needed to find an optimum tuning of control parameters. In MPC, 

the current control action is obtained by solving a finite horizon open loop optimal 

control problem online, at each sampling instant. Hence, the optimization yields an 

optimal control sequence. From the simulation and experimental results it is established 

that the proposed NMPC generates appropriate adaptive torque to control tip trajectory 

tracking and suppression of tip deflection for the TLFM compared to NMSTC, when the 

manipulator is asked to handle a variable payload. The reason for its superiority is 

because NMPC generates optimal control sequence by optimum tuning of its control 

parameters in real time adaptively. 

 

The objectives of the thesis proposed in Section 1.4 have been achieved by developing new real-

time adaptive control strategies to alleviate the difficulties of existing adaptive controllers. 

 

7.2 Thesis Contributions 

 Development of the mathematical model of the physical TLFM and its model validation.  

 Development of direct adaptive control (DAC) and a fuzzy learning based adaptive 

control (FLAC) for the TLFM and their implementations on both simulation and 

experiment to verify the control performances on achieving simultaneously tip position 

tracking and suppression of tip deflection while the manipulator is handling different 

payloads [123]. 
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 Development and real-time implementation of a new RL based adaptive control (RLAC) 

scheme using RLS-ET-AM algorithm to control the tip trajectory and its deflection when 

subjected to handle varying payloads for a TLFM. Also comparative assessment of 

performances of DAC, FLAC and RLAC [121, 122, 123]. 

 Development of new self-tuning PID control (NMSTC) by exploiting the NARMAX 

model of the TLFM to control the tip trajectory while suppressing its deflection when 

subjected to varying payloads and compared its performances with that of the RLAC 

[124, 125]. 

 Development of new nonlinear adaptive model predictive control (NMPC) based on 

NARMAX model of the TLFM and its performance verification of tip trajectory tracking 

and its deflection with varying payloads with that of NMSTC. 

 

7.3 Suggestions for Future Work 

7.3.1 Adaptive Iterative Learning Control for a TLFM 

The proposed research work can be extended to design and develop an adaptive iterative learning 

controller (AILC) to control the tip trajectory while quickly suppressing its deflection when 

subjected to handle unknown payloads, and compare its performance with that of NMPC.  

In iterative learning control (ILC), learning process uses information from previous repetitions 

to improve the control signal ultimately enabling a suitable control action. Some previous work 

show that ILC gives superior performances for systems that operate in a repetitive manner 

include rigid robot manipulators [126] and point-to-point motion [127].There lies opportunity to 
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design an AILC for a TLFM in real-time. The advantage of AILC over ILC is that, unlike the 

conventional iterative learning control that require some preconditions on the learning gain to 

stabilize the dynamic systems, the adaptive iterative learning control can achieve the 

convergence through a learning gain in real-time. 

7.3.2 Adaptive Visual-Servo Control for a TLFM 

In order to increase the performance of the proposed adaptive control strategies for a TLFM one 

can use a visual-feedback based adaptive control loop for perfect tip trajectory tracking. The 

closed-loop position control for a robot end-effector using machine vision is known as visual 

servoing [128]. Visual servoing is the fusion of results from many elemental areas including high 

speed image processing, kinematics, dynamics, control theory and real-time computing.  

Hence, proposed research work can be extended to design a visual servoing based high 

performance nonlinear adaptive control by giving real-time visual feedback of the tip position.  
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Appendix A 

Dynamic Equations of the Two-Link Flexible 

Manipulator 

 

A.1 Dynamic Model of the Two-Link Flexible Manipulator 

The dynamic model of the two-link flexible manipulator (TLFM) used in designing the adaptive 

controller for the physical setup is derived based on the assumed modes method with clamped-

mass shape functions given by (2.7) is rewritten as 
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where ωi natural frequency of the i
th

 link. By applying the boundary condition given in Fig.2.5 

(a) the constant coefficients in (A.1) can be determined according to (2.8) and from Fig.2.5 (b) 

one gets (2.9). The solution for βij are obtained from (2.9) 
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which gives a transcendental equation given as 
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where 

Meqi : Equivalent mass of i
th

 link. 

Jeqi : Equivalent inertia of i
th

 link. 

On the basis of the discretization introduced in (A.3), and utilizing the Lagrangian formulation 

defined in (2.1) we drive the dynamic equation of the physical TLFM. In order to solve (2.1) we 

need generalized coordinate’s qi comprise of joint angles, joint velocities and modal coordinates. 

The total kinetic energy of the i
th

 link which can be expressed as (KT)i = (Total kinetic energy 

due to i
th

 joint=(KTh)i) + (Total kinetic energy due to i
th

 link=(KTl)i) + (Total kinetic energy due 

to payload Mp=(KTp)i) and the potential energy due to i
th

 link=(UT)i. First the total kinetic energy 

(KT)i is calculated. 

Let us consider the schematic diagram of the TLFM given in Fig.2.4. Let Ali be the cross 

sectional area of the i
th

 link. Also, let us assume a point on link-1 by p1(l1,t) as 

   
   

1

1 1 1 1

1 1 1

t R
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Hence kinetic energy due to link-1 is given as 
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Similarly for link-2 
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Therefore kinetic energy due to link-2 is  
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The kinetic energy due to i
th

 joint is 
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The kinetic energy due to payload mass Mp 
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where 

Mhi : Mass of i
th

joint. 

Jhi : Equivalent inertia of i
th

joint. 

Mp : Payload mass. 

Jp : Moment of inertia due to payload mass. 
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ypi : Redefined tip position of the i
th

 link. 

Thus the total kinetic energy is obtained as 
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and, the total potential energy is given as 
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As a result, taking qi as the generalized coordinates i.e. 
T

i i i i i
q , , ,      

ii along with total kinetic 

energy and total potential energy from (A.10) and (A.11) respectively the Lagrangian equation 

given in (2.1) can be rewritten as 
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where, τi is the generalized vector of torques which, for the case of damped mode shapes is given 

by 

2 2

i i
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   (A.13) 

a matrix representation for the dynamic model as given in (2.9) of the TLFM is 
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