83 research outputs found

    Adaptive conformal semi-supervised vector quantization for dissimilarity data

    Get PDF
    Zhu X, Schleif F-M, Hammer B. Adaptive Conformal Semi-Supervised Vector Quantization for Dissimilarity Data. Pattern Recognition Letters. 2014;49:138-145

    Adaptive prototype-based dissimilarity learning

    Get PDF
    Zhu X. Adaptive prototype-based dissimilarity learning. Bielefeld: Universitätsbibliothek Bielefeld; 2015.In this thesis we focus on prototype-based learning techniques, namely three unsuper- vised techniques: generative topographic mapping (GTM), neural gas (NG) and affinity propagation (AP), and two supervised techniques: generalized learning vector quantiza- tion (GLVQ) and robust soft learning vector quantization (RSLVQ). We extend their abilities with respect to the following central aspects: • Applicability on dissimilarity data: Due to the increased complexity of data, in many cases data are only available in form of (dis)similarities which describe the relations between objects. Classical methods can not directly deal with this kind of data. For unsupervised methods this problem has been studied, here we transfer the same idea to the two supervised prototype-based techniques such that they can directly deal with dissimilarities without an explicit embedding into a vector space. • Quadratic complexity issue: For dealing with dissimilarity data, due to the need of the full dissimilarity matrix, the complexity becomes quadratic which is infeasible for large data sets. In this thesis we investigate two linear approximation techniques: Nyström approximation and patch processing, and integrate them into unsupervised and supervised prototype-based techniques. • Reliability of prototype-based classifiers: In practical applications, a relia- bility measure is beneficial for evaluating the classification quality expected by the end users. Here we adopt concepts from conformal prediction (CP), which provides point-wise confidence measure of the prediction, and we combine those with supervised prototype-based techniques. • Model complexity: By means of the confidence values provided by CP, the model complexity can be automatically adjusted by adding new prototypes to cover low confidence data space. • Extendability to semi-supervised problems: Besides its ability to evaluate a classifier, conformal prediction can also be considered as a classifier. This opens a way that supervised techniques can be easily extended for semi-supervised settings by means of a self-training approach

    Semi-Supervised Learning Vector Quantization method enhanced with regularization for anomaly detection in air conditioning time-series data

    Get PDF
    Researchers of semi-supervised learning methods have been developing the family of Learning Vector Quantization models which originated from the well-known Self-Organizing Map algorithm. The models of this type can be characterized as prototype-based, self-explanatory and flexible. The thesis contributes to the development of one of the LVQ models – Semi-Supervised Relational Prototype Classifier for dissimilarity data. The model implementation is developed based on the related research work and thesis author findings, and applied to the task of anomaly detection from a real-time air condition data. We propose a regularization algorithm for gradient descent in order to achieve better convergence and a new strategy for initializing prototypes. We develop an innovative framework involving a human expert as a source of labeled data. The framework detects anomalies of environment parameters in both real-time and long-run observations and updates the model according to findings. The data set used for experiments is collected in real-time from sensors installed inside the Aalto Mechanical Engineering building located at Otakaari, 4, Espoo. Installation was done as a part of the project of VTT and Korean National Research Institute. The data consists of 3 main parameters – air temperature, humidity and CO2 concentration. Total number of deployed sensors is around 150. One month recorded data observations contains approximately 1.5M of data points. The results of the project demonstrate the efficiency of the developed regularized LVQ method for classification in given settings. Its regularized version generally overperforms its parent and various baseline methods on air conditioning, synthetic and UCI data. Together with the proposed classification framework, the system has shown its robustness and efficiency and is ready for deployment to a production environment

    Autonomous Learning of Representations

    Get PDF
    Walter O, Häb-Umbach R, Mokbel B, Paaßen B, Hammer B. Autonomous Learning of Representations. KI - Künstliche Intelligenz. 2015;29(4):339–351.Besides the core learning algorithm itself, one major question in machine learning is how to best encode given training data such that the learning technology can efficiently learn based thereon and generalize to novel data. While classical approaches often rely on a hand coded data representation, the topic of autonomous representation or feature learning plays a major role in modern learning architectures. The goal of this contribution is to give an overview about different principles of autonomous feature learning, and to exemplify two principles based on two recent examples: autonomous metric learning for sequences, and autonomous learning of a deep representation for spoken language, respectively

    Integration of Auxiliary Data Knowledge in Prototype Based Vector Quantization and Classification Models

    Get PDF
    This thesis deals with the integration of auxiliary data knowledge into machine learning methods especially prototype based classification models. The problem of classification is diverse and evaluation of the result by using only the accuracy is not adequate in many applications. Therefore, the classification tasks are analyzed more deeply. Possibilities to extend prototype based methods to integrate extra knowledge about the data or the classification goal is presented to obtain problem adequate models. One of the proposed extensions is Generalized Learning Vector Quantization for direct optimization of statistical measurements besides the classification accuracy. But also modifying the metric adaptation of the Generalized Learning Vector Quantization for functional data, i. e. data with lateral dependencies in the features, is considered.:Symbols and Abbreviations 1 Introduction 1.1 Motivation and Problem Description . . . . . . . . . . . . . . . . . 1 1.2 Utilized Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Prototype Based Methods 19 2.1 Unsupervised Vector Quantization . . . . . . . . . . . . . . . . . . 22 2.1.1 C-means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.1.2 Self-Organizing Map . . . . . . . . . . . . . . . . . . . . . . 25 2.1.3 Neural Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.1.4 Common Generalizations . . . . . . . . . . . . . . . . . . . 30 2.2 Supervised Vector Quantization . . . . . . . . . . . . . . . . . . . . 35 2.2.1 The Family of Learning Vector Quantizers - LVQ . . . . . . 36 2.2.2 Generalized Learning Vector Quantization . . . . . . . . . 38 2.3 Semi-Supervised Vector Quantization . . . . . . . . . . . . . . . . 42 2.3.1 Learning Associations by Self-Organization . . . . . . . . . 42 2.3.2 Fuzzy Labeled Self-Organizing Map . . . . . . . . . . . . . 43 2.3.3 Fuzzy Labeled Neural Gas . . . . . . . . . . . . . . . . . . 45 2.4 Dissimilarity Measures . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.4.1 Differentiable Kernels in Generalized LVQ . . . . . . . . . 52 2.4.2 Dissimilarity Adaptation for Performance Improvement . 56 3 Deeper Insights into Classification Problems - From the Perspective of Generalized LVQ- 81 3.1 Classification Models . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.2 The Classification Task . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.3 Evaluation of Classification Results . . . . . . . . . . . . . . . . . . 88 3.4 The Classification Task as an Ill-Posed Problem . . . . . . . . . . . 92 4 Auxiliary Structure Information and Appropriate Dissimilarity Adaptation in Prototype Based Methods 93 4.1 Supervised Vector Quantization for Functional Data . . . . . . . . 93 4.1.1 Functional Relevance/Matrix LVQ . . . . . . . . . . . . . . 95 4.1.2 Enhancement Generalized Relevance/Matrix LVQ . . . . 109 4.2 Fuzzy Information About the Labels . . . . . . . . . . . . . . . . . 121 4.2.1 Fuzzy Semi-Supervised Self-Organizing Maps . . . . . . . 122 4.2.2 Fuzzy Semi-Supervised Neural Gas . . . . . . . . . . . . . 123 5 Variants of Classification Costs and Class Sensitive Learning 137 5.1 Border Sensitive Learning in Generalized LVQ . . . . . . . . . . . 137 5.1.1 Border Sensitivity by Additive Penalty Function . . . . . . 138 5.1.2 Border Sensitivity by Parameterized Transfer Function . . 139 5.2 Optimizing Different Validation Measures by the Generalized LVQ 147 5.2.1 Attention Based Learning Strategy . . . . . . . . . . . . . . 148 5.2.2 Optimizing Statistical Validation Measurements for Binary Class Problems in the GLVQ . . . . . . . . . . . . . 155 5.3 Integration of Structural Knowledge about the Labeling in Fuzzy Supervised Neural Gas . . . . . . . . . . . . . . . . . . . . . . . . . 160 6 Conclusion and Future Work 165 My Publications 168 A Appendix 173 A.1 Stochastic Gradient Descent (SGD) . . . . . . . . . . . . . . . . . . 173 A.2 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . 175 A.3 Fuzzy Supervised Neural Gas Algorithm Solved by SGD . . . . . 179 Bibliography 182 Acknowledgements 20

    Incremental learning algorithms and applications

    Get PDF
    International audienceIncremental learning refers to learning from streaming data, which arrive over time, with limited memory resources and, ideally, without sacrificing model accuracy. This setting fits different application scenarios where lifelong learning is relevant, e.g. due to changing environments , and it offers an elegant scheme for big data processing by means of its sequential treatment. In this contribution, we formalise the concept of incremental learning, we discuss particular challenges which arise in this setting, and we give an overview about popular approaches, its theoretical foundations, and applications which emerged in the last years
    • …
    corecore