
Autonomous Learning of Representations ∗

Oliver Walter Reinhold Haeb-Umbach Bassam Mokbel
Benjamin Paassen Barbara Hammer

(This is a preprint of the publication [54], as provided by the authors.)

Abstract

Besides the core learning algorithm itself, one major question in ma-
chine learning is how to best encode given training data such that the
learning technology can efficiently learn based thereon and generalize to
novel data. While classical approaches often rely on a hand coded data
representation, the topic of autonomous representation or feature learning
plays a major role in modern learning architectures. The goal of this con-
tribution is to give an overview about different principles of autonomous
feature learning, and to exemplify two principles based on two recent
examples: autonomous metric learning for sequences, and autonomous
learning of a deep representation for spoken language, respectively.

1 Introduction

The ability of animate beings to autonomously learn complex models and non-
trivial behaviour based on examples only has fascinated researchers right from
the beginnings of machine learning and artificial intelligence. One of the strik-
ing observations which contributed to the success of early learning models such
as the perceptron consisted in the fact that simple, biologically plausible princi-
ples such as Hebbian learning enable systems to provably infer a correct model
from given data only. The question how neural networks internally represent
these data has been a central issue: the perceptron represents information in
a distributed way by encoding relevant aspects in the weights, rather than an
explicit symbolic modelling. This enables a high error tolerance, taking into
account multiple aspects of the data. However, the fact that the mere per-
ceptron has very limited representation capabilities, it can represent linearly
separable data only, has severely contributed to its abandoning around 1970.
Back-propagation, by providing an efficient mechanism to learn a suitable dis-
tributed representation of data in one or more hidden layers, caused a neural
renaissance around 1986 [58]. Multilayer networks enable a very rich internal

∗The work was in part supported by Deutsche Forschungsgemeinschaft under contract
no. Ha 3455/9-1 and no. Ha 2719/6-1 within the Priority Program SPP1527 ”Autonomous
Learning”.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications at Bielefeld University

https://core.ac.uk/display/211855388?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Preprint of the publication [54], as provided by the authors. 2

representation, but sometimes at the costs of difficult optimisation problems for
neural network training.

Interestingly, this training complexity, among other problems, accounted for
the fact that the last decades have been dominated by powerful models such
as the support vector machine (SVM) which is, essentially, a generalized linear
map: the perceptron is enhanced by a kernel, i.e. an implicit fixed nonlinear
preprocessing [12]. This avoids cumbersome training with local optima and
numerical problems, since it enables a formalization of model optimization in
terms of convex quadratic programming. This approach is very successful be-
cause universal kernels exist for standard vectorial data [48, 21]; still, the choice
of a suitable kernel and its parametrization for a given task can be tricky – even
more so, if data are complex such as non-vectorial or symbolic data [37]. The
idea of a kernel representation can be put into a line with the recent success
of extreme learning or reservoir computing [16, 29, 36]. In their original form,
these approaches, albeit yielding remarkable results, rely on a priorly fixed,
albeit usually rich choice of a suitable data representation.

A kernel representation or nonlinear preprocessing enables highly nonlinear
models as compared to the simple perceptron – still such representation has to
be designed by humans, who often rely on rich universal representations such as
Gaussian kernels or even random mapping rather than representations tailored
for the problem at hand. Domain specific invariances such as e.g. different light-
ning conditions for image recognition tasks or auxiliary semantic information
are usually not taken into account in this universal representation.

Since about 2006, deep neural networks with multiple stacked hidden lay-
ers started another renaissance of highly nonlinear data representation tailored
for a specific domain under the umbrella term ‘deep learning’ [27, 6]. Essen-
tially, deep learning refers to stacked nonlinear models such as neural networks
or probabilistic counterparts which are characterized by a high degree of non-
linearity due to the hierarchical composition of a large number of nonlinear
elements, and all elements are adaptive. It has been known since a while that
such stacked systems have beneficial mathematical properties as concerns their
representation ability [9, 24], however, efficient training of deep networks has
long constituted a problem [7]. Novel training paradigms such as efficient un-
supervised pre-training of architectures with restricted Boltzmann machines as
well as a high degree of architectural regularization have recently turned such
networks into efficient models. Interestingly, these models often automatically
arrive at powerful internal representations of information within hidden layers,
where relevant characteristics such as invariance against certain changes can be
inferred based on the given data only [6, 38].

Still, the autonomous inference of a rich data representation which facili-
tates the design of learning systems constitutes one of the central questions in
machine learning. In this contribution, we will give an overview about a num-
ber of different approaches for autonomous feature learning in the context of
supervised machine learning tasks (as opposed to reinforcement learning, which
is addressed in the contribution from W. Böhmer et al. in this volume). After-
wards, we will address two specific approaches which accompany two relevant

Preprint of the publication [54], as provided by the authors. 3

application scenarios: (1) How to autonomously adjust the metric in distance
based approaches if non-vectorial data, in this case sequences, are present? An
approach which extends metric learning to this setting will be presented. (2)
How to infer a deep hierarchical model to represent spoken language in the
case that the basic constituents such as words and phonemes are not known?
We show how a Bayesian formalisation of the hierarchical concept enables the
unsupervised inference of entities such as words from raw data.

2 Representation learning

There exists a variety of different principles based on which a suitable feature
representation can be extracted from given data. The article [6] provides a
recent review of different principles of representation learning; it summarizes
diverse technologies such as the following:

(1) Deep learning has its counterparts in biological systems [34, 6, 27, 37];
deep learning essentially processes signals by means of stacked, highly regular,
nonlinear transformations, which are trained to optimally represent given data
sets. It turns out that the architectural constraints often enable the autonomous
learning of invariances such as rotation or translation invariance and robustness
to partial occlusion and lightning conditions for image recognition. Deep learn-
ing requires a sufficient number of training data, and training can be quite time
consuming due to the underlying complex architectures.

(2) Sparse coding aims at efficient, meaningful representations of high dimen-
sional signals relying on the natural bias of sparsity [28, 14, 1]; this principle
make use of the fact that many real valued signals can be represented as lin-
ear combination of few basic motifs, such as sound which can be decomposed
into a sparse combination of oscillations. Sparse coding provides means to find
a sparse decomposition of given signals, if existing, and to learn suitable dic-
tionaries from observed data. Naturally, the technique is restricted to settings
where such sparse approximations exist.

(3) Nonlinear dimensionality reduction formalizes the aim to represent high
dimensional signals efficiently in low dimensions relying on different invariances,
such as metric preservation, preservation of the probability distribution, etc.
[52, 18]; dimensionality reduction plays a role as soon as data are visualized,
since this requires an embedding of data in two or three dimensions. The chal-
lenge is to unravel characteristics from the data, i.e. to find a low-dimensional
representation which is still meaningful. Since this problem is ill-posed unless
data are intrinsically low-dimensional itself, one of the challenges of dimensional-
ity reduction is to find suitable regularizations for the projection; at present, no
clear guidelines which dimensionality reduction technique is suitable for which
data set and task exist.

(4) Highly regularized signal extraction technologies such as slow feature
analysis (SFA) for the autonomous extraction of meaningful semantic entities
from temporal data [59], or independent component analysis (ICA) for the ex-
traction of independent semantically meaningful sources from mixed data [30];

Preprint of the publication [54], as provided by the authors. 4

both techniques put a suitable prior to the data to solve an otherwise ill-posed
problem. These priors seem particularly suitable for some type of real-world
data, such as the analysis of brain signals.

Besides their different objectives and application scenarios, these principles
can be stratified according to different fundamental criteria, such as the follow-
ing:

• Are the techniques supervised, taking into account label information for
a classification task or similar, or unsupervised? Unsupervised techniques
have the benefit that their results are often more general, i.e. they gener-
ate codes which can be transferred across tasks within the same domain.
One interesting example for this principle are generative models such as
hierarchical restricted Boltzmann machines, which can be used as excel-
lent dimensionality reduction techniques e.g. for the visual domain [6, 27].
On the contrary, supervised approaches guarantee that the information
which is used to represent the data is relevant for the task, suppressing
irrelevant aspects and noise. This is particularly relevant if only few data
points are available since the problem would be ill-defined without shaping
it according to such auxiliary knowledge [19].

• Are the techniques linear or nonlinear; the latter can further be differen-
tiated according to the degree of nonlinearity, ranging from generalized
linear models such as kernel mappings up to deep or hierarchical models.
Linear techniques have the benefit of a better efficiency, interpretabil-
ity, and generalization ability; deep models, on the contrary, can easily
represent topologically complex manifolds such as arise due to complex
invariances in the data, for example. Interestingly, stacking networks of
similar shape and parameterization leads to topological objects which re-
semble a fractal nature and self-similarity, a principle which is well known
in the context of recurrent networks [51].

• Which type of data can the techniques deal with? Which type of repre-
sentation is extracted? So far, most methods deal with vectorial signals or
time series for both, input data and learned representation. Only few ap-
proaches address a richer representation or more complex data structures
auch as discrete sequences or graph structures [37].

• What is the degree of autonomy for representation learning? How much
training data, user interaction, and prior knowledge in terms of a Bayesian
prior or the specification of an exact objective are required? Some pop-
ular representation learning techniques are fully unsupervised e.g. aiming
for the most likely data representation in a probabilistic treatment such
as present for deep belief networks; these methods usually require lots
of given data to extract meaningful regularities. Alternatively, some ap-
proaches are fully supervised and coupled to a concrete learning task, such
as feature selection for classification. Methods which display a certain
degree of autonomy, which require neither big data sets nor supervised

Preprint of the publication [54], as provided by the authors. 5

objectives, often rely on ingenious mathematical realizations of what can
be seen as natural priors, such as e.g. the slowness principle in slow feature
analysis, sparsity in data representation, or independence of signals in in-
dependent component analysis [59, 30, 28, 14, 1]. These priors are hand
designed, and hardly any techniques exist to autonomously infer natural
priors from an interaction with the environment.

3 Metric learning for sequential data

Metric learning essentially deals with the question of how to choose a metric in
popular distance-based machine learning technologies such as k-nearest neighbor
classifiers in an optimum way. Since an adaptation of the metric used for pair-
wise data comparison directly corresponds to a transformation of the data space,
metric learning can be seen as one instance of representation learning. Since
about 2000, metric learning rapidly advanced along different lines of research
and, currently, can be considered a matured field of research for the vectorial
case as summarized e.g. in the overview articles [35, 5]. Two of the earliest ap-
proaches introduce metric learning in prototype based methods: an enrichment
of the unsupervised self-organizing map by a metric adjusted according to aux-
iliary information [32], and an enhancement of learning vector quanitzation to
a general quadratic form which is autonomously adapted according to the clas-
sification task at hand [23]. While the former relies on the local Fisher metric
and hence displays a rich capacity but also very high computational complexity,
the latter restricts to a simple parameterized quadratic form. Interestingly, it
can easily be generalized to local metrics, i.e. a globally nonlinear forms, and it
can be accompanied by strong learning theoretical guarantees [43].

Due to its computational simplicity, quite a few techniques of how to adapt
quadratic forms have been proposed in the literature afterwards; a few popular
ones include the following: The approaches [60, 45] rely on side information for
clustering which specifies sets of data assigned to the same cluster. Then effi-
cient adaptation mechanisms which realise these constraints by an adjustment
of a quadratic form can be derived. Popular metric learners which are based
on the classification error of a k nearest neighbor classifier have been proposed
in the approaches [57, 20]. A proposal which couples metric learning to the
observed regression error has recently been published in the article [2]. Besides
computational efficiency, the latter can also be accompanied by formal guar-
antees. Similar learning theoretical guarantees are available for metric learning
within the family of vector quantization techniques [43]. Besides the local metric
learning techniques as proposed in this approach [43], quite a few metric learn-
ing techniques lend itself towards kernelization, resulting in globally nonlinear
data transformations [5].

While advancing the question of how to autonomously determine a good
data representation in the context of diverse side information, these approaches
have in common that they are restricted to vectorial data, i.e. restricted ap-
plication scenarios only. First techniques extend these methods to richer data

Preprint of the publication [54], as provided by the authors. 6

structures, in particular strings, sequences, and trees. A few proposals in this
frame are covered in the publications [46, 3, 8, 5]. These techniques often rely
on a generative approach and determine metric parameters by a data likelihood
optimization. Hence they are restricted to learning from positive examples only,
not taking into account prior labels or dissimilar pairs. Exceptions are the pro-
posals [3, 4, 40] which refer to a regression task similar to [2] or a classification
task similar to [43], respectively. In the following, we will focus on the latter
approach which has been developed within the frame of the priority program
‘Autonomous Learning ’ of the DFG. Essentially, it introduces a framework for
autonomous metric learning for sequence data in the context of prototype based
classification. As an alternative, it would be possible to test the approach [4] for
sequence metric adaptation for classification, which is based on a formal notion
which quantifies that the neighbors of the given data points are, on average,
good as regards the relevant classification, a setting which is particularly suited
for a k-nearest neighbor classifier or a representation of sequential data in terms
of distances to a set of landmarks. Here, we will focus on a prototype-based
representation instead.

3.1 Relational LVQ for sequence data

Learning vector quantization (LVQ) refers to a family of intuitive classification
schemes, which have recently attracted increased attention in particular in the
context of interpretable models e.g. in biomedical data analysis, on the one side,
and life-long learning, on the other side [42, 10, 17, 13, 33, 61]. This is caused by
the fact that LVQ inherently relies on a representation of the model in terms of
typical prototypes such that an intutitive model inspection as well as a compact
data description is delivered by the technique; when referring to a probabilistic
formalization of LVQ techniques, this corresponds to data being represented by
a mixture of Gaussians – however, unlike classical Gaussian mixture models,
the parameters are optimized according to the conditional likelihood of the
output label rather than the data itself [44]. Deterministic counterparts such as
generalized LVQ (GLVQ) can be designed in such a way that they additionally
focus on a good generalization ability in terms of margin maximization.

These approaches have recently been generalized to nonvectorial data struc-
tures which are described in terms of pairwise similarities or dissimilarities only,
see the article [22] for a general framework. Here, we will exemplarily focus
on only one possibility, relational GLVQ (RGLVQ). RGLVQ relies on train-
ing data which are characterized by pairwise dissimilarities dij only, where
i, j ∈ {1, . . . , n}. These measurements could be the result of an edit distance of
sequence data, an alignment for DNA or protein sequences, or pairwise graph
distances, for example, depending on the area of application. RGLVQ relies
on the assumption of symmetry dij = dji and zero diagonal dii = 0. In such
cases, there always exists a vectorial embedding of the data such that these
distances are induced by a symmetric quadratic form, which is not necessarily
positive definite, i.e. a so-called pseudo-euclidean space is present [43]. Within
this space, vectorial operations are possible, i.e. we can represent data by vectors

Preprint of the publication [54], as provided by the authors. 7

~xi and distances by a quadratic form dij = d(~xi, ~xj). Assume data ~xi are labeled
c(~xi). Then, a protoype-based classification model in pseudo-euclidean space is
given by representative positions ~w1, . . . , ~wk with labels c(~wj). It induces the
classification

~x 7→ c(~wj) where d(~x, ~wj) is minimum (1)

of a given point ~x (where we refer to its position in the pseudo-euclidean em-
bedding). The aim of a prototype-based classifier is the minimization of the
classification error, i.e. the term

∑
iH(d+(~xi) − d−(~xi)) where H refers to the

Heaviside function, d+ to the distance of ~xi from the closest prototype with
correct label, and d− to the distance from the closest prototype with incorrect
label. Since an optimization of the classification error itself is NP hard, GLVQ
resorts to an approximation∑

i

Φ

(
d+(~xi)− d−(~xi)

d+(~xi) + d−(~xi)

)
(2)

Here, the sigmoidal function Φ is used as approximation for H. In addition,
since this form would yield to divergence due to its summands being unlimited,
a normalization of the summands by the sum of distances is introduced. It can
be shown that this term relates to the hypothesis margin of a classifier, i.e. its
minimization accounts for a robust result [43].

This model, however, refers to an explicit pseudo-euclidean embedding of
data, which is usually not present. Rather data are characterized by the terms
dij , resulting in the distance matrix D of pairwise distances only. It is always
possible to compute an explicit pseudo-euclidean embedding from D, but at
cubic costs. RGLVQ offers a way to avoid this explicit embedding, resulting in
an equivalent formalization at quadratic costs only. For this purpose, prototype
locations are restricted to linear combinations of the form

~wj =
∑

αji~xi with
∑
i

αji = 1 (3)

Based on this assumption, pairwise distances can be expressed as

d(~xi, ~wj) = [Dαj]i −
1

2
· αtjDαj (4)

where αj = (αj1, . . . , αjn). This results in the costs∑
i

Φ

(
d(~xi, ~w

+)− d(~xi, ~w
−)

d(~xi, ~w+) + d(~xi, ~w−)

)
(5)

with

d(~xi, ~w
±) = [Dα±]i −

1

2
· (α±)tDα± (6)

These costs do no longer depend on an explicit vectorial embedding. Hence this
formalization allows an optimization of prototype parameters αj based on D
only. Typically, gradient techniques are used in this frame. See the publication
[22] for details.

Preprint of the publication [54], as provided by the authors. 8

3.2 Autonomous adaptation of sequence metrics within
LVQ

While resulting in an efficient classifier for dissimilarity data, the accuracy cru-
cially depends on the quality of the chosen dissimilarity measure and its param-
eterization. Autonomous metric learning in parallel to prototype adaptation
has proved a central ingredient of state-of-the-art LVQ techniques for vectorial
data; in the following, we briefly discuss how this principle can be transferred to
discrete symbolic data, i.e. relational LVQ as well. We assume that sequential
data are given, i.e. data have the form Y = y1, . . . , yK with length K and entries
yl in some suitable data space Σ, e.g. a real-vector space for sensor signals or a
discrete alphabet for bioinformatics sequences.

The alignment distance constitutes one of the most common measures to
compare two such sequences with possibly different length: An alignment of two
sequences Y and Z is an extension of these two sequences by gaps, referenced by
−, such that the resulting sequences Y∗ and Z∗ have the same length. Having
fixed a dissimilarity measure of how to compare sequence entries enriched by
the symbol −

dλ : (Σ ∪ {−})× (Σ ∪ {−})→ R (7)

which may depend on parameters λ, two aligned sequences Y∗ and Z∗ can easily
be compared by summing the distances of all sequence entries y∗i and z∗i . The
alignment distance d∗(Y,Z) of two sequences is then defined as the minimum
distance of all possible alignments of these sequences.

Usually, the outcome crucially depends on the parameterization λ. Similar
to the vectorial case, the optimization of the prototypes in the costs 5 can
be accompanied by an adaptation of the parameters λ: the basic idea is to
optimize these parameters simultaneously to the model parameters αjl by means
of a gradient technique. Hence autonomous metric learning boils down to the
question of how to efficiently compute derivatives of the alignment distance
with respect to its basic parameters λ. In general, this is not possible since
the alignment distance is discontinuous, hence a derivative does not exist. It
has been proposed in the recent work [40] to use an efficient approximation of
a dynamic programming scheme, instead, as follows: an optimum alignment
can easily be computed based on the Bellman optimality principle by dynamic
programming, resulting in the central recursion formula

d∗(Y(0),Z(0)) = 0 , (8)

d∗(Y(0),Z(J)) =

J∑
j=1

dλ(−, zj) ,

d∗(Y(I),Z(0)) =

I∑
i=1

dλ(yi,−) ,

Preprint of the publication [54], as provided by the authors. 9

d∗(Y(I + 1),Z(J + 1)) =

min
{
d∗(Y(I),Z(J)) + dλ(yI+1, zJ+1),

d∗(Y(I + 1),Z(J)) + dλ(−, zJ+1),

d∗(Y(I),Z(J + 1)) + dλ(yI+1,−)
}
.

where Y(I) and Z(J)refers to the first I orJ entries of the sequence Y or
Z. The latter three choices refer to an optimal alignment by one of the three
possibilities, a match of the last sequence entries, an insert or a delete. This
recursion formula can be computed in quadratic time. When we substitute the
discrete operator min by the smooth function

softmin(x1, x2, x3) =
∑
i

xi
exp(−βxi)∑
j exp(−βxj)

(9)

with β > 0, we arrive at an approximation which allows us to compute the
derivative of the alignment distance by means of exactly the same Bellmann
principle in quadratic time. This can easily be inserted into a gradient scheme
for the costs 5. See [40] for details.

3.3 Experiments

We shortly elucidate the results obtained by autonomous structure metric learn-
ing for sequences in two important cases: a discrete symbol alphabet and con-
tinuous sequence entries. For this purpose, we consider the following two data
sets:

e d c b a = A B C D E−

e

d

c

b

a

=

A

B

C

D

E

−
0.00

0.25

0.50

0.75

1.00

e d c b a = A B C D E−

e

d

c

b

a

=

A

B

C

D

E

−
0.00

0.25

0.50

0.75

1.00

Figure 1: Left: prior scoring matrix used for sequence comparison; right: pos-
terior scoring matrix optimized according to the given classification task.

Copenhagen Chromosomes:

The data set consists of images of two different chomosomes which are encoded
by the differential change of the thickness of the silhouette. The differences

Preprint of the publication [54], as provided by the authors. 10

are encoded via the discrete alphabet Σ = {f, . . . , a,=, A, . . ., F}, with lower
/ upper cases encoding negative / positive changes, respectively. Hence every
data point corresponds to a sequence with entries in the discrete alphabet Σ.

A comparison of such sequences depends on the local scoring matrix which
compares these letters, i.e. a scoring matrix of size (|Σ∪{−}|)2 which indicates
the costs of substituting one symbol by another (or a gap). This matrix is as-
sumed to be symmetric to account for symmetric dissimilarities D. A reasonable
prior assumption is to put a larger weight on large changes within the alpha-
bet, taking into account the differential encoding of the thickness, as shown in
Fig.1(left). However, it is not clear whether such prior weighting is optimal for
the task.

Online learning of these scores confirms a prior which assigns higher scores
to off-diagonals, however a more subtle structure is obtained, see Fig.1(right).
The obtained structure is almost independent of the initialization of the scoring
matrix. The accuracy obtained when adapting the scoring matrix in addition
to the prototypes is presented in Fig.2(top) when initializing scores with the
unit matrix and Fig.2(bottom) when initializing with a diagonal weight prior.
In both cases, the obtained accuracy approaches 0.95 in a cross-validation. In-
terestingly, albeit the diagonal weight prior is closer in characteristics to the
learned scoring metric than the unit matrix, the latter displays a higher accu-
racy. This clearly demonstrates the potential of an autonomous metric learning
which can take into account subtle differences indicated by the data. See [40]
for details as regards the training set and parameters of the algorithm.

Java programs:

The data set consists of java code corresponding to implementations of sorting
programs according to the two different strategies Bubblesort and Insertionsort
(programs are taken from the internet). Programs are represented as sequences
as follows: the Oracle Java Compiler API transforms every program into a
syntax tree where every node is described by a number of characteristics (such
as return type, type, or scope). These trees are transferred to sequences by
prefix notation.

An alignment distance can be rooted in a pairwise comparison of entries
which essentially, for every characteristics, tests a match versus mismatch. The
challenge is then how to weight the relevance of these single characteristics; a
good prior is to use a uniform weighting of every component. In general, a
weighted distance measure which assigns the weight λl to the similarity of the
lth characteristic of a node is taken. Metric learning enables an automated
adaptation of these weighting terms λl. The result of such relevance learning
is depicted in Fig.4 for the sorting data set (see [40] for details of the setup).
Interestingly, the relevance weighting emphasizes the relevance of a node type
as compared to e.g. code position, the latter being not useful for a class dis-
crimination. The classification accuracy can be improved to an average .8 when
using the adapted metric (see Fig.3). The metric adaptation corresponds to a
different data representation, as can be seen in Fig.5. While classes overlap for

Preprint of the publication [54], as provided by the authors. 11

init 1 2 3 4 5 6 7 8 9 10
0.7

0.75

0.8

0.85

0.9

0.95

1

Training epochs

A
c

c
u

ra
c

y

Avg. Test (Adaptive λ)

Std. Test (Adaptive λ)

Avg. Test (Fixed λ)

init 1 2 3 4 5 6 7 8 9 10
0.5

0.6

0.7

0.8

0.9

1

Training epochs

A
c

c
u

ra
c

y

Avg. Test (Adaptive λ)

Std. Test (Adaptive λ)

Avg. Test (Fixed λ)

Figure 2: Accuracy of the chromosome data set with matrix learning when
initializing with default values (top) or a bandpattern (bottom).

Preprint of the publication [54], as provided by the authors. 12

the default weighting which assignes the same relevance to every node entry, a
task-adapted relevance weighting clearly emphasizes class-separability.

3.4 Software

An efficient realization of differentiable approximations of local and global align-
ment distances as well as their derivatives and diverse visual inspection technol-
ogy can be found at http://openresearch.cit-ec.de/projects/tcs. These metrics
can directly be plugged into relational LVQ, see e.g. http://www.techfak.uni-
bielefeld.de/∼xzhu /ijcnn14 tutorial.html

3.5 Outlook

We have discussed that the principle of metric learning can be transferred to
structured data such as sequences, by means of a seamless integration of re-
lational LVQ and gradient based schemes for the optimization of metric and
prototype parameters. While the results are very promising, the approach suf-
fers from a high computational load: the full dissimilarity matrix D has to be
computed after every optimization step. In [40], diverse approximation schemes
have been proposed, however, it might be worthwhile to also think about an
alternative characterization of the distance measure in terms of a linear combi-
nation of dissimilarity matrices, for example.

4 Representation learning from sequential data

Conventional automatic speech recognition (ASR) systems rely on supervised
learning, where an acoustic model is trained from transcribed speech, and a
language model, i.e., the a priori probabilities of the words, from large text
corpora. Both, the inventory of word, i.e., the vocabulary, and the inventory of
phonemes are fixed and known. Furthermore, a lexicon is given which contains
for each word its pronunciation in terms of a phoneme sequence.

Here we consider an unsupervised setting, where neither the pronunciation
lexicon nor the vocabulary and the phoneme inventory are known in advance,
and the acoustic training data come without labels. Referring to the hierarchical
nature of speech, we are therefore concerned with the task of unsupervised learn-
ing of a deep representation from sensory input, the discovery of the phonetic
and lexical inventory.

For speech recognition, an audio recording is typically represented as a time
series of real valued vectors of frequency or cepstral coefficients. A symbolic rep-
resentation is learned by discovering repeated sequences of vectors and assigning
the same labels to similar sequences. On this label sequence again similar se-
quences can be discovered and given labels from another label set, thus arriving
at representations at different levels of hierarchy. Figure 6 shows an example of
a two level hierarchical representation of a speech signal.

Preprint of the publication [54], as provided by the authors. 13

init 1 2 3 4 5 6 7 8 9 10
0.5

0.6

0.7

0.8

0.9

1

Training epochs

A
c

c
u

ra
c

y

Avg. Test (Adaptive weights g)

Std. Test (Adaptive weights g)

Avg. Test (Fixed weights g)

Figure 3: Accuracy on the sorting data set for an adapted structure metric
obtained via cross-validation.

0 0.1 0.2

scope

codePosition

name

externalDependencies

parent

className

type

returnType

Figure 4: Relevance weights learned for the weighting of the node entries.

Preprint of the publication [54], as provided by the authors. 14

bubble

insertion

bubble

insertion

Figure 5: t-SNE projection of the data based on the standard alignment distance
(left) and the adapted metric (right).

TURN ON LIGHTTHE

Phonemes

Words

Audio Signal

... ...
T ER N OH N DH AX L AY T

Figure 6: Hierarchical representation of a speech signal

Preprint of the publication [54], as provided by the authors. 15

G W Y X

Lexicon Acoustic modelPitman-Yor process

Figure 7: Graphical model with random variables dependencies for the language
Model G, words W, phonemes Y and acoustic feature vectors X. The shaded
circle denotes the observations, solid lines probabilistic dependencies and dashed
lines deterministic dependencies.

On the first hierarchical level the aim is to discover the acoustic building
blocks of speech, the phonemes, and to learn a statistical model for each of
them, the acoustic model [11, 56, 53, 47]. In speech recognition, the acoustic
model usually consists of Hidden Markov Models (HMMs), where each HMM
emits a time series of vectors of cepstral coefficients.

The second level is targeted at the discovery of the lexical units, the words,
and learning their probabilities, the language model, from the phoneme se-
quences of the first level [55, 41, 25, 26, 39]. In speech recognition, the mapping
of words to phoneme sequences is typically determined by a pronunication lexi-
con. So called n-gram language models are used to calculate the probabilities of
words, depending on their context, which is given by the n−1 preceding words.
They usually consist of categorical distributions over words for each context.

Figure 7 shows a graphical model for the dependencies between the random
variables. The language Model G and the lexicon are generated from a prior
process, the Pitman-Yor process. Then words W are generated using the lan-
guage model and mapped to phonemes Y using the lexicon. Acoustic feature
vectors X are finally generated employing an acoustic model.

In this article we will focus on the autonomous learning of representations
on the second level, the discovery of words from phoneme sequences, where the
phoneme sequences have been generated by a phoneme recognizer in a super-
vised fashion, i.e. by the recognition of the speech signal, assuming the phoneme
set and acoustic models for each of the phonemes to be known.

Since phoneme recognition from recordings of continuous speech is a difficult
task, even if the phoneme inventory is known and their models are trained in
advance, the recognized phoneme sequences will be error-prone. To cater for
recognition errors we are going to operate on phoneme lattices. A phoneme
lattice is a directed acyclic graph, which contains not only a single recgonized
phoneme sequence, but also alternatiaves, in the hope that the correct phoneme
sequence is among them. Standard ASR phoneme recognizers are able to output
a phoneme lattice together with probabilities for each phoneme in the lattice.

Preprint of the publication [54], as provided by the authors. 16

4.1 Word recognition from sequential data

We first consider a supervised scenario, where the pronuncation lexicon and the
language model are known. The objective of word recognition, given a phoneme
sequence Y = y1, . . . , yK of length K, is to segment the phoneme sequence into
the most probable word sequence:

Ŵ = arg max
W

P (W|Y) = arg max
W

P (Y|W)P (W), (10)

where both Ŵ = ŵ1, . . . , ŵL, the identity of the words, and the number L of
words in the sequence are determined in the course of the maximization. Here
P (Y|W) is given by the lexicon and equals one if the character sequence Y is
a concatenation of the words in W, and zero else. The probability of a word
sequence is calculated employing an n-gram language model, with

P (W) ≈
L∏
l=1

P (wl|wl−1, . . . wl−n+1) =:

L∏
l=1

P (wl|u). (11)

Here, P (wl|u) is the probability of the l-th word wl, given its context u =
wl−1, . . . wl−n+1. It can be estimated on training data. In Bayesian language
modeling, additionally a prior probability is incorporated.

4.2 Unsupervised learning from sequential data

We now turn to the case where neither the pronunciation lexicon nor the lan-
guage model are known, and where we are still left with the task to segment a
phoneme string into the most probable word sequence. Here we have to learn
the language model together with the words. We use the nested hierarchical
Pitman-Yor language model (NHPYLM), denoted by G, which is a Bayesian
language model and allows new, previously unseen words, to evolve and as-
signs probabilities to them. It is based on the Pitman-Yor process prior, which
produces power-law distributions that resemble the statistics found in natural
languages [49, 50, 39].

An n-gram language model Gu is a categorical distribution of probabili-
ties for the N words of the vocabulary: Gu = {P (w1|u), . . . , P (wN |u)}. In a
hierarchical Pitman-Yor process, Gu is modeled as a draw

Gu ∼ PY (d|u|, θ|u|, Gπ(u)) (12)

from a Pitman-Yor process with base measure Gπ(u), strength parameter d|u|
and discount parameter Θ|u| [50]. The base measure corresponds to the expected
probability distribution of the draws and is set to the language model Gπ(u) of
the parent (n − 1)-gram. This process is repeated until the parent LM is a
zerogram. Since in the unsupervised setting the vocabulary size is not known
in advance, the zerogram cannot be specified. It is therefore replaced by the
likelihood for the word being a phoneme sequence, calculated by a hierarchical
Pitman-Yor language model (HPYLM) of phonemes H′, similar to (11), where

Preprint of the publication [54], as provided by the authors. 17

again a hierarchy of phoneme language models is built up to some order m,
similar to (12). The phoneme zerogram is finally set to a uniform distribution
over the phoneme set. The resulting structure is the NHPYLM, which consists
of a HPYLM for words and a HPYLM for phonemes.

Since we now have to learn the NHPYLM along with the words, the maxi-
mization problem becomes:

(Ŵ, Ĝ) = arg max
W,G

P (W,G|Y)

= arg max
W,G

P (Y|W,G)P (W|G)P (G)

= arg max
W,G

P (Y|W)P (W|G)P (G) (13)

Here we exploited the fact that Y is independent of G if W is given, since Y
is the concatenation of the phoneme sequences of the words in W. P (Y|W) is
again either one or zero as before. The difference to equation (10) is, that the
nested hierarchical Pitman-Yor process prior P (G) over the language model
is introduced. Instead of having one particular language model, we have to
find that pair of language model and word sequence which maximizes the joint
probability. The maximization is carried out by Gibbs sampling, first sampling
the word sequence from P (W|Y,G), calculated similar to (10), by keeping
G constant in (13) and then the language model from P (G|W) [39] in an
alternating and iterative fashion.

The previous formulation can be extended to acoustic features X as input
[41]. The maximization problem then becomes

(Ŵ, Ĝ, Ŷ) = arg max
W,G,Y

P (W,G,Y|X)

= arg max
W,G,Y

P (X|Y,W,G)P (Y|W,G)P (W|G)P (G)

= arg max
W,G,Y

P (X|Y)P (Y|W)P (W|G)P (G). (14)

Here, P (X|Y) is calculated by an acoustic model, which we assume to be known
and fixed. For the maximization we now jointly sample a word and phoneme
sequence from P (W,Y|X,G), by keeping G constant in (14) and then again
proceed by sampling the NHPYLM from P (G|W). To avoid the recomputation
of the acoustic model scores with every iteration, we use a speech recognizer to
produce a phoneme lattice, containing the most likely phoneme sequences.

Joint sampling of the word and phoneme sequence can be very costly. For
every possible phoneme sequence, the probabilities of every possible word se-
quence has to be calculated. To reduce the computational demand, the phoneme
sequence is first sampled from the speech input and then a word sequence from
that phoneme sequence [26, 25]. For the sampling of the phoneme sequence, an
additional phoneme HPYLM H, which includes the word end symbol, is em-
ployed. To incorporate knowledge of the learned words, the phoneme HPYLM
is sampled from P (H|W) using the sampled word sequence.

Preprint of the publication [54], as provided by the authors. 18

Starting with low language model orders and increasing the orders after ksw
iterations leads to convergence to a better optimum. Higher-order LMs deliver
better segmentation results than low-order LMs if the input sequence is noisefree
[25]. On the other hand initialization of higher-order LMs from noisy input is
more difficult and is likely to lead to convergence to a local optimum.

Algorithm 1 summarizes the iterative approach to vocabulary discovery from
raw speech. The first step in the repeat loop is carried out by a phoneme rec-

Algorithm 1 Iterative vocabulary discovery from raw speech

Input: X, ksw
Output: Y,W,G,H
Initialization: Set G,H to phoneme zerograms, k = 1
while k ≤ kmax do

1) Transcribe each speech utterance X into phoneme sequence Y using

HPYLM H, resulting in a corpus Y of phoneme strings: X
H→ Y

2a) Carry out word recognition on the phoneme sequences, using the

NPYLM G, resulting in a corpus W of words sequences: Y
G→W

2b) Re-estimate the word NPYLM G and the phoneme HPYLM H using
the word sequences: W→ G,H
if k = ksw then

Increase language model orders
end if
k = k + 1

end while

ognizer. However, to save the computational effort of repeated phoneme recog-
nition, a phoneme lattice is produced by the ASR engine in the first iteration,
and the updated HPYLM H is applied by rescoring in later iterations. Then
the most probable phoneme string is extracted from the lattice using Viterbi
decoding. Tasks 2a) and 2b), i.e., word recognition and language model estima-
tion, are carried out on the currently most probable phoneme sequence using
the algorithm of [39].

4.3 Experimental results

Experimental results were obtained using the training speech data from the
Cambridge version of the Wall Street Journal corpus (WSJCAM0) [15], com-
prised of 7861 sentences. The size of the vocabulary is about 10k words. A
monophone HMM acoustic model was trained on the training set and decoding
was carried out on a subset of the same set, consisting of 5628 sentences, using
the monophone models and a zerogram phoneme LM, producing a lattice at the
output. The phoneme error rate of the highest scoring path was about 33% and
the segmentation algorithm was run for kmax = 100 iterations, switching the
word language model orders from n = 1 to n = 2 and phoneme language model
order from m = 2 to m = 8 after ksw = 25 Iterations.

Preprint of the publication [54], as provided by the authors. 19

Rank cw Phonemes Characters
1 3489 dh ax THE

13 447 s eh d SAID
17 365 m ih s t ax MISTER
20 327 f ay v FIVE
23 279 p ax s eh n t PERCENT
25 268 m ih l ia n MILLION
26 267 s ah m SOME
27 263 k ah m p ax n iy COMPANY
29 259 d oh l ax z DOLLARS
33 235 hh ae v HAVE

Table 1: Most often found words with more than 3 characters

Figure 8 shows the 100 most often found phonetic words. The bigger a word
is printed, the more often it was found in the data. Some words with more

Figure 8: 100 most often found phonetic words

than three characters and their corresponding phoneme based representations
are listed in table 1, where cw is the number of times the word was found.
Additionally to the listed words, the numbers one to 10 (“w ah n”, “t uw”, “th
r iy”, “f ao”, “f ay v”, “s ih k s”, “s eh v n”, “ey t”, “n ay n”, “t eh n”) as well
as 20 (“t w eh n t iy”), 30 (“th er t iy”), 50 (“f ih f t iy”) and 90 (“n ay n t iy”)
are amongst those words.

In total 28.6% of the words from the running text were correctly discovered
(recall) where 32.2% of all the discovered words are correct (precision), resulting
in an F-score of 30.3%. The phoneme error rate was reduced to 24.5%. The
precision for the lexicon is 13.2% with a recall of 21.8%, resulting in a lexicon
F-score of 16.4%. Out of the 100 most often found words, 80 were correct
words. Our implementation needed a runtime of about 10 hours for the 100
iterations on a single core of an Intel(R) Xeon(R) E5-2640 at 2.50GHz resulting
in a realtime factor of one.

An overview and evaluation of algorithms for acoustic model and word dis-

Preprint of the publication [54], as provided by the authors. 20

covery can be found in [31]. These algorithms, however, don’t consider recog-
nition errors in the phoneme sequences as we do. Word discovery on noisy
phoneme lattices was also considered in [41], using similar methods. A compar-
ison in [26] showed greatly improved F-scores of our proposed method compared
to [41] for word n-grams greater than 1. This is due to a more consistent use of
the language model hierarchy combined with our iterative approach, making it
computationally feasible. For a more detailed analysis see [25].

4.4 Software

We implemented the algorithm using weighted finite state transducers (WF-
STs) and the OpenFst library. A download is available at: http://nt.uni-
paderborn.de/
mitarbeiter/oliver-walter/software/.

4.5 Outlook

Due to the high variability of speech within and especially across speakers, a
single word can have different phoneme transcriptions. Recognition errors will
also lead to different phoneme sequences. Two examples can be found in the
100 most often found words. The number 100 was discovered as “hh ah n d ax
d” and “hh ah n d r ih d” and the number 90 as “n ay n t iy” and “n ey t iy”. A
combination with metric learning and clustering of similar words with different
pronunciations or spelling errors, could improve the learning result.

References

[1] M. Aharon, M. Elad, and A. Bruckstein. k -svd: An algorithm for design-
ing overcomplete dictionaries for sparse representation. Signal Processing,
IEEE Transactions on, 54(11):4311–4322, Nov 2006.

[2] A. Bellet and A. Habrard. Robustness and generalization for metric learn-
ing. Neurocomputing, 151:259–267, 2015.

[3] A. Bellet, A. Habrard, and M. Sebban. Good edit similarity learning by
loss minimization. Machine Learning, 89(1-2):5–35, 2012.

[4] A. Bellet, A. Habrard, and M. Sebban. Good edit similarity learning by
loss minimization. Machine Learning, 89(1):5–35, 2012.

[5] A. Bellet, A. Habrard, and M. Sebban. A survey on metric learning for
feature vectors and structured data. CoRR, abs/1306.6709, 2013.

[6] Y. Bengio, A. C. Courville, and P. Vincent. Representation learning: A
review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell.,
35(8):1798–1828, 2013.

Preprint of the publication [54], as provided by the authors. 21

[7] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies
with gradient descent is difficult. IEEE Transactions on Neural Networks,
5(2):157–166, 1994.

[8] M. Bernard, L. Boyer, A. Habrard, and M. Sebban. Learning probabilistic
models of tree edit distance. Pattern Recognition, 41(8):2611–2629, 2008.

[9] M. Bianchini and F. Scarselli. On the complexity of neural network classi-
fiers: A comparison between shallow and deep architectures. IEEE Trans.
Neural Netw. Learning Syst., 25(8):1553–1565, 2014.

[10] M. Biehl, K. Bunte, and P. Schneider. Analysis of flow cytometry data
by matrix relevance learning vector quantization. PLoS ONE, 8(3):e59401,
2013.

[11] S. Chaudhuri, M. Harvilla, and B. Raj. Unsupervised learning of acoustic
unit descriptors for audio content representation and classification. In Proc.
of Interspeech, 2011.

[12] C. Cortes and V. Vapnik. Support-vector networks. Mach. Learn.,
20(3):273–297, Sept. 1995.

[13] G. de Vries, S. C. Pauws, and M. Biehl. Insightful stress detection from
physiology modalities using learning vector quantization. Neurocomputing,
151:873–882, 2015.

[14] P. Foldiak and D. Endres. Sparse coding. Scholarpedia, 3(1):2984, 2008.

[15] J. Fransen, D. Pye, T. Robinson, P. Woodland, and S. Younge. WSJCAMO
corpus and recording description. Citeseer, 1994.

[16] B. Frénay and M. Verleysen. Parameter-insensitive kernel in extreme learn-
ing for non-linear support vector regression. Neurocomputing, 74(16):2526–
2531, 2011.

[17] I. Giotis, K. Bunte, N. Petkov, and M. Biehl. Adaptive matrices and
filters for color texture classification. Journal of Mathematical Imaging
and Vision, 47:79–92, 2013.

[18] A. Gisbrecht and B. Hammer. Data visualization by nonlinear dimension-
ality reduction. Wiley Interdisciplinary Reviews: Data Mining and Knowl-
edge Discovery, 5(2):51–73, 2015.

[19] A. Gisbrecht, A. Schulz, and B. Hammer. Parametric nonlinear dimension-
ality reduction using kernel t-sne. Neurocomputing, 147:71–82, 2015.

[20] J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov. Neighborhood
Component Analysis. In NIPS, 2004.

Preprint of the publication [54], as provided by the authors. 22

[21] B. Hammer and K. Gersmann. A note on the universal approximation
capability of support vector machines. Neural Processing Letters, 17(1):43–
53, 2003.

[22] B. Hammer, D. Hofmann, F. Schleif, and X. Zhu. Learning vector quanti-
zation for (dis-)similarities. Neurocomputing, 131:43–51, 2014.

[23] B. Hammer and T. Villmann. Generalized relevance learning vector quan-
tization. Neural Networks, 15(8-9):1059–1068, 2002.

[24] J. Hastad. Almost optimal lower bounds for small depth circuits. In Pro-
ceedings of the Eighteenth Annual ACM Symposium on Theory of Comput-
ing, STOC ’86, pages 6–20, New York, NY, USA, 1986. ACM.

[25] J. Heymann, O. Walter, R. Haeb-Umbach, and B. Raj. Unsupervised Word
Segmentation from Noisy Input. In Automatic Speech Recognition and Un-
derstanding Workshop (ASRU), Dec. 2013.

[26] J. Heymann, O. Walter, R. Haeb-Umbach, and B. Raj. Iterative bayesian
word segmentation for unspuervised vocabulary discovery from phoneme
lattices. In 39th International Conference on Acoustics, Speech and Signal
Processing (ICASSP 2014), may 2014.

[27] G. E. Hinton. Learning multiple layers of representation. Trends in Cog-
nitive Sciences, 11:428–434, 2007.

[28] J. Hocke, K. Labusch, E. Barth, and T. Martinetz. Sparse coding and
selected applications. KI, 26(4):349–355, 2012.

[29] G. Huang, G. Huang, S. Song, and K. You. Trends in extreme learning
machines: A review. Neural Networks, 61:32–48, 2015.

[30] A. Hyvärinen and E. Oja. Independent component analysis: algorithms
and applications. Neural Networks, 13(4–5):411 – 430, 2000.

[31] A. Jansen, E. Dupoux, S. Goldwater, M. Johnson, S. Khudanpur,
K. Church, N. Feldman, H. Hermansky, F. Metze, R. Rose, M. Seltzer,
P. Clark, I. McGraw, B. Varadarajan, E. Bennett, B. Börschinger, J. Chiu,
E. Dunbar, A. Fourtassi, D. Harwath, C.-y. Lee, K. Levin, A. Norouzian,
V. Peddinti, R. Richardson, T. Schatz, and S. Thomas. A summary of the
2012 JHU CLSP workshop on Zero Resource speech technologies and mod-
els of early language acquisition. In Proceedings of the 38th International
Conference on Acoustics, Speech, and Signal Processing, 2013.

[32] S. Kaski, J. Sinkkonen, and J. Peltonen. Bankruptcy analysis with self-
organizing maps in learning metrics. IEEE Transactions on Neural Net-
works, 12(4):936–947, 2001.

[33] S. Kirstein, H. Wersing, H. Gross, and E. Körner. A life-long learning vector
quantization approach for interactive learning of multiple categories. Neural
Networks, 28:90–105, 2012.

Preprint of the publication [54], as provided by the authors. 23

[34] N. Krüger, P. Janssen, S. Kalkan, M. Lappe, A. Leonardis, J. H. Piater,
A. J. Rodŕıguez-Sánchez, and L. Wiskott. Deep hierarchies in the primate
visual cortex: What can we learn for computer vision? IEEE Trans.
Pattern Anal. Mach. Intell., 35(8):1847–1871, 2013.

[35] B. Kulis. Metric learning: A survey. Foundations and Trends in Machine
Learning, 5(4):287–364, 2013.

[36] M. Lukosevicius and H. Jaeger. Reservoir computing approaches to re-
current neural network training. Computer Science Review, 3(3):127–149,
2009.

[37] G. D. S. Martino and A. Sperduti. Mining structured data. IEEE Compu-
tational Intelligence Magazine, 5(1):42–49, 2010.

[38] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Belle-
mare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen,
C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra,
S. Legg, and D. Hassabis. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, 02 2015.

[39] D. Mochihashi, T. Yamada, and N. Ueda. Bayesian unsupervised word
segmentation with nested Pitman-Yor language modeling. In Proceedings
of the Joint Conference of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Language Processing of the
AFNLP: Volume 1-Volume 1, 2009.

[40] B. Mokbel, B. Paassen, F.-M. Schleif, and B. Hammer. Metric learning for
sequences in relational lvq. Neurocomputing, accepted, 2015.

[41] G. Neubig, M. Mimura, and T. Kawaharak. Bayesian learning of a language
model from continuous speech. IEICE TRANSACTIONS on Information
and Systems, 95(2), 2012.

[42] D. Nova and P. A. Estévez. A review of learning vector quantization clas-
sifiers. Neural Computing and Applications, 25(3-4):511–524, 2014.

[43] P. Schneider, M. Biehl, and B. Hammer. Adaptive relevance matrices in
learning vector quantization. Neural Computation, 21(12):3532–3561, 2009.

[44] S. Seo and K. Obermeyer. Soft learning vector quantization. Neural Com-
putation, 15:1589–1604, 2003.

[45] S. Shalev-shwartz, Y. Singer, and A. Y. Ng. Online and batch learning of
pseudo-metrics. In In ICML, pages 743–750. ACM Press, 2004.

[46] Y. Shi, A. Bellet, and F. Sha. Sparse compositional metric learning. CoRR,
abs/1404.4105, 2014.

Preprint of the publication [54], as provided by the authors. 24

[47] M.-h. Siu, H. Gish, A. Chan, W. Belfield, and S. Lowe. Unsupervised
training of an hmm-based self-organizing unit recognizer with applications
to topic classification and keyword discovery. Computer Speech & Language,
28(1):210–223, 2014.

[48] I. Steinwart. Consistency of support vector machines and other regularized
kernel classifiers. IEEE Transactions on Information Theory, 51(1):128–
142, 2005.

[49] Y. W. Teh. A Bayesian interpretation of interpolated Kneser-Ney. 2006.

[50] Y. W. Teh. A hierarchical Bayesian language model based on Pitman-Yor
processes. In Proceedings of the 21st International Conference on Computa-
tional Linguistics and the 44th annual meeting of the Association for Com-
putational Linguistics. Association for Computational Linguistics, 2006.

[51] P. Tiño and B. Hammer. Architectural bias in recurrent neural networks:
Fractal analysis. Neural Computation, 15(8):1931–1957, 2003.

[52] L. Van der Maaten, E. Postma, and H. Van den Herik. Dimensionality
reduction: A comparative review. Technical Report TiCC TR 2009-005,
2009.

[53] O. Walter, V. Despotovic, R. Haeb-Umbach, J. Gemmeke, B. Ons, and
H. Van hamme. An evaluation of unsupervised acoustic model training for
a dysarthric speech interface. In INTERSPEECH 2014, 2014.

[54] O. Walter, R. Häb-Umbach, B. Mokbel, B. Paaßen, and B. Hammer. Au-
tonomous learning of representations. KI - Künstliche Intelligenz, pages
1–13, 2015.

[55] O. Walter, R. Haeb-Umbach, S. Chaudhuri, and B. Raj. Unsupervised
Word Discovery from Phonetic Input Using Nested Pitman-Yor Language
Modeling. ICRA Workshop on Autonomous Learning, 2013.

[56] O. Walter, T. Korthals, R. Haeb-Umbach, and B. Raj. A Hierarchical
System For Word Discovery Exploiting DTW-Based Initialization. In Au-
tomatic Speech Recognition and Understanding Workshop (ASRU), Dec.
2013.

[57] K. Q. Weinberger and L. K. Saul. Distance metric learning for large margin
nearest neighbor classification. J. Mach. Learn. Res., 10:207–244, June
2009.

[58] B. Widrow and M. A. Lehr. 30 years of adaptive neural networks: Percep-
tron, madaline, and backpropagation. Proceedings of the IEEE, 78(9):1415–
1442, 1990.

[59] L. Wiskott, P. Berkes, M. Franzius, H. Sprekeler, and N. Wilbert. Slow
feature analysis. Scholarpedia, 6(4):5282, 2011.

Preprint of the publication [54], as provided by the authors. 25

[60] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learning,
with application to clustering with side-information. In ADVANCES IN
NEURAL INFORMATION PROCESSING SYSTEMS 15, pages 505–512.
MIT Press, 2003.

[61] X. Zhu, F. Schleif, and B. Hammer. Adaptive conformal semi-supervised
vector quantization for dissimilarity data. Pattern Recognition Letters,
49:138–145, 2014.

