10 research outputs found

    Discriminative and adaptive training for robust speech recognition and understanding

    Get PDF
    Robust automatic speech recognition (ASR) and understanding (ASU) under various conditions remains to be a challenging problem even with the advances of deep learning. To achieve robust ASU, two discriminative training objectives are proposed for keyword spotting and topic classification: (1) To accurately recognize the semantically important keywords, the non-uniform error cost minimum classification error training of deep neural network (DNN) and bi-directional long short-term memory (BLSTM) acoustic models is proposed to minimize the recognition errors of only the keywords. (2) To compensate for the mismatched objectives of speech recognition and understanding, minimum semantic error cost training of the BLSTM acoustic model is proposed to generate semantically accurate lattices for topic classification. Further, to expand the application of the ASU system to various conditions, four adaptive training approaches are proposed to improve the robustness of the ASR under different conditions: (1) To suppress the effect of inter-speaker variability on speaker-independent DNN acoustic model, speaker-invariant training is proposed to learn a deep representation in the DNN that is both senone-discriminative and speaker-invariant through adversarial multi-task training (2) To achieve condition-robust unsupervised adaptation with parallel data, adversarial teacher-student learning is proposed to suppress multiple factors of condition variability in the procedure of knowledge transfer from a well-trained source domain LSTM acoustic model to the target domain. (3) To further improve the adversarial learning for unsupervised adaptation with unparallel data, domain separation networks are used to enhance the domain-invariance of the senone-discriminative deep representation by explicitly modeling the private component that is unique to each domain. (4) To achieve robust far-field ASR, an LSTM adaptive beamforming network is proposed to estimate the real-time beamforming filter coefficients to cope with non-stationary environmental noise and dynamic nature of source and microphones positions.Ph.D

    Constructing Long Short-Term Memory based Deep Recurrent Neural Networks for Large Vocabulary Speech Recognition

    Full text link
    Long short-term memory (LSTM) based acoustic modeling methods have recently been shown to give state-of-the-art performance on some speech recognition tasks. To achieve a further performance improvement, in this research, deep extensions on LSTM are investigated considering that deep hierarchical model has turned out to be more efficient than a shallow one. Motivated by previous research on constructing deep recurrent neural networks (RNNs), alternative deep LSTM architectures are proposed and empirically evaluated on a large vocabulary conversational telephone speech recognition task. Meanwhile, regarding to multi-GPU devices, the training process for LSTM networks is introduced and discussed. Experimental results demonstrate that the deep LSTM networks benefit from the depth and yield the state-of-the-art performance on this task.Comment: submitted to ICASSP 2015 which does not perform blind review

    Machine Learning for Information Retrieval

    Get PDF
    In this thesis, we explore the use of machine learning techniques for information retrieval. More specifically, we focus on ad-hoc retrieval, which is concerned with searching large corpora to identify the documents relevant to user queries. Thisidentification is performed through a ranking task. Given a user query, an ad-hoc retrieval system ranks the corpus documents, so that the documents relevant to the query ideally appear above the others. In a machine learning framework, we are interested in proposing learning algorithms that can benefit from limited training data in order to identify a ranker likely to achieve high retrieval performance over unseen documents and queries. This problem presents novel challenges compared to traditional learning tasks, such as regression or classification. First, our task is a ranking problem, which means that the loss for a given query cannot be measured as a sum of an individual loss suffered for each corpus document. Second, most retrieval queries present a highly unbalanced setup, with a set of relevant documents accounting only for a very small fraction of the corpus. Third, ad-hoc retrieval corresponds to a kind of ``double'' generalization problem, since the learned model should not only generalize to new documents but also to new queries. Finally, our task also presents challenging efficiency constraints, since ad-hoc retrieval is typically applied to large corpora. % The main objective of this thesis is to investigate the discriminative learning of ad-hoc retrieval models. For that purpose, we propose different models based on kernel machines or neural networks adapted to different retrieval contexts. The proposed approaches rely on different online learning algorithms that allow efficient learning over large corpora. The first part of the thesis focus on text retrieval. In this case, we adopt a classical approach to the retrieval ranking problem, and order the text documents according to their estimated similarity to the text query. The assessment of semantic similarity between text items plays a key role in that setup and we propose a learning approach to identify an effective measure of text similarity. This identification is not performed relying on a set of queries with their corresponding relevant document sets, since such data are especially expensive to label and hence rare. Instead, we propose to rely on hyperlink data, since hyperlinks convey semantic proximity information that is relevant to similarity learning. This setup is hence a transfer learning setup, where we benefit from the proximity information encoded by hyperlinks to improve the performance over the ad-hoc retrieval task. We then investigate another retrieval problem, i.e. the retrieval of images from text queries. Our approach introduces a learning procedure optimizing a criterion related to the ranking performance. This criterion adapts our previous learning objective for learning textual similarity to the image retrieval problem. This yields an image ranking model that addresses the retrieval problem directly. This approach contrasts with previous research that rely on an intermediate image annotation task. Moreover, our learning procedure builds upon recent work on the online learning of kernel-based classifiers. This yields an efficient, scalable algorithm, which can benefit from recent kernels developed for image comparison. In the last part of the thesis, we show that the objective function used in the previous retrieval problems can be applied to the task of keyword spotting, i.e. the detection of given keywords in speech utterances. For that purpose, we formalize this problem as a ranking task: given a keyword, the keyword spotter should order the utterances so that the utterances containing the keyword appear above the others. Interestingly, this formulation yields an objective directly maximizing the area under the receiver operating curve, the most common keyword spotter evaluation measure. This objective is then used to train a model adapted to this intrinsically sequential problem. This model is then learned with a procedure derived from the algorithm previously introduced for the image retrieval task. To conclude, this thesis introduces machine learning approaches for ad-hoc retrieval. We propose learning models for various multi-modal retrieval setups, i.e. the retrieval of text documents from text queries, the retrieval of images from text queries and the retrieval of speech recordings from written keywords. Our approaches rely on discriminative learning and enjoy efficient training procedures, which yields effective and scalable models. In all cases, links with prior approaches were investigated and experimental comparisons were conducted

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes

    Digital Interaction and Machine Intelligence

    Get PDF
    This book is open access, which means that you have free and unlimited access. This book presents the Proceedings of the 9th Machine Intelligence and Digital Interaction Conference. Significant progress in the development of artificial intelligence (AI) and its wider use in many interactive products are quickly transforming further areas of our life, which results in the emergence of various new social phenomena. Many countries have been making efforts to understand these phenomena and find answers on how to put the development of artificial intelligence on the right track to support the common good of people and societies. These attempts require interdisciplinary actions, covering not only science disciplines involved in the development of artificial intelligence and human-computer interaction but also close cooperation between researchers and practitioners. For this reason, the main goal of the MIDI conference held on 9-10.12.2021 as a virtual event is to integrate two, until recently, independent fields of research in computer science: broadly understood artificial intelligence and human-technology interaction

    Cognitive Foundations for Visual Analytics

    Get PDF
    In this report, we provide an overview of scientific/technical literature on information visualization and VA. Topics discussed include an update and overview of the extensive literature search conducted for this study, the nature and purpose of the field, major research thrusts, and scientific foundations. We review methodologies for evaluating and measuring the impact of VA technologies as well as taxonomies that have been proposed for various purposes to support the VA community. A cognitive science perspective underlies each of these discussions

    The drivers of Corporate Social Responsibility in the supply chain. A case study.

    Get PDF
    Purpose: The paper studies the way in which a SME integrates CSR into its corporate strategy, the practices it puts in place and how its CSR strategies reflect on its suppliers and customers relations. Methodology/Research limitations: A qualitative case study methodology is used. The use of a single case study limits the generalizing capacity of these findings. Findings: The entrepreneur’s ethical beliefs and value system play a fundamental role in shaping sustainable corporate strategy. Furthermore, the type of competitive strategy selected based on innovation, quality and responsibility clearly emerges both in terms of well defined management procedures and supply chain relations as a whole aimed at involving partners in the process of sustainable innovation. Originality/value: The paper presents a SME that has devised an original innovative business model. The study pivots on the issues of innovation and eco-sustainability in a context of drivers for CRS and business ethics. These values are considered fundamental at International level; the United Nations has declared 2011 the “International Year of Forestry”
    corecore