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CHAPTER 1

INTRODUCTION

1.1 Motivations and Scientific Goals

Automatic speech understanding (ASU) aims at interpreting users’ intentions from their sponta-

neous conversational speech utterances. An ASU system consists of an automatic speech recog-

nition (ASR) component which transforms the speech signal into word hypotheses and a spoken

language understanding (SLU) system that extracts the semantic representation (meaning) from the

recognized text.

With the advent of deep neural network (DNN) acoustic model [1, 2], the ASR performance is

greatly improved. However, ASR is still faced with great challenges when the size of the vocabulary

is large and the speaking style is flexible. The frequent occurrences of words streams with no overt

lexical marking of punctuations and disfluencies (i.e, filled pauses, repetitions, repairs and false

starts) in a natural conversation drastically degrade the performance of an ASR system on spon-

taneous conversational speech [3]. Moreover, the spontaneous and irregular nature of the spoken

language, no structure information (i.e., punctuation and sentence boundaries) from the ASR output

and the recognition errors made by ASR degrade the performance of SLU.

Fortunately, the main idea of the spontaneous conversational speech highly depends on a set of

keywords that are semantically important. Therefore, keyword spotting, with the goal of finding

the instances of a particular set of spoken words in speech signals, becomes an important technique

for the accurate understanding of spontaneous conversational speech [4, 5, 6]. To achieve robust

keyword spotting on conversational speech, we propose to use the non-uniform error cost function

[7] as the objective to discriminatively train the deep feedforward neural network (FNN) [8, 9]

and deep bi-directional long short-term memory (BLSTM) - recurrent neural networks (RNN) [10]

acoustic models so that the errors of the keywords out of all possible words in the vocabulary are

minimized [11, 12]. With a densely connected FNN for acoustic modeling, the high correlations

between frames can be well extracted and reflected in the intermediate representation and the distri-

1



bution of a concatenation of several consecutive speech frames within a long context window can be

robustly modeled [13]. The deep LSTM-RNN is able to exploit dynamically changing contextual

window over the input sequence rather than a static fixed-sized window used with the feedforward

DNN. With a special gating mechanism to control the information to be added to or removed from

the internal cell state, the LSTM architecture enables the capturing of long-term temporal context

information and overcomes the diminishing gradient problem that comes along the RNN training.

The BLSTM networks [14] process each input sequence in both directions so that the future context

information are well exploited to assist in making the current prediction.

However, in most ASU systems, the ASR and the SLU components are isolated and are op-

timized towards different objectives. More specifically, in ASR, the decoded lattices (i.e., word

hypotheses) are generated by the acoustic models that are discriminatively optimized to minimize

the senone (tied tri-phone state), phoneme or word recognition errors, while in SLU, the lattices

are analyzed based on their semantic meaning rather than their spellings or pronunciations. A high

phoneme or state accuracy of the decoded lattices from the ASR does not guarantee a high seman-

tic accuracy and is not suitable for the SLU. To cope with this problem, we propose the minimum

semantic error cost (MSEC) training [15] of the BLSTM acoustic model, in which the expected

semantic error cost of all possible word sequences on the lattices is minimized given the reference.

The semantic error cost between a pair of words can be estimated via latent semantic analysis (LSA)

[16] or RNN learned vector space word representations [17]. The semantic error cost between sen-

tences can be obtained by accumulating the word-word semantic error costs on the lattices. We

evaluate the performance of the MSEC training on a topic spotting task which aims at classifying

the conversational utterances into one of a pre-defined set of topics.

To expand the application of the ASU system to various scenarios and achieve robust speech un-

derstanding under different environments and conditions, three important problems concerning the

underlying ASR component remain to be addressed: First, the performance of speaker-independent

(SI) acoustic models trained with speech data recorded from a large number of speakers is affected

by the spectral variations in each speech unit caused by the inter-speaker variability. Such speaker

variations lead to high variance in the spectral distribution of the speech signal that corresponds

to each speech unit and thus large overlaps among distributions. Secondly, the ASR performance

2



suffers from large degradation when acoustic mismatch exists between the training and test condi-

tions. Many factors contribute to the mismatch, such as variation in environment noises, channels

and speaker characteristics. Thirdly, the ASR performance degrades dramatically when the speech

signal is from a distant source under noisy conditions. This scenario is sometimes referred to as

”far-field” or ”distant-talking” in which the talker does not speak into a close-talking microphone

located right in front of his or her mouth. In this scenario, the recorded speech is the source speech

signal convolved with the room impulse responses, i.e., the so-called reverberant effect, plus what-

ever background noise that may be present. This reverberation effect is hard to estimate as the room

geometry and the speaker-recorder positions are unpredictable and sometimes time-variant. In ad-

dition, the recorded signal is frequently mixed with other unexpected sound sources such as noises

and interference of the other speakers.

One common solution to the first problem is the speaker-adaptive training (SAT) [18, 19, 20],

which aims at generating a canonical acoustic model together with speaker-dependent (SD) trans-

formations. By separately modeling the phonetic variations and the speaker variations, a compact

acoustic model can be trained with reduced variance and overlap among different speech units.

However, SAT requires two sets of models during testing, i.e., the SI model and the speaker canoni-

cal model, and it needs to be coupled with speaker adaptation. The SI model is used to generate the

first-pass decoding transcription, and the speaker canonical model is combined with SD transforma-

tion to adapt to the test speaker. The final transcription is generated through the second-pass decod-

ing. To realize the speaker normalization in a much simpler process, we propose speaker-invariant

training (SIT) [21] to directly minimize the speaker variations by introducing a speaker classifier

and optimizing an adversarial multi-task objective [22, 23]. SIT forgoes the need of estimating

any additional SI bases or speaker representations during training or testing. The direct use of SIT

DNN acoustic model in testing enables the generation of word transcription for unseen test speakers

through one-pass online decoding. Moreover, it effectively suppresses the inter-speaker variability

via a lightweight system with much reduced modeling parameters and computational complexity.

To achieve additional gains, unsupervised speaker adaptation can also be further conducted on the

SIT model with one extra pass of decoding.

To tackle the second problem, acoustic model adaptation can be effectively applied to compen-
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sate for the acoustic mismatch between training and testing, in which the acoustic model parameters

or the input features are adjusted according to the adaptation data. Unsupervised adaptation is nec-

essary when labels of the target domain data are unavailable. It has become an important topic with

the increasing amount of untranscribed speech data for which the human annotation is expensive.

One possible way is to generate senone alignments against the unlabeled adaptation data through

first pass decoding. However, the first pass decoding result is unreliable when the mismatch be-

tween the training and test conditions is significant. It is also time-consuming and can be hardly

applied to huge amount of adaptation data. There are even situations when decoding adaptation data

is not allowed because of the privacy agreement signed with the speakers. The goal of our study is

to achieve purely unsupervised adaptation without any exposure to the labels or the decoding results

of the adaptation data in the target domain.

Teacher-student (T/S) learning [24] is one possible approach to achieve purely unsupervised

adaptation [25]. In T/S learning, the posteriors generated by the teacher model are used in lieu of

the hard labels derived from the transcriptions to train the target-domain student model. Although

T/S learning achieves large word error rate (WER) reduction in domain adaptation, it only implic-

itly handles the variations in each speech unit (e.g. senone) caused by the speaker and environment

variability in addition to phonetic variations. Another approach achieving purely unsupervised adap-

tation is the adversarial multi-task learning [22] using gradient reversal layer network (GRLN) [23,

26, 27]. A deep intermediate feature is learned to be both discriminative for the main task of senone

classification and invariant with respect to the shifts among different conditions (i.e., speakers or

environments). As a comparison, T/S learning can achieve significantly better performance by us-

ing parallel training data, while adversarial training is the only possible solution when parallel data

is not available.

To benefit from both methods, we first advance T/S learning with adversarial training to pro-

pose adversarial T/S learning [28] for condition-robust unsupervised domain adaptation, where a

student acoustic model and a domain classifier are jointly trained to minimize the Kullback-Leibler

(KL) divergence between the output distributions of the teacher and student models as well as to

min-maximize the condition classification loss through adversarial multi-task learning. A senone-

discriminative and condition-invariant deep feature is learned in the adapted student model through
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this procedure. Based on this, we further propose the multi-factorial adversarial (MFA) T/S learning

where the condition variabilities caused by multiple factors are minimized simultaneously.

Further, to make the adversarial learning method [23] more effective for unsupervised adap-

tation, we propose to use a domain separation network (DSN) [29, 30] to explicitly model the

private component that is unique to each domain in addition to the shared component modeled in

GRLN [23, 27] that is invariant to the domain shift. The shared component is learned through

adversarial multi-task learning to be both discriminative to the main-task of senone classification

on the source domain and invariant to the domain shift between source and target domains. The

private component of each domain is trained to be orthogonal to the shared component to enhance

its domain-invariance. The shared component extractor together with the senone classifier form the

adapted acoustic model.

To deal with the third problem and achieve robust speech recognition in the far-field condition,

multiple microphones can be used to enhance the speech signal, reduce the effects of noise and

reverberation, and improve the ASR performance. In this scenario, an essential step of the ASR

front-end processing is multichannel filtering, or beamforming, which steers a spatial sensitivity

region, or “beam” in the direction of the target source, and inserts spatial suppression regions, or

“nulls” in the directions corresponding to noise and other interference. We propose to adaptively

estimate the beamforming filter coefficients at each time frame using an LSTM-RNN to deal with

any possible changes of the source, noise or channel conditions [31]. The enhanced signal is gener-

ated by applying these time-variant filter coefficients to the short-time Fourier transform (STFT) of

the array signals through filter-and-sum beamforming and is passed to a deep LSTM-RNN acoustic

model to predict the senone posteriors. Further, we use hidden units in the deep LSTM acoustic

model to assist in predicting the beamforming filter coefficients. The LSTM beamforming network

and the LSTM acoustic model are jointly optimized to improve the ASR performance.

1.2 Contributions

The objective of the thesis is to build a robust speech recognition and understanding system through

discriminative and adaptive training of the DNN acoustic models. The goal is achieved through the

following approaches.
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1. To achieve accurate keyword spotting on conversational speech, the non-uniform error cost

MCE is used as the discriminative objective to train the deep FNN and deep BLSTM-RNN

acoustic models so that the errors of keywords out of all possible words in the vocabulary are

minimized. The proposed approach achieves 3%-6% and 6%-7% absolute FOM gains over

cross-entropy training on the Switchboard-1 dataset and HKUST dataset.

2. To generate semantically accurate word lattices for topic spotting, MSEC objective function

is proposed to train the deep BLSTM-RNN acoustic model, in which the expected semantic

error cost of all possible word sequences on the lattices is minimized given the reference. The

proposed method achieves 3.5% - 4.5% absolute accuracy improvement on Switchboard-1

dataset.

3. To suppress the effect of inter-speaker variability on speaker-independent DNN acoustic

model, SIT is proposed to learn a deep representation in the DNN that is both senone-

discriminative and speaker-invariant through adversarial multi-task training. The proposed

method achieves 5%-6% relative WER improvements over the SI acoustic model on CHiME-

3 dataset for ASR.

4. To achieve condition-robust unsupervised adaptation with parallel data, adversarial T/S learn-

ing is proposed to suppress multiple factors of condition variability in the procedure of knowl-

edge transfer from a well-trained source domain LSTM acoustic model to the target domain.

The proposed method achieves 3.5%-5.5% relative WER improvements over the T/S learning

on CHiME-3 dataset for ASR.

5. To further improve the adversarial learning method for unsupervised adaptation without par-

allel data, DSNs are used to enhance the domain-invariance of the senone-discriminative deep

representation by explicitly modeling the private component that is unique to each domain.

The proposed method achieves 11.08% relative WER improvement over gradient reversal

layer method on CHiME-3 dataset for ASR.

6. To achieve robust far-field ASR, beamforming is performed over speech signal acquired from

multiple microphones. A deep LSTM-RNN is used to adaptively estimate the real-time beam-
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forming filter coefficients to cope with non-stationary environmental noise and dynamic na-

ture of source and microphones positions. The LSTM adaptive beamformer is jointly trained

with a deep LSTM acoustic model to predict senone labels. The proposed method achieves

7.97% absolute WER gain over multi-style training on CHiME-3 dataset for ASR.

1.3 Thesis Outline

We focus on the proposed discriminative training methods for ASU in Chapter 2-3 and the proposed

adaptive training methods for ASR in Chapter 4-8 to further expand the application of ASU to

various environments and conditions.

The thesis is organized as the following. In Chapter 2, background knowledge related to the

topics in this thesis is introduced, including the FNN-HMM and BLSTM-HMM acoustic models

for ASR, conventional discriminative training of DNN acoustic models for ASR, and adaptation of

DNN acoustic models. Chapter 3 presents the theory and formulation of non-uniform MCE, derives

the backpropagation errors used to train the FNN and BLSTM acoustic model, and verify its effec-

tiveness on Switchboard-1 Release 2 (English) and HKUST (Mandarin) dataset. Chapter 4 presents

the theory and formulation of the proposed MSEC objective, derives the backpropagation errors

used to train the BLSTM acoustic model and verify its effectiveness on Switchboard-1 Release 2

dataset. In Chapter 5, the speaker-invariant training is proposed to suppress the effect of speaker

variability in ASR and is compared with conventional speaker-adaptive training approaches. We

formulate SIT in the adversarial multi-task learning framework, describe its training and testing

procedure and evaluate it on CHiME-3 dataset. In Chapter 6, we compare the T/S learning and

adversarial learning methods for unsupervised adaptation. We advance the T/S learning with ad-

versarial learning to proposed the adversarial T/S learning to achieve condition. The experiments

are conducted on CHiME-3 dataset. In Chapter 7, we advance the adversarial learning approach

with private component extractors and proposed to use DSN for unsupervised adaptation with un-

parallel data. DSN is evaluated on CHiME-3 dataset. In Chapter 8, we propose the adaptive LSTM

beamforming network based on adaptive filter-and-sum to estimate the real-time beamforming fil-

ter coefficient for multichannel far-field ASR. We further integrate it with LSTM acoustic model

and perform joint training of the integrated network. The experiments are conducted on CHiME-3
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dataset. In Chapter 9, we conclude the thesis by listing the contributions.
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CHAPTER 2

BACKGROUND

2.1 Automatic Speech Recognition System

ASR is the task of automatically converting speech signal X into a text transcription of spoken

words W . As shown in Fig. 2.1, the architecture of a typical ASR system consists of five com-

ponent: feature extraction, acoustic model (AM), pronunciation model, language model (LM) and

decoder. The output of an ASR system is the word sequence Ŵ that maximizes the posterior prob-

Figure 2.1: The architecture of an ASR system.

ability P (W |X) given the input speech data X . ASR can be formulated as a maximum a posterior

decision problem below:

Ŵ = arg max
W

P (W |X) = arg max
W

PΛ(X|W )κPΘ(W )

P (X)
= arg max

W
PΛ(X|W )κPΘ(W ) (2.1)

where PΛ(X|W ) is the acoustic model likelihood with parameters Λ, κ is the scaling factor for the

acoustic model likelihood and PΘ(W ) is the language model probability with parameters Θ. In the

training stage, we want to estimate the optimal acoustic and language model parameters Λ̂ and Θ̂

given the training data. During testing, the decoder will find the optimal word sequence Ŵ given Λ̂

and Θ̂ through proper search, often involving some form of dynamic programming.
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2.1.1 Feature Extraction

The speech signal is produced by passing an excitation signal through a slowly time-varying linear

system. For the voiced speech, the excitation signal is in the form of a quasi-periodic glottal wave

and for the unvoiced speech, it is represented by random noise. In the speech production procedure,

the linear system is essentially a vocal tract that reforms the spectrum of the speech coming out of the

lips. For the ASR task, the short-time spectrum is the most fundamental feature representation. The

short-time spectrum may undergo further transformation to become feature and can be augmented

with auxiliary features for better performance (e.g., pitch feature for tonal languages).

The most popular acoustic features have been mel-frequency cepstral coefficients (MFCC) [32].

To generate MFCC features, a pre-emphasis filter is first applied on the signal to amplify the high-

frequency components since they normally have smaller magnitudes than the low-frequency ones.

The pre-emphasis filter can be implemented as a first-order high-pass filter and the filtered signal in

time domain is represented as the following:

yt = xt − αxt−1 (2.2)

where the values for the filter coefficient α are typically around 0.95.

After pre-emphasis, short but overlapping segments of speech are successively extracted and the

frequencies in a speech signal are assumed to be stationary over a very short period of time. The

frame size is typically set at 25 ms with a stride of 10 ms (15 ms overlap). After framing the speech

signal, a window function (e.g. Hamming window) is applied to each frame as follows:

wn = 0.54− 0.46 cos(
2πn

N − 1
) (2.3)

where N is the window length and 0 ≤ n ≤ N − 1.

Then an N -point fast Fourier transform (FFT) is conducted on each frame to calculate the fre-

quency spectrum and this is called a short-time Fourier transform (STFT). A power spectrum is
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computed from the discrete STFT coefficients afterwards.

Yi,k =
+∞∑

n=−∞
ynwn−ie

−j 2π
N
kn (2.4)

Pi,k =
1

N
||Yi,k||2 (2.5)

where Yi,k and Pi,k are the complex STFT coefficient and power spectrum for the discrete time-

frequency index (i, k), k = 0, . . . , N − 1 respectively.

Then we apply triangular filters (typically 40 filters) evenly distributed on a Mel-scale to the

power spectrum to extract frequency bands. The Mel-scale aims to mimic the non-linear human

perception of sound which is more discriminative at lower frequencies and less discriminative at

higher frequencies. The relationship between f in Hertz and m in Mel is the following:

m = 2595 log10(1 +
f

700
) (2.6)

f = 700(10
m

2595 − 1) (2.7)

The frequency response of each triangular filter in the filter bank is 1 at the central frequency and

decreases linearly to 0 until it reaches the central frequencies of the two adjacent filters where the

response is 0. Normally the triangular filters are spread over the whole frequency range from zero

up to the Nyquist frequency. Band-limiting is often useful to reject unwanted frequencies or avoid

allocating filters to frequency regions in which there is no useful signal energy. The log Mel filter

bank coefficients Zi,m at time i are

Zi,m = log

(
N−1∑
k=0

Pi,kHm,k

)
, 0 ≤ m ≤M − 1 (2.8)

where Hm,k is the m th triangular filter in the filter bank.

So far, the filter bank coefficients computed in the previous steps are highly correlated. However,

when using Gaussian mixture model (GMM) - HMM system for acoustic modeling, the covariance

matrix is diagonal with assumption that feature coefficients (dimensions) are independent from each

other. Therefore, we need to apply discrete cosine transform (DCT) to decorrelate the filter bank
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coefficients as follows:

ci,p =
M−1∑
m=0

Zi,m cos
(πp
M

(m+ 0.5)
)
, 0 ≤ p ≤M − 1 (2.9)

where ci,p is the MFCC coefficients at time i. For ASR, the resulting cepstral coefficients 2-13 are

retained and the rest are discarded because they represent fast changes in the filter bank coefficients

and do not contribute so much to ASR performance.

MFCC features are widely used in both GMM-HMM and DNN-HMM systems. In real ap-

plication, the speech signal goes through a transmission channel before reaching the receiver and

the received speech signal is equivalent to multiplying the speech spectrum by the channel transfer

function which is assumed constant during the utterance. In the log cepstral domain, this multipli-

cation becomes an addition of a constant cepstrum vector which represents the channel effect and

can be removed by subtracting the cepstral mean from all the feature frames. This cepstral mean

normalization (CMN) technique is very effective in compensating for the long-term cepstral effect

caused by different microphones, audio channels and so on.

With a strong capability of modeling the high correlations among different dimensions of the

input features [33], the DNN-HMM systems appear to work better with log Mel filter-bank features

in Eq. 2.8 without because as a linear transformation, DCT discards some information in the speech

signal which is highly non-linear.

2.1.2 Acoustic Model and Pronunciation Model

The acoustic model integrates knowledge about acoustics and phonetics. It takes the features gen-

erated from the feature extraction component as the input and generates the likelihood (acoustic

model score) P (X|W ) of the variable-length feature sequence. The goal of acoustic modeling is to

establish the statistical representations for the feature vector sequences computed from the speech

waveform. Acoustic modeling plays a critical role in improving the recognition accuracy and it is

the key component of an ASR system.

Conventionally, GMM-HMM acoustic model is the most popular acoustic model in which an

HMM characterizes the temporal variability of speech and a GMM models the emitting probability
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of each HMM state which quantifies how well each state of an HMM fits a feature frame that

represents the acoustic input. HMM changes state once every time frame, and at each time frame

when a state j is entered, an observation feature vector xt is generated from the emitting probability

distribution. In the HMM, the transition probability aij represents the probability of entering state

j given the previous state j. Assume st is the state index at time t. For an N-state HMM, we have

aij = P (st = j|st−1 = i) (2.10)

N∑
j=1

aij = 1 (2.11)

The emitting probability bj(x) describes the distribution of the observation vectors x at the state j.

In a continuous-density HMM, bj(x) is represented by a GMM as follows:

bj(x) =

M∑
m=1

cj,mN (x;µjm,Σjm) (2.12)

where cjm, µjm and Σjm are the weight, mean and covariance of the m th Gaussian component of

the mixture distribution N (x;µjm,Σjm) at state j.

With the advent of deep learning, deep neural networks have replaced the GMM in acoustic

modeling and the DNN-HMM hybrid systems have achieved the state-of-the-art performance for

ASR. We will elaborate DNN-HMM acoustic models in Sections 2.2 and 2.3.

Pronunciation model translates each word or phrase into a sequence or multiple sequences of

fundamental speech units (e.g., phonemes, phonetic features), which is an important link between

the acoustic model and the language model in an ASR system. In general, a pronunciation model is

built from a knowledge-based lexicon which specifies the mapping relationships between each word

and its phonetic transcription in the vocabulary. We perform grapheme-to-phoneme conversions for

the out-of-vocabulary (OOV) words.

2.1.3 Language Model

A statistical language model is a probability distribution P (W ) over a sequence of words W which

reflects how frequently the string W occurs. The most widely used language model for ASR is
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the n-gram language model which gives an estimate of the probability of a certain word given its

history. The language model P (W ) can be factorized as follows.

P (W ) = P (w1, w2, . . . , wn)

=
n∏
i=1

P (wi|w1, w2, . . . , wi−1) (2.13)

As a simplification, the n-gram model assumes that P (wi|w1, w2, . . . , wi−1) depends only on n −

1 previous words wi−(n−1), wi−(n−2), . . . , wi−1. Therefore, the n-gram language model can be

decomposed as

P (W ) ≈
n∏
i=1

P (wi|wi−(n−1), wi−(n−2), . . . , wi−1) (2.14)

The conditional probability can be computed from n-gram frequency counts:

P (wi|wi−(n−1), wi−(n−2), . . . , wi−1) =
C(wi−(n−1), wi−(n−2), . . . , wi−1, wi)

C(wi−(n−1), wi−(n−2), . . . , wi−1)
(2.15)

where C(·) is the count of an n-gram term.

Smoothing is widely used to deal with the data sparseness problem in language modeling for

ASR. The popular smoothing algorithms are Jelinek-Mercer [34] smoothing, Katz backoff [35],

Witten-Bell smoothing [36], and Kneser-Ney smoothing [37]. It has been shown in [38] that Kneser-

Ney smoothing works better than other smoothing methods because of its unique back-off distri-

bution where a fixed discount was subtracted from each nonzero count. Recently, neural network

language models [39, 40] are introduced and have achieved the state-of-the-art performance by

using RNN.

2.1.4 Decoder

In ASR, the goal of a decoder is to find most probable sequence of words given the acoustic model,

language model and the test input features. Weighted finite state transducer (WFST) [41, 42] which

compiles major components of ASR including HMMs, context-dependency models, pronunciation

dictionaries, language model is commonly used for LVCSR task. With WFST decoder, an HCLG
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decoding graph is first constructed as follows:

HCLG = min(det(H ◦ C ◦ L ◦G)) (2.16)

where H,C,L and G represent the HMM structure, the phonetic context-dependency, the lexicon

and the grammar, respectively and ◦ is WFST composition operation. In the HCLG graph, the

input labels are the context-dependent HMM states, and the output labels represent words.

When we want to decode an utterance of T frames, our goal is to find the most likely word

sequence and its corresponding state-level alignment. We construct an weight finite state acceptor

(WFSA) U with T + 1 states and an arc for each combination of time and context-dependent HMM

states. The costs on the arcs correspond to negated and scaled acoustic log-likelihoods. A search

graph S of the test utterance is created by composing U with HCLG, i.e.,

S = U ◦HCLG (2.17)

The search graph S has approximately T + 1 times more states than HCLG decoding graph. The

decoding problem becomes finding the best path in S. The input label sequence on the best path

corresponds to the state-level alignment and the output label sequence represents the sentence. In-

stead of a full search of S, a more practice way is to perform beam pruning and conduct Viterbi

decoding on the searched subset of S. The search subset includes a subset of the states and arcs of

S generated by heuristic pruning.

2.2 Deep FNN Acoustic Models for ASR

As shown in Fig. 2.2, in DNN-HMM acoustic models, DNN are directly used to model the emit-

ting probability of each HMM state which generates the acoustic score. As a type of DNN, deep

feedforward neural networks (FNN) with multiple hidden layers are trained to model the multi-

frame distributions over senones (tied tri-phone states) as its output and have achieved remarkable

performance improvement on almost all challenging LVCSR tasks [1, 2]1.
1In [13], it is reported that if DNN only uses one frame at a time, the performance is not as good as traditional GMM

models.
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Figure 2.2: The architecture of a DNN-HMM hybrid acoustic model for ASR.

The middle layers of the deep FNN are a hierarchy of nonlinear intermediate representations

that capture the complex statistical characteristics in data while the upper layers are multilayer

perceptron (MLP) at the upper layers classifies the intermediate representation to different senones

[33]. These intermediate representations are first generated through the generative pre-training of

a stack of restricted Boltzmann machine (RBM) [9] and are then discriminatively fine-tuned to

predict the senones with a certain objective through backpropagation [8]. The densely connected

deep FNN is able to well extract the high correlations between speech frames via the intermediate

representation and accurately model the probabilistic distribution of a splice of several consecutive

speech frames within a long context window.

Assume that X = {x1, . . . , xT } is the sequence of training speech features to the input of the

FNN where xt, 1 ≤ t ≤ T is typically a concatenation of 11 frames of acoustic features. FNN

takes observation vectors Xr as the input and pass it through many layers of linear and non-linear
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transformations as follows:

a1
t = W1xt + b1 (2.18)

h1
t = σ(a1

t ) (2.19)

alt = Wlh
l−1
t + bl, 2 ≤ l ≤ L (2.20)

hlt = σ(alt) (2.21)

where Wl and bl are the weight matrix and bias vector for the l th hidden layer and hlt is the vector

of hidden units in the l th hidden layer at time t. σ(x) = 1/(1 + exp(−x)) is the sigmoid function

applied element-wise. alt is the vector of activations at the l th hidden layer before sigmoid.

The output of the deep FNN for senone s is the posterior probability p(s|xt) obtained by a

softmax function.

p(s|xt) = yt(s) =
exp[ayt (s)]

ΣS
s′=1 exp[ayt (s

′)]
(2.22)

where ayt (s) is the activation for senone s at the output layer, s ∈ {1, . . . , S} and S is the total

number of senones. yt is the vector of output units of the FNN at time t with a dimension of S. The

pseudo log-likelihood of observation xrt given senone s is

log p(xt|s) = log p(s|xt)− log p(s) + log p(xt) (2.23)

where p(s) is the prior probability of senone s estimated from the training set and p(xt) is the

probability of observation xt which is independent of the word sequence and can be ignored.

The parameters Λ of the deep FNN are trained to minimize the cross entropy (CE) objective

below

LCE(Λ) = − 1

T

T∑
t=1

S∑
s=1

ŷt(s) log p(s|xt)

= − 1

T

T∑
t=1

S∑
s=1

ŷt(s) log yt(s) (2.24)
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where ŷt is the S dimensional one-hot target vector obtained from a hard alignment.

ŷt(s) =


1, s = st

0, s 6= st

(2.25)

where st is the senone label the input feature xt is aligned with.

The parameters of the deep FNN is optimized using backpropagation. The backpropagation

error at the output layer of the network is the derivative of LCE(Λ) with respect to each dimension

of the output layer activation vector ayt as follows:

∂LCE(Λ)

∂ayt (s)
= yt(s)− ŷt(s) (2.26)

The gradients for all the parameters of the deep FNN can be computed by backpropagating the

error in Eq. 2.26. The optimization is conducted using minibatch based stochastic gradient descent

(SGD) [43].

2.3 Deep BLSTM Acoustic Models for ASR

The other type of DNN widely used for the acoustic modeling is deep LSTM-RNN. The LSTM

network, a special kind of RNN with purpose-built memory cells to store information, have been

successfully applied to many sequence modeling tasks. Recently, LSTM-based acoustic modeling

has achieved improved performance over FNNs [1, 2] and conventional RNNs [44, 45] for LVCSR

as they are able to model temporal sequences and long-range dependencies more accurately than

others especially when the amount of training data is large. LSTM has been successfully applied in

both the LSTM-HMM hybrid systems [46, 47, 48, 49] and the end-to-end system [50, 51, 52]. In

LSTM-HMM hybrid system, the LSTM is directly used to model the emitting probability for each

HMM state which generates the acoustic score.

For acoustic modeling, the LSTM takes in a sequence of input speech framesX = {x1, . . . , xT }
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and computes the hidden vector sequence H = {h1, . . . , hT } by iterating the equation below

ht = LSTM(xt, ht−1) (2.27)

where LSTM(·) denote the hidden layer function of the LSTM. In this paper, we implement Eq.

(2.27) with the LSTM introduced in [53] as follows

it = σ(Wx,ixt +Wh,iht−1 +Wc,ict−1 + bi) (2.28)

ft = σ(Wx,fxt +Wh,fht−1 +Wc,fct−1 + bf ) (2.29)

ct = ft � ct−1 + it � tanh(Wx,cxt +Wh,cht−1 + bc) (2.30)

ot = σ(Wx,oxt +Wh,oht−1 +Wc,oct + bo) (2.31)

ht = ot � tanh(ct) (2.32)

where i, f, o, c are the input gate, forget gate, output gate and cell state respectively, all of which are

the same dimension as the hidden units vector ht, σ is the logistic sigmoid function and � stands

for point-wise product. The weight matrix subscripts indicates the input and the gate (e.g., Wh,i is

the hidden-input gate matrix, etc.) The weight matrices from the cell to gate vectors (e.g. Wc,i, etc.)

are diagonal.

A deep LSTM stacks multiple LSTM hidden layers on top of each other, with the output se-

quence of one layer forming the input sequence for the next hidden layer. With a deep archi-

tecture, we are able to progressively learn higher level representations of the acoustic data and

capture the high correlations between speech frames within a dynamic size of context window.

The deep BLSTM processes the sequence of speech frames from both directions. It computes

the forward hidden vector sequence
−→
H = {

−→
h 1, . . . ,

−→
h T }, the backward hidden vector sequence

←−
H = {

←−
h 1, . . . ,

←−
h T } and the output sequence of senone posterior Y = {y1, . . . , yT } by iterating

the backward layer from t = T to 1, the forward layer from t = 1 to T and then updating the output

layer. For each time, the output from both the forward and backward hidden layers are concatenated

and then fed as the input of the next forward and backward hidden layers or the output layer.

To reduce the number of trainable parameters and alleviate the computational complexity, we
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introduce a separate linear projection layer after each BLSTM layer as in [47]. We connect each

hidden layer to a recurrent projection layer with a reduced number of units before recurrently feed-

ing the projection layer back to the BLSTM input. The deep BLSTM acoustic model in this work

is formulated as follow.

−→
h 1
t = LSTMforward

1 (xt,
−→
h 1
t−1) (2.33)

←−
h 1
t = LSTMbackward

1 (xt,
←−
h 1
t+1) (2.34)

−→
h nt = LSTMforward

n (pn−1
t ,
−→
h nt−1), n = 2, . . . , N (2.35)

−→p nt = W−→
h n,−→p n

−→
h nt , n = 1, . . . , N (2.36)

←−
h nt = LSTMbackward

n (pn−1
t ,
←−
h nt+1), n = 2, . . . , N (2.37)

←−p nt = W←−
h n,←−p n

←−
h nt , n = 1, . . . , N (2.38)

pnt = (←−p nt ,−→p nt ), n = 1, . . . , N (2.39)

yt = softmax(WpNy tanh(pNt ) + by) (2.40)

where LSTMforward
n (·) and LSTMbackward

n (·) denote the forward and backward nth hidden layer func-

tions of the LSTM respectively. −→p nt and ←−p nt are the projection vectors of forward and backward

hidden vectors
−→
h nt and

←−
h nt respectively at the nth layer. W−→

h n,−→p n and W←−
h n,←−p n are the projection

matrices. pnt is the concatenation of forward and backward projection vectors−→p nt and←−p nt . yt is the

senone posterior output vector given input speech frame xt. The parameters of the deep BLSTM is

optimized using backpropagation through time (BPTT) with SGD.

2.4 Discriminative Training of DNN Acoustic Models

Conventionally, DNNs are trained to model the distribution of the senones based on a cross-entropy

criterion in LVCSR tasks. A senone-level alignment on the training set is used as the labels for

training the DNN. However, the DNNs trained through distribution estimation do not necessarily

lead to the minimization of the recognition error rate. Therefore, many discriminative training cri-

teria are proposed to directly optimizes the performance metric, e.g., WER, and are used to train the
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acoustic models according to the new objective. The most popular discriminative training methods

include minimum classification error (MCE) [54, 55], maximum mutual information (MMI) [56,

57], minimum phone error (MPE) [58, 59], state-level minimum Bayes risk (sMBR) [60, 61, 62],

minimum word error (MWE) [63, 64] and boosted MMI [65] are used as the objective for DNN

acoustic model training [66].

MCE is the first dicriminative training objective that directly minimizes the recognition errors.

Assume that the training utterances Xr, r = {1, . . . , R} and Wr is the word transcription for Xr.

W ′r represents one of the hypothesized word sequences for Xr including Wr. The discriminative

function is defined as:

g(Xr,W
′
r; Λ) = log[PΛ(Xr|W ′r)κP (W ′r)] (2.41)

where Λ is the parameters of the acoustic model.

The misclassification measure is thus given by

d(Xr,Wr; Λ) = −g(Xr,Wr; Λ) + log

 1

C(W ′r)− 1

∑
W ′
r 6=Wr

exp[g(Xr,W
′
r; Λ)η]


1
η

(2.42)

The misclassification measure is then embeded into a sigmoid function

l(d(Xr,Wr; Λ)) =
1

1 + exp(−αd(Xr,Wr; Λ) + β)
(2.43)

The slope of the sigmoid curve can be adjusted by α and β is normally set to 0. The MCE loss

function then becomes

LMCE(Λ) =
R∑
r=1

l(d(Xr,Wr; Λ)) (2.44)

The LMCE(Λ) is essentially a smoothed approximation of the empirical error rate.

The MMI criterion maximize the posterior probability of the correct sentence Wr given the
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utterance Xr. The objective function of the MMI criterion is

LMMI(Λ) =
R∑
r=1

logPΛ(Wr|Xr)

=
R∑
r=1

log
PΛ(Xr|Wr)

κP (Wr)

P (Xr)

=
R∑
r=1

log
PΛ(Xr|Wr)

κP (Wr)∑
W ′
r
PΛ(Xr|W ′r)κP (W ′r)

(2.45)

The MPE directly maximizes the smoothed phoneme transcription accuracy. The objective

function of MPE is the expected phoneme transcription accuracy as follows:

LMPE(Λ) =

R∑
r=1

∑
W ′
r

PΛ(W ′r|Xr)A(W ′r,Wr)

=
R∑
r=1

∑
W ′
r

PΛ(Xr|W ′r)κP (W ′r)A(W ′r,Wr)

P (Xr)

=
R∑
r=1

∑
W ′
r

PΛ(Xr|W ′r)κP (W ′r)A(W ′r,Wr)∑
W ′′
r
PΛ(Xr|W ′′r )κP (W ′′r )

(2.46)

where PΛ(W ′r|Xr) is the posterior of the hypothesized word sequence W ′r. A(W ′r,Wr) represents

the phoneme accuracy which equals the number of phonemes in the reference transcription Wr

minus the number of phoneme errors made in W ′r. The objective function in Eq. 2.46 becomes

sMBR and MWE whenA(W ′r,Wr) represents the state-level and word-level accuracies respectively

of the hypothesized word sequence W ′r.

To train a DNN acoustic model with discriminative objective, the gradients with respect to the

activations at the output layer are first computed. The gradients for all the parameters of the network

can be derived from this quantity based on the back-propagation procedure[66].

2.5 Adaptation of DNN Acoustic Models

ASR still suffers from large performance degradation when acoustic mismatch exists between the

training and test conditions [67]. Many factors contribute to the mismatch, such as variation in

environment noise, channels and speaker characteristics. Acoustic model adaptation is an effective
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way to address this limitation, in which the acoustic model parameters or input features are adjusted

to compensate for the mismatch.

The biggest challenge for the adaptation of DNN acoustic model is the limited adaptation data

from the target domain. In this scenario, the acoustic model can be easily overfitted to the small

amount of adaptation data. To address this issue, regularization-based approaches are proposed to

regularize the neuron output distributions or the DNN model parameters. In [68], the senone dis-

tribution estimated from the adapted model is forced to be close to that from the unadapted model

by adding Kullback-Leibler divergence regularization to the adaptation criterion. In [69, 70], the

affine transformations of the DNN acoustic model are regarded as random Gaussian variables and

are learned through maximum a posteriori estimation (MAP) [71] by incorporating prior knowl-

edge into the adaptation process. More recently, Huang et.al [72] proposed the multi-task learning

approach for the rapid adaptation of the DNN acoustic model, in which the senone classification is

performed as the primary task and the mono-phone/senone-cluster classification is conducted simul-

taneously as the secondary task to alleviate the effect of senone sparseness in the limited adaptation

data. In [73], teacher-student (T/S) learning [74] is proposed to adapt the DNN acoustic model

without any transcription. With T/S learning, the posterior probabilities generated by a well-trained

source-domain teacher network are used in lieu of labels to train the target-domain student network

so that the student network can mimic the behavior of the teacher via knowledge distillation.

The second class of DNN adaptation methods is a transformation-based approach which aims at

reducing the number of learnable parameters. In [75, 76], a linear transformation network (LIN) is

inserted into the input, hidden or output of a well-trained unadapted DNN and the parameters of the

LIN are trained to minimize the errors at the output of the DNN while the parameters of the original

DNN are fixed. In [77, 78], the weight matrix of an unadapted DNN is factorized as the product of

two low-rank matrices using singular value decomposition (SVD). The adaptation is then performed

by updating a small-footprint square matrix inserted in between the two low-rank matrices.

In addition, auxiliary features are used to learn a canonical DNN acoustic model to achieve

a better adaptation performance. In [79], an i-vector [80] that represents the speaker identity is

used as an input feature in parallel with the regular acoustic features. The i-vector for a speaker is

concatenated to every frame that belongs to that speaker and changes across different speakers for
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both training and testing. In [81, 82], speaker codes are connected to the unadapted DNN through

a set affine transformations, which are estimated together with the speaker codes during training.

During adaptation, only the speaker code is re-estimated using the adaptation data.

Recently, adversarial training has become a very hot topic in deep learning because of its great

success in estimating generative models [22]. It was first applied to the area of unsupervised domain

adaptation by Ganin et al. in [23] in a form of multi-task learning. In their work, the unsupervised

adaptation is achieved by learning deep intermediate representations that are both discriminative for

the main task on the source domain and invariant with respect to mismatch between source and target

domains. The domain invariance is achieved by the adversarial training of the domain classification

objective functions. This can be easily implemented by augmenting any feed-forward models with

a few standard layers and a gradient reversal layer (GRL). This GRL approach has been applied to

acoustic models for unsupervised adaptation in [27] and for increasing noise robustness in [26, 83].

Improved ASR performance is achieved in both scenarios.
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CHAPTER 3

NON-UNIFORM MINIMUM CLASSIFICATION ERROR TRAINING FOR KEYWORD

SPOTTING

3.1 Introduction

Large vocabulary continuous speech recognition (LVCSR) has achieved extraordinary performance

when the speech is read or dictated. For instance, a word accuracy higher than 90% can be ex-

pected on the Wall Street Journal task. However, this performance decreases tremendously on a

spontaneous conversational speech recognition task [1] as it consists of a stream of words with no

overt lexical marking of punctuations and disfluencies (i.e, filled pauses, repetitions, repairs and

false starts) may occur frequently in a natural conversation [3]. However, in real applications, it is

more important to semantically understand a spontaneous speech rather than to recognize its word

transcription. Moreover, the semantic meaning generally resides in a set of keywords in the spoken

utterances. For instance, in the automatic topic classification task, each topic could have strong as-

sociations with a certain group of keywords and the occurrences of these words in the input speech

may lead to its correct topic label. In the utterance “Exactly, it wouldn’t be nice if it started raining.

It’s too hot.”, the keywords “raining” and ”hot” are strong indicators of the topic “weather”, while in

the utterance ”Would you prefer waffle or pancake for breakfast?”, the keywords “waffle” and “pan-

cake” suggest the topic label of “food”. Therefore, keyword spotting techniques become crucial

for spontaneous conversational speech recognition tasks. Therefore, keyword spotting techniques

become crucial for spontaneous conversational speech recognition tasks.

Many techniques have been proposed for the keyword spotting task. In [84], an optimum dy-

namic programing (DP) based time-normalization algorithm is proposed for spoken word recogni-

tion. In 1990s, a hidden Markov model (HMM) based keyword spotting system is proposed within

the framework of hypothesis testing [85]. In [86], a set of hypothesized word transcriptions are

first generated by the LVCSR decoder and the keywords are then detected and verified. Although

good performance is achieved, the two stages in this approach are isolated and optimized based on
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different criteria. To circumvent this problem, the keyword spotting is formulated as a non-uniform

error LVCSR task and the method of non-uniform minimum classification error (MCE) is proposed

in [7]. In conventional LVCSR, discriminative training (DT) is applied to refine the models with the

objective of minimizing the recognition errors without any emphasis on the keywords. However,

with non-uniform error LVCSR, the non-uniform error cost is embedded in the DT process to mini-

mize the errors of some words (i.e., keywords) out of all possible words in the vocabulary. This idea

is implemented efficiently in the weighted finite state transducer (WFST) framework and has shown

some improvement over the baseline system. Moreover, this work is built upon a GMM-HMM sys-

tem where a GMM is used to model the probability distribution of input features that are associated

with a state of an HMM. With an adequate number of mixture components, GMMs are able to accu-

rately model an arbitrary distribution. The parameters of a GMM can be fine-tuned discriminatively

to minimize the non-uniform MCE objective specially designed for keyword spotting.

However, GMMs with diagonal covariance matrices are not good at handling highly correlated

frames and the concatenation of neighboring frames will inevitably bring about the curse of di-

mensionality issue during model training. Recently, deep feedforward neural networks (FNN) with

multiple hidden layers are trained to model the multi-frame distributions over senones (tied tri-

phone states) as its output and have achieved remarkable performance improvement on almost all

challenging LVCSR tasks [1, 2]. The resulting deep FNNs learn a hierarchy of nonlinear interme-

diate representations at the middle layers that capture the complex statistical characteristics in data

and the multilayer perceptron (MLP) at the upper layers classifies the intermediate representation to

different senones [33]. These intermediate representations are first generated through the generative

pre-training of a stack of restricted Boltzmann machine (RBM) [9] and are then discriminatively

fine-tuned to predict the senones with a certain objective through backpropagation [8]. By using

densely connected FNN for acoustic modeling, the high correlations between frames can be well

extracted and reflected in the intermediate representation and the distribution of a concatenation of

several consecutive speech frames within a long context window can be robustly modeled [13].

Therefore, we propose a non-uniform MCE training of a deep FNN for keyword spotting, in

which a deep FNN is discriminatively trained to minimize the empirical error cost. The backprop-

agation error based on non-uniform MCE is derived for updating the parameters in deep FNNs.
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When applying this to LVCSR, a sequence of decoded words will be produced similar to the usual

word error rate (WER) based LVCSR, except that the keywords will have fewer recognition errors.

To further improve the performance, we boost the likelihood of the hypothesized word sequences in

proportion to their phone error rate, which is equivalent to generating more confusable data for the

discriminative training. Therefore, a non-uniform boosted MCE (BMCE) training of a deep FNN

is proposed to incorporate this data augmentation strategy in training. Experiments are conducted

on a large-scale spontaneous conversational telephone speech (CTS) dataset. The proposed method

achieves 3.65% absolute figure of merit (FOM) gain over the baseline system using cross entropy

as the objective on “Credit Card Use” topic of Switchboard-1 Release 2.

However, deep FNNs can only make use of limited contextual information by taking a fixed-size

window of speech frames as the input to make the prediction. Although they successfully model the

high correlations between frames within a fixed and short time interval, they fail to capture the long-

term dependencies within the entire speech signal and are not able to handle dynamic speaking rates.

By using recurrent nueral networks (RNN), the network activations of the previous time step are fed

as the input to the network to assist in making predictions at the current time step. The cycles in a

RNN allow it to store and update the context information about the past inputs in its internal state

for an amount of time that is not fixed a priori, but rather depends on its weights and on the input

data [87]. Therefore, RNNs are able to exploit a dynamically changing contextual window over the

input sequence rather than a static one as in the fixed-sized window used with a conventional deep

FNN. The long short-term memory (LSTM) network [10] is a kind of RNN specially designed for

capturing long-term temporal context information. It overcomes the diminishing gradient problem

that comes along the RNN training with a special gating mechanism to control the information to

be added or removed to the internal cell state. To also exploit future context information to assist in

making current prediction, bidirectional LSTM (BLSTM) networks [14] are introduced to process

the input sequence in both directions with two separate hidden layers which are then fed forward

together to the same output layer.

Therefore, we further propose the non-uniform boosted minimum classification error (BMCE)

training of a deep BLSTM acoustic model for keyword spotting in spontaneous conversational

speech. We define the empirical error cost for non-uniform MCE and derive the backpropagation
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error for the BLSTM. The BLSTM is optimized using backpropagation through time and stochas-

tic gradient descent. With the non-uniform BMCE trained BLSTM acoustic model, the LVCSR

decoder is able to generate word transcription with significantly reduced recognition errors on the

keywords. To further improve the performance, we boost the likelihood of the hypothesized word

sequences in proportion to their phone error rate, which is equivalent to generating more confus-

able data. Experiments are performed on Switchboard-1 Release 2 dataset, which is a large-scale

spontaneous conversational telephone speech (CTS) dataset. The proposed method achieves 5.49%

and 7.37% absolute figure-of-merit (FOM) improvements respectively over the BLSTM and FNN

baseline systems trained with the cross-entropy criterion for the keyword spotting task on “Credit

Card Use” topic of Switchboard-1 Release 2 dataset.

In Section 3.2, we discuss how the non-uniform BMCE criterion is embedded in the DNN

training for keyword spotting. In Section 3.3, we show how the non-uniform BMCE is implemented

in the WFST framework. In Section 3.4, experimental results on Switchboard dataset are shown and

discussed. We draw our conclusion in Section 3.5.

3.2 Non-Uniform BMCE Training of DNN Acoustic Models for Keyword Spotting

Conventionally, DNNs (deep FNNs, deep RNNs and deep BLSTMs are all special types of DNNs)

are trained to model the distribution of the senones based on a cross-entropy criterion in LVCSR

tasks. A senone-level alignment on the training set is used as the labels for training the DNN.

However, the DNNs trained through distribution estimation do not necessarily lead to the minimiza-

tion of the recognition error rate. In [66], maximum mutual information (MMI) [56, 57], minimum

phone error (MPE) [58, 59], state-level minimum Bayes risk (sMBR) [60, 61, 62] and boosted MMI

[65] are used as the objective for DNN training. Although these discriminative traing methods are

able to improve the performance over the traditional cross-entropy based methods, they do not di-

rectly minimize an objective function which is related to the recognition error rate. To circumvent

this problem, MCE was proposed to directly minimize the empirical error rate and is widely used in

GMM-based LVCSR systems.

Keyword spotting can be formulated as an LVCSR task in which some recognition units (i.e.,

keywords) are more significant than others. More specifically, the LVCSR designed for keyword
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spotting should be able to generate a decoded word sequence in which keywords have fewer recog-

nition errors than the normal LVCSR system. To satisfy this requirement, we introduce the non-

uniform MCE objective for the training of DNNs in the LVCSR task. Instead of minimizing the

empirical error rate for conventional MCE, the non-uniform MCE training of DNN is aimed at min-

imizing the empirical error cost. This can be realized by embedding the non-uniform error cost

function into the MCE objective on the frame level to emphasize both the miss detection errors and

the false alarm errors on the keywords. Strictly speaking, the error cost function should be indi-

vidually assigned to each pair of words in the vocabulary to take care of all kinds of recognition

errors [88]. Our formulation is a simplified version of the general non-uniform MCE for fast and

easy implementation. Introducing nonuniform error cost at the frame level is justified based on the

general assumption that word-level errors are proportional to their frame-level errors and minimiz-

ing frame-level non-uniform error costs will accomplish similar results as minimizing word-level

non-uniform costs.

A two-stage training approach based on the standard error backpropagation procedure is applied

to optimize the non-uniform MCE objective. In the first stage, the gradients of the non-uniform

MCE objective with respect to the activations at the output layer are calculated and then backprop-

agated to derive the gradients for all the parameters of the DNN in the second stage. We will derive

this important gradient below.

Assume that the training data is given by training utterances r = {1, . . . , R}. The sequence

Xr = {xr1, . . . , xrTr} is observations for utterance r. Wr is the word sequence in the reference

(label transcription) for utterance r. W is a word sequence in the hypothesis set encapsulated in

the decoded speech unit lattice for utterance r. SW = {sW1, . . . , sWT } is the senone sequence

corresponding to W , where sWt is the senone which frame xrt is aligned with.

The output of the DNN for senone s is the posterior probability p(s|xrt) obtained by a softmax

function.

p(s|xrt) =
exp[art(s)]

Σs′ exp[art(s′)]
(3.1)

where art(s) is the activation for senone s at the output layer. The pseudo log-likelihood of obser-
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vation xrt given senone s is

log p(xrt|s) = log p(s|xrt)− log p(s) + log p(xrt) (3.2)

where p(s) is the prior probability of senone s estimated from the training set and p(xrt) is the

probability of observation xrt which is independent of the word sequence and can be ignored.

The frame-level discriminative function for W and misclassification measure is given by

g(xrt, sWt; Λ) = log[p(xrt|sWt)
κp(sWt)] (3.3)

where p(xrt|sWt) and p(sWt) denote the acoustic and language models respectively, κ is the acous-

tic model scaling factor and Λ is a set of model parameters.

d(xrt; Λ) = −g(xrt, sWrt; Λ) + log

 1

N − 1

∑
W 6=Wr

exp[g(xrt, sWt; Λ)η]


1
η

(3.4)

where N is the total number of hypothesized word sequences. By varying the positive number η,

the significance of the competing classes can be adjusted.

By embedding the misclassification measure Eq. (3.4) into a sigmoid function for smoothing,

the objective function of the non-uniform MCE training of DNN is given by

LNUMCE(Λ) =
R∑
r=1

Tr∑
t=1

εr(t)l(d(xrt; Λ)) (3.5)

where εr(t) is the error cost function at the frame level, l(·) is the sigmoid which takes the form

l(d) =
1

1 + exp(−αd+ β)
(3.6)

The slope of the sigmoid curve can be adjusted by α and β is normally set to 0. The objective

function in Eq. (3.5) is essentially a smoothed approximation of the empirical error cost. Note that

when the error cost function is fixed to 1 for all t (i.e., εr(t) = 1), Eq. (3.5) degrades to the objective
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function of MCE, which is a smoothed approximation of the empirical error rate on the training set.

The derivative of Eq. (3.5) with respect to the activation art(s) at the output layer is

∂LNUMCE(Λ)

∂art(s)
=
∑
q

∂LNUMCE(Λ)

∂ log p(xrt|q)
∂ log p(xrt|q)
∂art(s)

= αεr(t)l (d(xrt; Λ)) [1− l (d(xrt; Λ))]κ
[
δsWrt:s − γ

W 6=Wr
rt (s)

]
(3.7)

where γW 6=Wr
rt (s) is the posterior of being in senone s at time t, computed over the denominator

lattice of the utterance r, and the lattice of utterance r excluding the path corresponding to the word

sequence Wr, log p(xrt|q) is the log-likelihood of xrt given senone q, and δsWt:s is the Kronecker

delta function defined as

δsWt:s =

 1, sWt = s

0, sWt 6= s
(3.8)

For easy implementation, d(Xrt; Λ) is used as an approximation of d(xrt; Λ). Eq. (3.7) is the error

to be backpropagated to derive the gradients for all the parameters of DNN.

To minimize the recognition errors on the keywords, the error cost function εr(t) should be de-

signed in such a way that all the recognition error cost associated with the keywords are emphasized.

More specifically, as in Eq. (3.9), the initial εr(t) for the frames labeled as keywords in the label

transcription (denoted by K1) should be greater than 1 to reduce the miss detection errors. Also the

initial εr(t) for the frames aligned with keywords on the hypothesized word sequences (denoted by

K2) other than the label transcription should be greater than 1 to prevent the false alarm errors. The

εr(t) for the frames aligned with non-keywords in all the word sequences in the decoded speech

lattice for utterance r should be 1.

εr(t) =


K1, t ∈ {t|Wr(t) is a keyword}

K2, t ∈ {t|W (t) is a keyword,W 6= Wr}

1, otherwise

(3.9)

where Wr(t) is the word which xrt is aligned with in the label transcription and W (t) is the word
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which xrt is aligned with in the hypothesis word sequences and K1 > 1,K2 > 1. The error cost

function can be adjusted adaptively through iterations using a AdaBoost-like scheme as is proposed

in [89]. We multiply εr(t) with a decay factor β if a frame xrt is correctly classified at the current

training iteration.

To achieve a better performance for keyword spotting, we boost the likelihood of the hypothe-

sized word sequences that have a higher phone error rate relative to the label transcription, which

is equivalent to generating more data from the more confusable hypothesized word sequences. For

non-uniform boosted MCE, the misclassification measure can be re-written as

d(xrt; Λ) = −g(xrt, sWrt; Λ) + log

 1

N − 1

∑
W 6=Wr

exp{g(xrt, sWt; Λ)− bA(pWt, pWrt)]η}


1
η

(3.10)

where b is the boosting factor andA(pWt, pWrt) is the frame-level raw phone accuracy of a sentence

W given the label transcription Wr, i.e.,

A(pWt, pWrt) =

 1, pWt = pWrt

0, pWt 6= pWrt

(3.11)

where pWt is the raw phone which frame xrt is aligned with and PW = {pW1, . . . , pWT } is the

phone sequence corresponding to word sequence W .

The objective function and backpropagation error of non-uniform BMCE can be derived corre-

spondingly.

3.3 Implementation of Non-Uniform BMCE in the WFST Framework

The non-uniform MCE is implemented within the WFST framework. As is mentioned in [90],

a decoded lattice of an utterance is generated by a beam pruning on the full search graph which

is a composition of the WFST U and the HCLG graph. U, H, C, L and G denote the acoustic

score of the utterance, the HMM structure, the phonetic context-dependency, the lexicon and the
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grammar, respectively. The decoded lattice is a compact representation of the hypothesis space for

the utterance. The lattice is converted to a compact version for higher efficiency.

For an utterance r, the competing hypothesis for non-uniform MCE training has to exclude the

label transcription Wr as is shown in Eq. (3.4). This is accomplished by taking the difference

operation of WFST. Assuming that Lr(W ) is the compact lattice for utterance r and WFST (Wr)

is the compiled WFST for Wr, the lattice representing the competing hypothesis in non-uniform

MCE training is given by

LNUMCE
r = Lr(W )−WFST (Wr) (3.12)

The posterior γW 6=Wr
rt (s) in Eq. (3.7) can be obtained by performing the forward-backward proce-

dure on LNUMCE
r .

In the WFST framework, non-uniform BMCE training of DNN can be easily implemented based

on non-uniform MCE. The extra computation involved is to subtract b times the frame-level raw

phone accuracy A(pWt, pWr) from the scaled acoustic log-likelihood on each arc at time t in the

lattice while performing forward-backward on LNUMCE
r . This can be viewed as a modification of

the contribution from language model on each arc.

3.4 Experiments

3.4.1 Experiment on Switchboard

3.4.1.1 Dataset Description

We evaluate the performance of the proposed framework on a large-scale CTS task, i.e., the 300

hours Switchboard-1 Release 2 (LDC97S62). It consists of 2348 two-sided telephone conversations

from 543 speakers (302 males and 241 females) in the United States. One topic is assigned to each

of the conversation between two callers and about 70 topics in total are provided in the corpus.

For the keyword spotting task, the conversations on the topic of “Credit Card Use” (including

5649 utterances) are used as the test set and the rest of the Switchboard corpus form a training set

with about 300 hours of speech. 18 keywords are selected for the spotting evaluation, which are
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BANK, CARD, CASH, CHARGE, CHECK, MONTH, ACCOUNT, BALANCE, CREDIT, DOL-

LAR, HUNDRED, LIMIT, MONEY, PERCENT, TWENTY, VISA, DISCOVER, INTEREST. For

both tasks, the Mississippi State transcripts and the 30K-word lexicon released with those transcripts

are used. The lexicon contains pronunciations for all words and word fragments in the training data.

3.4.1.2 Baseline System

The baseline ASR system is built with Kaldi Speech Recognition Toolkit [91]. The GMM-HMMs

are trained with the 300 hour training data using maximum-likelihood (ML) criterion. Each cross-

word triphone is modeled by a 3-state left-to-right GMM-HMM (a 5-state HMM for silence). First,

9 frames (4 on each side of the current frame) of 13-dimensional Mel-frequency cepstral coefficient

(MFCCs) are spliced together and projected down to 40 dimensions using linear discriminant anal-

ysis (LDA). Then a single semi-tied covariance (STC) transform is performed on the features ob-

tained by LDA. Then speaker adaptive training is performed using a single feature-space maximum

likelihood linear regression (FMLLR) transform estimated for each speaker. The resulting feature

after FMLLR is called LDA+STC+FMLLR feature and is used for training the GMM-HMMs. The

trigram language model (LM) is trained on 3M words of the training transcripts. We generate the

forced alignment of the training data against the transcription using the GMM-HMM system. As

shown in Table 3.1, the GMM-HMM system trained with ML criterion achieves 74.76% FOM for

the keyword spotting task.

For training the FNN and BLSTM, the 36 dimensional log Mel filterbank features are extracted

and then concatenated with 3 dimensional pitch features (consisting of probability of voicing, log

pitch and delta log pitch) [92] to form a 39 dimensional “log Mel filterbank + pitch” feature.

For the FNN-HMM baseline, we first pre-train a deep belief network (DBN) containing stacked

restricted Boltzmann machines that are trained generatively in a layerwise fashion. The DBN is

then fine-tuned to train a FNN with cross-entropy objective using stochastic gradient descent (initial

learning rate 0.008). The input to the FNN is an 11 frame (5 frames on each side of the current

frame) context window of the 39 dimensional “log Mel filterbank + pitch” features globally nor-

malized to have zero mean and unit variance. The resulting baseline FNNs has 7 layers (including

6 hidden layers), where each hidden layer has 2048 neurons, and the output layer has 8861 units.
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The FNN is randomly initialized and then trained to minimize the cross-entropy (CE) criterion us-

ing senone-level forced alignment generated by the GMM-HMM system as the target. As in Table

3.1, the FNN-HMM baseline system trained with criterion achieves 78.06% FOM for the keyword

spotting task.

To build the BLSTM-HMM baseline system, we stack 4 BLSTM hidden layers together and

add a softmax output layer on the top to represent the 8861 senones posteriors. Each forward

or backward hidden layer has 512 hidden units and is connected to a 256 dimensional recurrent

projection layer. The forward and backward projection layers are concatenated together (to form

a 512 dimensional vector) and fed as the input of the next BLSTM hidden layer. After appending

delta and delta-delta coefficients to the 39 dimensional “log Mel filterbank + pitch” features, we

use the 117 dimensional features with globally normalized zero mean and unit variance as the input

to the BLSTM. The BLSTM is randomly initialized and then trained (initial learning rate 0.00002)

to minimize the CE criterion using senone-level forced alignment generated by the GMM-HMM

system as the target. The BLSTM-HMM baseline system trained with criterion achieves 80.93%

FOM for the keyword spotting task as shown in Table 3.2,

3.4.1.3 Results of FNN Acoustic Models for Keyword Spotting

The FNN in the baseline system is then trained with the non-uniform BMCE criterion for keyword

spotting. We generate the forced alignment and denominator lattice of the training data using the

baseline FNN, compute posterior γW 6=Wr
rt (s) from the difference lattice LNUBMCE

r , impose error

cost function εr(t) on the frames aligned with keywords and compute errors in Eq. (3.7) for back-

propagation through time. For comparison, we also discriminatively train baseline FNN with MMI,

sMBR and BMCE criteria.

In Table 3.1, we show the FOM results of deep FNN acoustic models with respect to different

initial error costs K1, K2 and decay factors β. The system achieves the highest FOM 80.92% when

K1 = K2 = 12 and β = 0.3, which is 2.86% and 1.55% absolute improvements over the baseline

FNN and sMBR trained FNN. The best FOM is achieved when the learning rate is 0.0003, the slope

of sigmoid α is 0.002 and the boosting factor is set at 0.07. We also observe that the FOM first

increases as K1 and K2 grow and then gradually decreases when Kl and K2 are larger than 14. The
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Table 3.1: The FOM results of the FNN-HMM and GMM-HMM systems trained with different
objectives for keyword spotting on Credit Card Use subset of Switchboard-1 Release 2.

System K1 K2 β FOM (%)
GMM ML 1 1 - 74.76
FNN CE 1 1 - 78.06

FNN MMI 1 1 - 79.05
FNN sMBR 1 1 - 79.37
FNN MCE 1 1 - 79.24

FNN BMCE 1 1 - 79.48

FNN
Non-Uniform

BMCE

6.0 6.0 0.1 80.29
6.0 6.0 0.5 80.24
8.0 8.0 0.1 80.37
8.0 8.0 0.5 80.44
10.0 10.0 0.1 80.57
10.0 10.0 0.5 80.50
12.0 12.0 0.1 80.38
12.0 12.0 0.5 80.43
14.0 14.0 0.1 80.65
14.0 14.0 0.5 80.54
16.0 16.0 0.1 80.92
16.0 16.0 0.5 80.45
18.0 18.0 0.1 80.86
18.0 18.0 0.5 80.82
20.0 20.0 0.1 80.91
20.0 20.0 0.5 80.39
22.0 22.0 0.1 80.31
22.0 22.0 0.5 80.36

FOM increases or decreases more rapidly when the decay factor is smaller.

We plot the ROC curves for the FNNs trained with cross-entropy, BMCE and non-uniform MCE

criteria in Fig. 3.2. The non-uniform MCE achieves consistent improvement over other objectives.

3.4.1.4 Results of BLSTM Acoustic Models for Keyword Spotting

In Table 3.2, we show the FOM results of deep BLSTM acoustic models with respect to different

initial error costs K1, K2 and decay factors β. The system achieves the highest FOM 85.42% when

K1 = K2 = 10 and β = 0.3, which is 4.49% and 1.23% absolute improvements over the baseline

BLSTM and sMBR trained BLSTM. The best FOM is achieved when the learning rate is 0.00001,

the slope of sigmoid α is 0.002 and the boosting factor is set at 0.07. We also observe that the FOM
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Figure 3.1: ROC curves of keyword spotting for baseline cross-entropy trained, BMCE trained
and best performing non-uniform BMCE FNN-HMM system on the development set of HKUST
dataset.
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first increases as K1 and K2 grow and then gradually decreases when Kl and K2 are larger than 10.

The FOM increases or decreases more rapidly when the decay factor is smaller.

We plot the ROC curves for the BLSTMs trained with cross-entropy, BMCE and non-uniform

MCE criteria in Fig. 3.2. The non-uniform MCE achieves consistent improvement over other

objectives.

Figure 3.2: ROC curves of keyword spotting for baseline cross-entropy trained, BMCE trained and
best performing non-uniform BMCE BLSTM-HMM system on the development set of HKUST
dataset.

By comparing Table 3.1 with Table 3.2, we observe that FNN and BLSTM have the same trend

of FOM variation with respect to the initial error cost function and decay factor. The non-uniform

BMCE trained BLSTM achieves 7.37% and 4.88% absolute FOM gains over cross-entropy trained

FNN and non-uniform BMCE trained FNN. Under other uniform error discriminative training cri-

teria, the BLSTM in general leads to about 4.0%-4.5% absolute FOM improvements over the FNN,

which are much larger than the 2.48% absolute FOM gain FNN achieves under the cross-entropy

criterion. The large FOM improvement of BLSTM over FNN verifies its strong capability of mod-
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Table 3.2: The FOM results of the BLSTM-HMM systems trained with different objectives for
keyword spotting on Credit Card Use subset of Switchboard-1 Release 2.

System K1 K2 β FOM (%)
BLSTM CE (baseline) 1 1 - 80.93

BLSTM MMI 1 1 - 83.25
BLSTM sMBR 1 1 - 84.19
BLSTM BMCE 1 1 - 84.21

BLSTM
Non-Uniform

BMCE

6 6 0.3 84.89
6 6 0.5 84.87
6 6 0.7 84.38
7 7 0.3 84.69
7 7 0.5 85.01
7 7 0.7 84.83
8 8 0.3 85.02
8 8 0.5 85.15
8 8 0.7 85.11
9 9 0.3 84.98
9 9 0.5 84.63
9 9 0.7 84.92

10 10 0.3 85.42
10 10 0.5 85.08
10 10 0.7 84.91
11 11 0.3 85.27
11 11 0.5 84.96
11 11 0.7 84.91
12 12 0.3 85.01
12 12 0.5 85.05
12 12 0.7 85.01
13 13 0.3 84.99
13 13 0.5 85.01
13 13 0.7 84.60
14 14 0.3 85.02
14 14 0.5 84.55
14 14 0.7 85.01
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Table 3.3: The WER (%) results of the GMM-HMM, FNN-HMM and BLSTM-HMM systems
trained with different objectives evaluated on the development set of the HKUST dataset. The
WERs for non-unifrom BMCE in the table correspond to the setups that achieve the best FOMs in
the keyword spotting experiments (see Table 3.1 and Table 3.2).

System WER (%)
GMM ML 27.65
FNN CE 19.97

FNN MMI 18.45
FNN sMBR 18.39
FNN BMCE 18.34

FNN Non-Uniform BMCE 18.51
BLSTM CE 18.59

BLSTM MMI 16.31
BLSTM sMBR 16.29
BLSTM BMCE 16.20

BLSTM Non-Uniform BMCE 16.47

eling long-term dependencies and high correlations between speech frames that spans over long

dynamic time intervals.

3.4.1.5 Results of DNN Acoustic Models for LVCSR

We also show the WER performance for the LVCSR task on the test data in Table 3.3. The WERs

for non-unifrom BMCE in the table correspond to the setups that achieve the best FOMs in the key-

word spotting experiments (see Table 3.1 and Table 3.2). Although non-uniform BMCE achieves

1.43% and 2.21% absolute improvements over the CE objective, it is worse than the other discrimi-

native objectives by 0.05%-0.15% and 0.1%-0.2% absolutely on FNN and BLSTM acoustic models

respectively. The fact that the non-uniform MCE improves the FOM of keyword spotting but simul-

taneously degrades the WER of LVCSR justifies that the goal of non-uniform MCE training is to

minimize the recognition errors on only the keywords instead of all possible words.

3.4.2 Experiments on HKUST Dataset

3.4.2.1 Dataset Description

HKUST Dataset (LDC2005S15) consists of 150 hours of Mandarin Chinese conversational tele-

phone speech collected by the Hong Kong University of Science and Technology (HKUST) from
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speakers in several cities across mainland China. It contains 873 and 24 call conversations for the

training and development sets respectively.

Since there is no lexicon provided with the corpus and it contains both Chinese and English

words (it is highly likely English words occurring in spontaneous mandarin speech), below we

briefly describe how we prepare the bilingual lexicon. To deal with the occasional occurances of

English words in Manderin speech, we construct the bilingual lexicon as follows. The in-vocabulary

Chinese words are mapped to their pronunciations (Pinyin) using the dictionary CEDICT [93]. For

out-of-vocabulary (OOV) words, we construct the pronunciations by concatenating the Pinyin of

all the characters that form the word. All possible pronunciations for each word are enumerated.

Then we map all Pinyin initials and finals (with tones) to Arpabet phonemes which are widely used

in English via IPA rules similar to [94]. For the English words, the CMU dictionary [95] is used

to map in-vocabulary words to their pronunciations. For the OOV words, Sequitur G2P [96] tool

is used to map the graphemes to phonemes using pre-trained models. Further, each phoneme that

corresponds to a Pinyin final is assigned with 6 different tones, eg., AO (mainly used for English

words), AO1, AO2, AO3, AO4, AO5. (Note that the Pinyin initials are toneless.) The phoneme with

the different tones share the same root in the decision tree while extra tonal questions are made for

them.

In keywords spotting experiments, we use the development set as the test set and select 20

Chinese keywords: (like), (China), (university), (life), (friend), (country), (football), (Huangshan),

(exercise), (basketball), (sing), (job), (major), (sports), (televisions), (sports), (study), (problem),

(Taiwan), (student).

3.4.2.2 Baseline

The baseline system is built in the same way as is described in Section 3.4.1.2 except for the fol-

lowing changes. The Chinese words are segmented by an open-source tool mmseg [97] a tri-gram

language model is then trained on all transcriptions from training set.

In the baseline FNN-HMM system, the FNN has 6 hidden layers, where each hidden layer has

2048 neurons, and the output layer has 2878 units representing senone posteriors. In the baseline

BLSTN-HMM system, the BLSTM has 5 hidden layers with 256 hidden units in each layer. The
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output layer consists of 2878 units predicting senone posteriors. Each forward and backward hidden

layer is projected to 128 units through a projection layer. The forward and backward projection

layers are concatenated to form a 256-dimensional vector before being fed into the next hidden

layer. The BLSTM is trained with CE criterion at a learning rate of 0.00003. The senone-level

forced alignment generated by the GMM-HMM system is used as the target to train both FNN-

HMM and BLSTM-HMM systems. The baseline GMM, FNN and BLSTM systems achieve 60.13%

73.29% and 79.49% FOMs for keyword spotting on HKUST as shown in Table 3.4.

3.4.2.3 Results of FNN Acoustic Models for Keyword Spotting

The keyword spotting experiments are performed in the same way as described in Section 3.4.1.3

and the results are shown in Table 3.5 and Table 3.4.

In Table 3.4, we show the FOM results of FNN acoustic models with respect to different initial

error costs K1, K2 and decay factors β. The system achieves the highest FOM 80.55% when

K1 = K2 = 2 and β = 0.5, which is 7.26% and 3.16% absolute improvements over the baseline

BLSTM and sMBR trained BLSTM. The best FOM is achieved when the learning rate is 0.0001,

the slope of sigmoid α is 0.002 and the boosting factor is set at 0.07. We also observe that the FOM

first increases as K1 and K2 grow and then gradually decreases when Kl and K2 are larger than 11.

The FOM increases or decreases more rapidly when the decay factor is smaller.

We plot the ROC curves for the FNNs trained with cross-entropy, BMCE and non-uniform MCE

criteria in Fig. 3.3. The non-uniform MCE achieves consistent improvement over other objectives.

3.4.2.4 Results of BLSTM Acoustic Models for Keyword Spotting

In Table 3.5, we show the FOM results with respect to different initial error costs K1, K2 and decay

factors β. The system achieves the highest FOM 86.39% when K1 = K2 = 10 and β = 0.5, which

is 6.90% and 2.17% absolute improvements over the baseline BLSTM and sMBR trained BLSTM.

The best FOM is achieved when the learning rate is 0.00001, the slope of sigmoid α is 0.002 and the

boosting factor is set at 0.07. We also observe that the FOM first increases as K1 and K2 grow and

then gradually decreases whenKl andK2 are larger than 11. The FOM increases or decreases more

rapidly when the decay factor is smaller. We plot the ROC curves for the BLSTMs trained with
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Table 3.4: The FOM results of the FNN-HMM and GMM-HMM systems trained with different
objectives for keyword spotting on the development set of HKUST dataset.

System K1 K2 β FOM (%)
GMM ML 1 1 - 60.13
FNN CE 1 1 - 73.29

FNN MMI 1 1 - 77.39
FNN sMBR 1 1 - 77.51
FNN BMCE 1 1 - 77.27

FNN
Non-Uniform

BMCE

2.0 2.0 0.3 79.61
2.0 2.0 0.5 80.55
2.0 2.0 0.7 80.31
3.0 3.0 0.3 79.56
3.0 3.0 0.5 79.28
3.0 3.0 0.7 79.47
4.0 4.0 0.3 78.51
4.0 4.0 0.5 78.46
4.0 4.0 0.7 78.62
5.0 5.0 0.3 78.83
5.0 5.0 0.5 78.45
5.0 5.0 0.7 78.45
6.0 6.0 0.3 78.49
6.0 6.0 0.5 78.28
6.0 6.0 0.7 78.74
7.0 7.0 0.3 77.94
7.0 7.0 0.5 78.26
7.0 7.0 0.7 78.55
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Figure 3.3: ROC curves of keyword spotting for baseline cross-entropy trained, BMCE trained
and best performing non-uniform BMCE FNN-HMM system on the development set of HKUST
dataset.
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cross-entropy, BMCE and non-uniform MCE criteria in Fig. 3.4. The non-uniform MCE achieves

consistent improvement over other objectives.

We plot the ROC curves for the BLSTMs trained with cross-entropy, BMCE and non-uniform

MCE criteria in Fig. 3.4. The non-uniform MCE achieves consistent improvement over other

objectives.

Figure 3.4: ROC curves of keyword spotting for baseline cross-entropy trained, BMCE trained and
best performing non-uniform BMCE BLSTM-HMM system on the development set of HKUST
dataset.

By comparing Table 3.4 and Table 3.4, we observe that FNN and BLSTM have the same trend

of FOM variation with respect to the initial error cost function and decay factor. The non-uniform

BMCE trained BLSTM achieves 7.37% and 4.88% absolute FOM gains over cross-entropy trained

FNN and non-uniform BMCE trained DNN. Under other uniform error discriminative training cri-

teria, the BLSTM in general leads to about 4.0%-4.5% absolute FOM improvements over the FNN,

which are much larger than the 2.3% absolute FOM gain BLSTM achieves under cross-entropy cri-

terion. The large FOM improvement of BLSTM over FNN verifies its strong capability of modeling
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Table 3.5: The FOM results of the BLSTM-HMM systems trained with different objectives for
keyword spotting on development set of the HKUST dataset.

System K1 K2 β FOM (%)
BLSTM CE (baseline) 1 1 - 79.49

BLSTM MMI 1 1 - 84.17
BLSTM sMBR 1 1 - 84.22
BLSTM BMCE 1 1 - 84.56

BLSTM
Non-Uniform

BMCE

7 7 0.3 85.42
7 7 0.5 85.23
7 7 0.7 86.16
8 8 0.3 85.02
8 8 0.5 85.34
8 8 0.7 85.87
9 9 0.3 85.54
9 9 0.5 86.13
9 9 0.7 85.28

10 10 0.3 85.44
10 10 0.5 86.39
10 10 0.7 86.27
11 11 0.3 85.77
11 11 0.5 85.73
11 11 0.7 85.59
12 12 0.3 85.28
12 12 0.5 85.31
12 12 0.7 85.80
13 13 0.3 85.44
13 13 0.5 85.91
13 13 0.7 85.57
14 14 0.3 85.21
14 14 0.5 85.93
14 14 0.7 85.91
15 15 0.3 85.58
15 15 0.5 85.58
15 15 0.7 85.58
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Table 3.6: The CER (%) results of the GMM-HMM, FNN-HMM and BLSTM-HMM systems
trained with different objectives evaluated on the development set of the HKUST dataset. The
CERs for non-unifrom BMCE in the table correspond to the setups that achieve the best FOMs in
the keyword spotting experiments (see Table 3.4 and Table 3.5)

System CER (%)
GMM SAT 49.60
FNN CE 39.60

FNN MMI 36.97
FNN sMBR 36.90
FNN BMCE 36.96

FNN Non-Uniform BMCE 37.55
BLSTM CE 35.44

BLSTM MMI 32.68
BLSTM sMBR 32.65
BLSTM BMCE 32.59

BLSTM Non-Uniform BMCE 32.80

long-term dependencies and high correlations between speech frames that spans over long dynamic

time intervals.

3.4.2.5 Results of DNN Acoustic Models for LVCSR

We also show the CER performance for the LVCSR task on the test data in Table 3.6. The CERs

for non-unifrom BMCE in the table correspond to the setups that achieve the best FOMs in the

keyword spotting experiments (see Table 3.4 and Table 3.5). The CERs Although non-uniform

BMCE achieves 2.05% and 2.64% absolute CER improvements over the CE objective, it is worse

than other discriminative objectives by 0.5%-0.6% and 0.1%-0.3% absolutely on FNN and BLSTM

acoustic models respectively. The fact that the non-uniform MCE improves the FOM of keyword

spotting but simultaneously degrades the CER of LVCSR justifies that the goal of non-uniform MCE

training is to minimize the recognition errors on only the keywords instead of all possible words.

3.5 Conclusions

In this chapter, we formulate the keyword spotting problem as a non-uniform error ASR problem and

show that DNNs can be dicriminatively trained using non-uniform BMCE criterion which weighs

the errors on keywords much more significantly than those on non-keywords in an ASR task. By
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using FNN-HMM acoustic model, we are able to model the multi-frame distributions, which con-

ventional systems find difficult to accomplish. The further integration with BLSTM-HMM system

enables the capturing of long-term dependencies within the variable-duration dynamic speech signal

instead of a fixed-size window using a FNN-HMM. The proposed system is implemented within a

WFST framework.

Experiments are conducted on Switchboard-1 Release 2 and HKUST datasets. The non-uniform

MCE training of FNN achieves 2.48% and 7.26% FOM improvements over the cross entropy base-

line system on Switchboard and HKUST datasets respectively. The non-uniform MCE training of

BLSTM achieves 4.49% and 7.37% FOM improvements over the cross entropy baseline system on

Switchboard and HKUST datasets respectively.
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CHAPTER 4

MINIMUM SEMANTIC ERROR COST TRAINING FOR TOPIC SPOTTING ON

CONVERSATIONAL SPEECH

4.1 Introduction

Topic spotting on spontaneous conversational speech is an essential technique for spoken-dialog

systems. The response of a spoken-dialog system is often guided by the topic category of the

speaker’s utterance. The topic spotting is aimed at classifying an utterance into one of a pre-defined

set of topics.

Many methods have been proposed for topic spotting on conversational speech. In [98, 99, 100,

101], a set of keywords are first selected according to their contributions for the topic discrimina-

tion and the topic spotting is then conducted by scoring the one-best transcription generated by an

LVCSR system based on the selected keywords. A similar idea is applied to the famous AT&T

HMIHY call-routing task [99, 100], in which salient words or phrases are acquired, recognized

and searched in fluent speech by an ASR. The call-type of an utterance is classified based on these

salient words. In [101], a BOOSTEXTER algorithm is used to learn the ASR language model and

a mapping from the ASR transcriptions into weightings over topics. In Bell Lab’s natural language

call routing system [102, 103, 104], the n-gram terms, queries and documents from the LVCSR

output are first embedded in semantic vectors using latent semantic analysis (LSA), the calls are

then routed to the desired destination according to the similarity scores computed from the query

and document vectors.

However, these methods are based on the one-best transcriptions of the utterances generated by

the LVCSR, which may not be accurate for a spontaneous conversational speech. Fortunately, the

correct transcription is highly likely to be one of the word sequences represented by the LVCSR

decoded lattice, i.e, the WFST.

To take advantage of the multiple hypothesized word sequences on the decoded lattices, Cortes

et al. proposed rational kernels [105], which are a series of kernels defined on the WFSTs. The
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topic classification is conducted via support vector machine (SVM) with the n-gram rational kernels

which maps the WFSTs (lattices) to a high dimensional n-gram feature space and then employs an

inner product for the topic identification [106, 107]. However, the n-gram rational kernel assumes

an exact match of the n-grams (words or phrases) and treats the contribution of each n-gram to

the topic discrimination uniformly. To overcome this problem, Weng et al. [108, 109] proposed

the latent semantic rational kernels (LSRK) for the topic spotting on spontaneous speech. In the

LSRK framework, the WFSTs (lattices) are mapped onto a reduced dimensional latent semantic

space rather than the n-gram feature space. LSRK is generalized to incorporate external knowledge

from several text analysis techniques such as WordNet [110, 16].

However, the word lattices of the utterances in [108] are generated by a Gaussian mixture model

(GMM)-hidden Markov model (HMM) based LVCSR system trained with the maximum likelihood

estimation (MLE). With MLE, a GMM is trained to model the distribution of the speech frames

given a senone (tri-phone state), which does not necessarily lead to a minimized recognition error or

a maximized topic spotting accuracy. Many discriminatvie training methods such as minimum clas-

sification error (MCE) [55, 11, 12], maximum mutual information (MMI) [56, 57], minimum word

error (MWE) [59], minimum phone error (MPE) [58], state-level minimum Bayes risk (sMBR) [60,

61] and boosted MMI [65] have been proposed to further refine the acoustic model.

For the topic spotting on conversational speech, the lattices are classified based on their seman-

tic meaning rather than their spellings or pronunciations and a high phoneme or state accuracy of

a sentence does not necessarily lead to a high semantic accuracy. For instance, the sentence “This

machine is productive.” is much more semantically correct than “This machine is inefficient.” given

the reference “This machine is efficient.”, but its phoneme or state accuracy is much lower than the

latter one. For the topic spotting task, the LVCSR is expected to generate word lattices that are

accurate in terms of the semantic meanings instead of the pronunciations. Therefore, we propose a

minimum semantic error cost (MSEC) training of an acoustic model, in which the expected seman-

tic error cost of all possible word sequences on the lattices is minimized given the reference. The

semantic error cost between a pair of words can be estimated via LSA or recurrent neural networks

(RNN) learned vector space word representations. The expected semantic error cost of the hypothe-

sized sentences can be obtained by accumulating the word-word semantic error costs on the lattices

50



via the forward-backward algorithm.

In addition, the GMM-HMM acoustic model with diagonal covariance matrices in [108] are

not good at handling highly correlated frames and the concatenation of neighboring frames will in-

evitably bring about the curse of dimensionality issue during the model training procedure. There-

fore, we introduce the deep bi-directional long short-term memory (BLSTM)-HMM for acoustic

modeling. The cycles in a BLSTM allows it to store and update the contextual information about

the past and future inputs in its internal state for an amount of time that is not fixed a priori, but

rather depends on its weights and on the input data [87]. The deep BLSTMs are able to ex-

ploit the long-term temporal contextual information within a dynamically changing window over

the input speech sequence. We define the MSEC objective function and derive the backpropaga-

tion error for the BLSTM. The BLSTM is then optimized using backpropagation through time and

stochastic gradient descent. With the MSEC training of the BLSTM acoustic model, the LVCSR

decoder is able to generate word lattices with significantly reduced semantic error cost for the sub-

sequent topic spotting within the LSRK framework. The BLSTM acoustic model is trained with

the Switchboard-1 Release 2 dataset, which is a large-scale spontaneous conversational telephone

speech (CTS) dataset. The proposed method achieves 3.5% - 4.5% absolute improvement over the

BLSTM baseline trained with the cross-entropy criterion for the topic classification task on a subset

of Switchboard-1 Release 2.

4.2 Minimum Semantic Error Cost Training of BLSTM Acoustic Model for Topic Spotting

With the cross-entropy criterion, the BLSTM acoustic models are trained to model the senone distri-

bution given an input speech frame, which do not necessarily lead to a minimized recognition error

rate in LVCSR tasks. An improved performance can be achieved by discriminatively training the

DNN [111] and LSTM [112] acoustic models with MCE, MPE, MWE, sMBR and similar criteria.

For topic spotting on conversational speech, the speech signal is first decoded to a word lattice

by an LVCSR system and the SVM with LSRK then operates on the decoded lattices to predict the

topic category. The lattices are classified based on their semantic meaning rather than their spellings

or pronunciations and the high phone or state accuracy of a sentence does not necessarily lead to

the high semantic accuracy.
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To improve the topic spotting accuracy, the LVCSR system is expected to generate word lattices

that are accurate in terms of the semantic meaning rather than the pronunciation. This motivates us

to devise a new objective function for discriminatively training the BLSTM acoustic model so that

the LVCSR can generate word lattices with a reduced semantic error cost. Therefore, we propose

the MSEC training of BLSTM acoustic model for topic spotting with LSRK.

We first define the word-word semantic error cost C(i, j) of mistakenly recognizing one word

with index i to another with index j as the negative of the semantic similarity between the words i

and j denoted by Si,j , i.e., C(i, j) = −Si,j . The expected semantic error cost of all hypothesized

word sequences on the lattice with respect to the reference can be accumulated from the semantic

error cost of the words.

Assume that the training data is given by training utterances r = {1, . . . , R}. Xr = {xr1, . . . , xrTr}

is the sequence of observations for utterance r, Wr is the word sequence in the reference (label tran-

scription) for utterance r. W is a word sequence in the hypothesis set encapsulated in the decoded

speech unit lattice for utterance r. SW = {sW1, . . . , sWT } is the senone sequence corresponding

to W , where sWt is the senone which frame xrt is aligned with.

The MSEC is aimed at minimizing the expected semantic error cost of all possible word se-

quences given the reference. The objective function is formulated as

LMSEC =

R∑
r=1

∑
W

P (W |Xr)C(W,Wr)

=

R∑
r=1

∑
W P (Xr|W )P (W )C(W,Wr)∑

W ′ P (Xr|W ′)P (W ′)
(4.1)

where C(W,Wr) is the semantic error cost of mis-recognizing the reference Wr as the hypothesis

sentence W .

Take the derivative of Eq. (4.1) with respect to the activation art(s) for senone s at the output

layer is

∂LMSEC

∂art(s)
=
∑
u

∂LMSEC

∂ log p(xrt|u)

∂ log p(xrt|u)

∂art(s)

= γWrt (s)
{
EP (W |sWt=s,Xr)[C(W,Wr)]− EP (W |Xr)[C(W,Wr)]

}
(4.2)
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where γWrt (s) is the posterior of being in senone s at time t, computed over the denominator lattice

of the utterance r, log p(xrt|u) is the log-likelihood of xrt given senone u obtained by subtracting

the log senone prior log p(u) from the log senone posterior log(yt) in Eq. (2.40).

Eq. (4.2) is the error to be backpropagated through time to derive the gradients for all the pa-

rameters of BLSTM, in which EP (W |sWt=s,Xr)[C(W,Wr)] and EP (W |Xr)[C(W,Wr)] are obtained

by accumulating the word-word semantic error costs C(i, j) (i.e., −Si,j) through performing the

forward-backward algorithm on the decoded word lattice. The decoded lattices of the utterance Xr

can be viewed as a directed graph WFST(Xr). For a state q of the WFST(Xr), DP(q) denotes the

set of direct predecessors of q and DS(q) denotes the set of direct successors of q. The arrow (arc)

directed from state p to state q is denoted by lp,q, the weight on lp,q is denoted by gp,q, the word

(input label) of the lp,q is denoted bymp,q and the time for lp,q inXr is tp,q. F(Xr) is the set of final

states in the WFST(Xr) and gf is the final weight of the final state f . Wrt is the word at time t of

the reference word sequence Wr. The first round of forward-backward is performed with forward

and backward likelihood α(1)
q and β(1)

q .

α(1)
q =

∑
p∈DP(q)

α(1)
p gp,q (4.3)

β(1)
q =

∑
p∈DS(q)

β(1)
p gq,p (4.4)

P (W |Xr) =
∑

f∈F(Xr)

α
(1)
f gf (4.5)

The second round of forward-backward is formulated as

α(2)
q =

1

α
(1)
q

∑
p∈DP(q)

α(1)
p gp,q[α

(2)
p + C(mp,q,Wrtp,q)] (4.6)

β(2)
q =

1

β
(1)
q

∑
p∈DS(q)

β(1)
p gq,p[β

(2)
p + C(mq,p,Wrtq,p)] (4.7)

EP (W |Xr)[C(W,Wr)] =

∑
f∈F(Xr)

α
(1)
f gfα

(2)
f

P (W |Xr)
(4.8)

where α(2)
q and β(2)

q are the average cost of the partial state sequences preceding and following q
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respectively. Assume that senone s is on the arrow directed from state ps to state qs of the WFST,

we have

EP (W |sWt=s,Xr)[C(W,Wr)] = α(2)
ps + C(mps,qs ,Wrtps,qs ) + β(2)

qs (4.9)

γWrt (s) =
α

(1)
ps gps,qsβ

(1)
qs

P (W |Xr)
(4.10)

The semantic error cost between sentences is computed from the semantic similarity matrix S

and S can be designed in multiple ways to incorporate any form of external knowledge. In this

chapter, we explore the following ways to incorporate the external knowledge. The word-word

semantic similarity Si,j (i.e, −C(i, j)) can be computed from LSA. In LSA, a document is first

represented by a column vector d indexed by the word in the vocabulary and the corpus of documents

is represented by a word-document matrix D = [d1, . . . , dm]. The columns of D are indexed by the

documents. Di,j describes the number of occurrence of word i in document j. With the singular

value decomposition (SVD) and the low-rank matrix approximation, we have D ≈ UKΣKV
>
K ,

where ΣK contains only the largest K singular values in Σ and UK , and VK contains the K left

and right singular vectors corresponding to ΣK , respectively. In the LSA framework, the semantic

similarity matrix S is formulated as

S = UKΣ−1
K Σ−1

K U>K (4.11)

where S is a square matrix with a dimension equal to the number of words in the vocabulary and

the element Si,j of S is the semantic similarity between word i and word j. We set the diagonal

elements of S to be the term frequency-inverse document frequency (tf-idf) [113] weights of the

corresponding words and scale the non-diagonal elements proportionally.

The word-word semantic similarity Si,j can also be obtained from the distributed vector repre-

sentations of words learned by an RNN language model (LM) (e.g., the continuous bag-of-words

model and the continuous skip-gram model [114]) from a large amount of text data. By training an

RNN LM, we obtain not only the model itself but also the vector-space word representations that are

implicitly learned by the input layer weights. These word representations encode precise syntactic
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and semantic word relationships as well as linguistic regularities and patterns [17]. Suppose wi is

a column vector representation for the word i, the word vocabulary can be represented by a matrix

W = [w1, . . . , wv]
>. With the SVD and the low-rank approximation, the similarity matrix S can

be formulated as

S = WW> = WKIKW
>
K . (4.12)

4.3 Distributed Word Representations Learned by Recurrent Neural Networks

The RNN LM has achieved extraordinary performance on many automatic speech recognition tasks

[17]. By training an RNN LM, we obtains not only the model itself but also the learned vector-space

word representations that are implicitly learned by the input layer weights. These representations

are capable of capturing the syntactic and semantic regularities in language and the relationships

between words.

As shown in Fig. 4.1, the input of the RNN LM is et represents a 1-of-N coding of the word

at time t and the output is ot representing the probability distribution over all the words at time t.

One-hot vector et+1 is the target (label) for the prediction ot.

Figure 4.1: The architecture of RNN LM where the input layer matrix Wh,e encodes the word
representations.
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Let ht denote the hidden layer vector at time t. The RNN LM is formulated as

ht = sigmoid(Wh,eet +Wh,hht−1 + bh) (4.13)

ot = softmax(Wo,hht) (4.14)

The word representations exist in the input layer matrix Wh,e. Specifically, the i th column of

the input layer matrix Wh,e is the vector representation of the word that corresponds to the i th

dimension of et.

With advanced RNN architectures, the continuous bag-of-words (CBOW) model and the con-

tinuous skip-gram model are proposed in [114, 115]. The CBOW predicts the current word with

context in both the past and future while the skip-gram predicts the surrounding words given the

current word as shown in Fig. 4.2a and Fig. 4.2b. The word representations are encoded in the

input layer matrix Wh,e. These two models achieve the state-of-the-art performance for measuring

syntactic and semantic word similarities.

4.4 Latent Semantic Rational Kernel for Topic Spotting

Rational kernels are a series of kernels operated on WFSTs. If we compactly represent the ASR

output of a speech signal as lattices, the topic classification task can be performed using SVM with

rational kernels based on WFSTs (lattices). Let A be a WFSA defined over the semiring K and the

alphabet Σ. Let B be a WFSA defined over the semiring K and alphabet ∆. Let T be a WFST over

semiring K and ψ be a function mapped from K to the set of real number R. The rational kernel

K(A,B) over A and B is given by

K(A,B) = ψ

 ⊕
(x,y)∈Σ×∆

JAK(x)⊗ JT K(x, y)⊗ JBK(y)

 (4.15)

The n-gram rational kernel [106, 105] is widely used in speech and text classification tasks for

its positive definite and symmetric property. Let L denote a WFST output (word lattice) from an

ASR system, which defines a distribution PL(s) over all word sequences s represented by L. The
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(a) CBOW (b) Skip Gram

Figure 4.2: The architecture of advanced RNN-LM. a) CBOW predicts the current word et given
the context et−2, et−1, et+1, et+2; b) skip gram predicts the context et−2, et−1, et+1, et+2 given the
current word et
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expected number of occurences of an n-gram sequence x with n words in WFST L is given by

c(L, x) =
∑
s

PL(s)c(s, x) (4.16)

where c(s, x) denotes the number of occurences of x in the word sequence s.

Then n-gram rational kernel kn for two WFSTs L1 and L2 is defined as

kn(L1, L2) =
∑
|x|=n

c(L1, x)c(L2, x) = φ(L1)Tφ(L2) (4.17)

where | · | denote the number of words in a sequence. Therefore, the n-gram kernel is the sum of the

products of the expected counts that L1 and L2 assign to their common n-gram sequences. With the

n-gram kernel, we first map the WFSTs to vectors φ(L) in the n-gram space with each dimension

being the expected count of an n-gram sequence and then take the inner product between vectors.

However, the n-gram rational kernel assumes that WFSTs from the same topic share many exact-

matched n-grams and assumes that each n-gram term contributes equally to the discrimination of a

topic. To circumvent these problems, we map the WFSTs into a latent semantic rational space with

a reduced dimension where more sophisticated term-term relations can be accurately calculated. Let

F denote a linear transform to map φ(L) in n-gram space to the latent semantic rational space, the

LSRK is defined as

kn(L1, L2) = 〈Fφ(L1), Fφ(L2)〉 = φ(L1)TF TFφ(L2)

= φ(L1)Sφ(L2) (4.18)

where S matrix is a term-term semantic similarity matrix which specifies the semantic similarity be-

tween n-gram terms, i.e., the value of matrix element Si,j measures the semantic similarity between

terms i and j. The n-gram rational kernel can be viewed as a special case of LSRK by assuming the

semantic similarity of the same term to be 1 and the semantic similarity between different terms to

be 0, under which case the S matrix is degenerated to an identity matrix I .

In this chapter, the topic classification is performed by a multi-class SVM with LSRK that takes

the decoded lattices of the utterances as the input. In the WFST framework, the LSRK is formulated
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as follow

kn(L1, L2) = w[(L1 ◦ T ) ◦WFST(F ) ◦WFST(F )−1 ◦ (T−1 ◦ L2)]

= w[(L1 ◦ T ) ◦WFST(S) ◦ (T−1 ◦ L2)] (4.19)

wherew[B] denotes the shortest distance from the start state to the set of final states of the transducer

B. The transducer T is used to extract all words defined as

T = (Σ× {ε})∗(
∑
y∈Σ

{y} × {y})n(Σ× {ε})∗ (4.20)

where Σ is the word vocabulary and ε denotes empty label. WFST(F ) is a WFST encoding

the transform from n-gram space to latent semantic space. The composition of WFST(F ) and

WFST(F )−1 is equivalent to WFST(S) which encodes the semantic similarity matrix S.

WFST(S) = (ε× {ε})∗(
∑
y∈Σ

{y} × {y})n(ε× {ε})∗ (4.21)

Two neighboring states of WFST(S) are connected byM×N arcs. Each of these arcs represents

one element in the S matrix. Specifically, Si,j is represented by an arc with input label i, output label

j and weight Si,j . The WFST(S) is constructed by a repetition of n sets ofM×N arcs representing

the S matrix that connects (n+1) WFST states. Fig. 4.3 shows an example of WFST(S) in bi-gram

case.

Figure 4.3: WFST(S) with vocabulary Σ = {a, b} in bi-gram case.
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As incorporating the full high-order n-gram features in LSA will lead to a prohibitively large

matrix, certain pruning schemes on those high-order n-gram features have to be conducted in this

case. Thus, we leave the exploration of the high-order features for future study. In this chapter,

we only use unigram (word) features and S degenerates to a word-word semantic similarity matrix

as discussed in Section 4.3. The LSRK can be generalized with respect to the semantic similarity

matrix S to incorporate external knowledge from LSA and RNN LM as in Eq. (4.11) and Eq. (4.12)

to achieve a better performance for topic spotting.

We compose the semantic similarity matrix WFST(S) with T transducer to construct the LSRK

as in Eq. (4.19) that takes the word lattices of the speech signal as the input. The topic classification

is performed by using multi-class SVM with the composed LSRK.

4.5 Experiments

4.5.1 Dataset Description

We evaluate the performance of the proposed framework on a large-scale CTS task, i.e., the 300

hours Switchboard-1 Release 2 (LDC97S62). It consists of 2348 two-sided telephone conversations

from 543 speakers (302 males and 241 females) in the United States. One topic is assigned to each

of the conversation between two callers and about 70 topics in total are provided in the corpus.

However, a large number of utterances within the 300 hours Switchboard data do not fit into a

clear topic and are not suitable for the topic spotting task (e.g., “Oh yeah”, “Um-hum”, “You are

right.”). The selection of utterances are based on the length of the transcriptions after filtering out the

filler words, functional words and stop words. We keep the utterances transcriptions of which have

more than 20 words after filtering. The threshold is set based on the trade-off between the utterance

duration and the number of remaining utterances. After the first round of filtering, we have 9192

utterances left. We further sift out the topics that have less than 200 utterances and finally have

4405 utterances on 19 different topics for topic spotting task. From each topic, we randomly select

90% utterances for training and 10% for testing. (The 3955 training and 450 test utterances used

for topic spotting) as shown in Table 4.1. The rest of the Switchboard-1 corpus is used for training

the acoustic model. The 3M words of the training transcripts are used to train a trigram language
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Table 4.1: The number of training and test utterances for each topic selected for topic classification
task.

Topic Train Test Total
Weather Climate 250 28 278

Recycling 247 28 275
Restaurants 245 28 273

Recipes/Food/Cooking 242 28 270
Exercise and Fitness 230 26 256

Gun Control 212 24 236
Buying a Car 207 24 231

Pets 204 23 227
Gardening 200 23 223

Capital Punishment 197 23 220
TV Program 197 22 219
Auto Repairs 197 22 219

Public Education 196 22 218
Movies 193 22 215

Drug Testing 193 22 215
Womens Role 191 22 213

Hobbies and Crafts 188 21 209
Camping 186 21 207

Air Pollution 180 21 201
Total 3955 450 4405

model for decoding.

4.5.2 Discriminative training of BLSTM acoustic model for lattice generation (WFST)

We first train a BLSTM acoustic model for the LVCSR system to generate word lattices that are

suited for topic spotting. A 36- dimensional log Mel filterbank feature vector is extracted and then

concatenated with a 3-dimensional pitch feature vector (consisting of probability of voicing, log

pitch and delta log pitch) [92] to form a 39 dimensional “log Mel filterbank + pitch” feature. To

build a BLSTM, we stack 4 hidden layers and add a softmax output layer on the top to represent

the 8784 senones posteriors. Each forward or backward hidden layer has 1024 hidden units and is

connected to a 512 dimensional recurrent projection layer. The forward and backward projection

layers are concatenated together (to form a 1024 dimensional vector) and fed as the input of the next

BLSTM hidden layer. After appending delta and delta-delta coefficients to the 39 dimensional “log

Mel filterbank + pitch” features, we use the 117 dimensional features with globally normalized zero
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mean and unit variance as the input to the BLSTM. The BLSTM is randomly initialized and then

trained (initial learning rate 0.00002) to minimize the cross-entropy (CE) criterion using senone-

level forced alignment generated by a GMM-HMM system as the target.

The BLSTM in the baseline system is then trained with the MSEC criterion as described in

Section 4.2. The semantic similarity matrix SMSEC is constructed with LSA using Eq. (4.11) with a

rank of 750. The word-document matrix D is formed with the transcriptions of a subset of training

utterances (2438 in total) in the topic spotting task. The diagonal elements of SMSEC is set to the

tf-idf weights of the corresponding word and the non-diagonal elements are scaled proportionally.

Since the size of SMSEC is very large (over 30, 000× 30, 000), we prune the non-diagonal elements

by keeping only the largest 80, 000 elements and setting the rest to zeros. For comparison, we also

discriminatively train the baseline BLSTM with MWE and sMBR.

4.5.3 LSRK for topic spotting

We generate the decoded lattices for the 3955 training utterances using BLSTM based LVCSR

systems trained in Section 4.5.2 and train a multi-class SVM with LSRK using these lattices for

topic spotting. The LSRK is constructed with a semantic similarity matrix SLSRK derived from the

RNN LM learned vector-space word representations in Eq. (4.12). Each word in vocabulary is

represented by a 4000-dimensional vector learned from a skip-gram model [114]. The skip-gram

model is trained on a billion characters of the English Wikipedia1 using the word2vec toolkit [114].

The out-of-vocabulary words are represented by a zero vector. We approximate the SLSRK with a

matrix of rank K and pruned it to M non-zero non-diagonal elements. The SLSRK is scaled and

pruned in the same way as we did for SMSEC.

The topic classification accuracies for lattices generated by LVCSR trained with different objec-

tive function are shown in Table 4.2. The lattices generated by MSEC trained BLSTM achieve the

best topic classification accuracy 60.00% when M = 160, 000;K = 400 or M = 240, 000;K =

800 or M = 320, 000;K = 800, which is 3.5% - 4.5% absolutely higher than the baseline BLSTM

trained with cross-entropy criterion. The BLSTM trained with MSEC also achieves 2%- 3% abso-

lute accuracy gains over other discriminative training objectives. The classification accuracies vary
1English Wikipedia is available on http://mattmahoney.net/dc/textdata.html
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slightly when M and K go beyond 160, 000 and 400 respectively.

Table 4.2: The topic classification accuracies (%) of BLSTM-HMM systems trained with different
objectives on the subset of Switchboard-1 Release 2. M is the number of non-zero non-diagonal
elements left in SLSRK after pruning and K is the rank of SLSRK after low rank approximation.

M K
Objective Functions

CE sMBR MWE MSEC

160,000
400 56.89 58.00 57.56 60.00
800 56.67 58.00 57.56 59.33
1200 56.67 57.78 57.33 58.56

240,000
400 55.78 58.00 57.78 59.56
800 56.22 57.56 57.33 60.00
1200 56.00 57.33 57.56 59.33

320,000
400 56.22 58.44 57.78 59.56
800 55.56 58.00 57.78 60.00
1200 56.00 58.00 57.33 59.56

4.5.4 Large-vocabulary continuous speech recognition

We evaluate the LVCSR performance of the MSEC-trained BLSTM on the Switchboard portion

of the 2000 HUB 5 English (LDC2002S09) and compare it with the other objectives. The ASR is

conducted with the same acoustic and language models as the ones used in Sections 4.5.2 and 4.5.3

for topic spotting. The BLSTM trained with MSEC achieves 13.9% word error rate (WER), which

is 0.7% and 0.8% absolutely lower than the BLSTMs trained with sMBR and MWE respectively

as in Table 4.3. The degradation of LVCSR performanece is expected since MSEC is designed to

minimize the expected semantic error cost instead of expected state or word errors as in sMBR or

MWE.

Table 4.3: The LVCSR WER performance of BLSTM-HMM systems trained with different objec-
tives on the Switchboard portion of the 2000 HUB 5 English dataset.

System WER (%)
BLSTM CE 14.6

BLSTM sMBR 13.1
BLSTM MWE 13.2
BLSTM MSEC 13.9
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4.6 Conclusion

In this chapter, we compensate for the mismatch between the objectives of ASR and spoken lan-

guage understanding (SLU) by proposing an MSEC criterion to train the BLSTM acoustic model.

MSEC aims at minimizing the expected semantic error cost of all possible word sequences on the

lattices given the reference such that the ASR can generate lattices that are more semantically ac-

curate and better suited for topic spotting with LSRK. The word-word semantic error cost is first

computed from either the latent semantic analysis or distributed vector-space word representations

learned from the RNNs and is then accumulated to form the expected semantic error cost of the

hypothesized word sequences.

The MSEC achieves a 3.5% - 4.5% absolute topic classification accuracy improvement over the

baseline BLSTM trained with the cross-entropy criterion on Switchboard dataset. We show that

the MSEC training of BLSTM can help an LVCSR to generate lattices that are more semantically

accurate and thus leads to a higher topic classification accuracy than other training objectives.
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CHAPTER 5

SPEAKER-INVARIANT TRAINING FOR ROBUST SPEECH RECOGNITION

5.1 Introduction

The DNN based acoustic models have been widely used in ASR and have achieved extraordinary

performance improvement [116, 117]. However, the performance of a speaker-independent (SI)

acoustic model trained with speech data from a large number of speakers is still affected by the spec-

tral variations in each speech unit caused by the inter-speaker variability. Many factors contribute

to this inter-speaker variability, such as the differences in speakers’ vocal tract configurations, ages,

genders, accents and speaking rates. Such speaker variations lead to high variance in the spectral

distribution of the speech signal that corresponds to each speech unit and thus large overlaps among

distributions. Directly trained with the diffused data, the SI acoustic model has limited discrimina-

tive power and leads to high word error rate (WER) in ASR. Therefore, speaker-adaptive training

[19, 20, 118, 119] and speaker adaptation methods are widely used to boost the recognition system

performance, such as regularization-based [68, 70, 120, 72], transformation-based [76, 121, 122],

singular value decomposition-based [123, 77, 78] and subspace-based [79, 82, 124] approaches.

Recently, adversarial learning has captured great attention of deep learning community given

its remarkable success in estimating generative models [22]. In speech, it has been applied to

noise-robust [26, 83, 27, 30, 28] and conversational ASR [125] using gradient reversal layer [23] or

domain separation network [29]. Inspired by this, we propose speaker-invariant training (SIT) via

adversarial learning to reduce the effect of speaker variability in acoustic modeling. In SIT, a DNN

acoustic model and a DNN speaker classifier are jointly trained to simultaneously optimize the pri-

mary task of minimizing the senone classification loss and the secondary task of mini-maximizing

the speaker classification loss. Through this adversarial multi-task learning procedure, a feature ex-

tractor is learned as the bottom layers of the DNN acoustic model that maps the input speech frames

from different speakers into speaker-invariant and senone-discriminative deep hidden features, so

that further senone classification is based on representations with the speaker factor already normal-
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ized out. The DNN acoustic model with SIT can be directly used to generate word transcription

for unseen test speakers through one-pass online decoding. On top of the SIT DNN, further adap-

tation can be performed to adjust the model towards the test speakers, achieving even higher ASR

accuracy.

We evaluate SIT with ASR experiments on CHiME-3 dataset, the SIT FNN acoustic model

achieves 4.99% relative WER improvement over the baseline SI FNN. Further, SIT achieves 4.86%

relative WER gain over the SI FNN when the same unsupervised speaker adaptation process is

performed on both models. With t-distributed stochastic neighbor embedding (t-SNE) [126] visual-

ization, we show that, after SIT, the deep feature distributions of different speakers are well aligned

with each other, which demonstrates the strong capability of SIT in reducing speaker-variability.

5.2 Related Work

Speaker-adaptive training (SAT) is proposed to generate canonical acoustic models coupled with

speaker adaptation. For Gaussian mixture model (GMM)-hidden Markov model (HMM) acoustic

model, SAT applies unconstrained [18] or constrained [127] model-space linear transformations that

separately model the speaker-specific characteristics and are jointly estimated with the GMM-HMM

parameters to maximize the likelihood of the training data. Cluster-adaptive training (CAT) [128]

is then proposed to use a linear interpolation of all the cluster means as the mean of the particular

speaker instead of a single cluster as representative of a particular speaker. However, SAT of GMM-

HMM needs to have two sets of models, the SI model and canonical model. During testing, the SI

model is used to generate the first pass decoding transcription, and the canonical model is combined

with speaker-specific transformation to adapt to the new speaker.

For DNN-HMM acoustic model, CAT [20] and multi-basis adaptive neural networks [19] are

proposed to represent the weight and/or the bias of the speaker-dependent (SD) affine transforma-

tion in each hidden layer of a DNN acoustic model as a linear combination of SI bases, where the

combination weights are low-dimensional SD speaker representations. The canonical SI bases with

reduced variances are jointly optimized with the SD speaker representations during the SAT to min-

imize the cross-entropy loss. During unsupervised adaptation, the test speaker representations are

re-estimated using alignments from the first-pass decoding of the test data with SI DNN as the su-
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pervisions and are used in the second-pass decoding to generate the transcription. Factorized hidden

layer [129] is similar to [20, 19], but includes SI DNN weights as part of the linear combination. In

[130], SD speaker codes are transformed by a set of SI matrices and then directly added to the biases

of the hidden-layer affine transformations. The speaker codes and SI transformations are jointly es-

timated during SAT. For these methods, two passes of decoding are required to generate the final

transcription in unsupervised adaption setup, which increases the computational complexity of the

system.

In [119, 131], an SI adaptation network is learned to derive speaker-normalized features from

i-vectors to train the canonical DNN acoustic model. The i-vectors for the test speakers are then

estimated and used for decoding after going through the SI adaptation network. In [125], a recon-

struction network is trained to predict the input i-vector given the speech feature and its correspond-

ing i-vector are at the input of the acoustic model. The mean-squared error loss of the i-vector

reconstruction and the cross-entropy loss of the DNN acoustic model are jointly optimized through

adversarial multi-task learning. Although these methods generate the final transcription with one-

pass of decoding, they need to go through the entire test utterances in order to estimate the i-vectors,

making it impossible to perform online decoding. Moreover, the accuracy of i-vectors estimation

are limited by the duration of the test utterances. The estimation of i-vector for each utterance also

increases the computational complexity of the system.

SIT directly minimizes the speaker variations by optimizing an adversarial multi-task objective

other than the most basic cross entropy object as in SAT. It forgoes the need of estimating any

additional SI bases or speaker representations during training or testing. The direct use of SIT

DNN acoustic model in testing enables the generation of word transcription for unseen test speakers

through one-pass online decoding. Moreover, it effectively suppresses the inter-speaker variability

via a lightweight system with much reduced training parameters and computational complexity. To

achieve additional gain, unsupervised speaker adaptation can also be further conducted on the SIT

model with one extra pass of decoding.
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5.3 Speaker-Invariant Training

To perform SIT, we need a sequence of speech frames X = {x1, . . . , xN}, a sequence of senone

labels Y = {y1, . . . , yN} aligned with X and a sequence of speaker labels S = {s1, . . . , sN}

aligned with X . The goal of SIT is to reduce the variances of hidden and output units distributions

of the DNN acoustic model that are caused by the inherent inter-speaker variability in the speech

signal. To achieve speaker-robustness, we learn a speaker-invariant and senone-discriminative deep

hidden feature in the DNN acoustic model through adversarial multi-task learning and make senone

posterior predictions based on the learned deep feature. In order to do so, we view the first few

layers of the acoustic model as a feature extractor network Mf with parameters θf that maps input

speech frames X from different speakers to deep hidden features F = {f1, . . . , fN} (see Fig. 5.1)

and the upper layers of the acoustic model as a senone classifier My with parameters θy that maps

the intermediate features F to the senone posteriors p(q|f ; θy), q ∈ Q as follows:

Figure 5.1: The framework of speaker-invariant training via adversarial learning for unsupervised
adaptation of the acoustic models

68



My(fi) = My(Mf (xi)) = py(q|xi; θf , θy) (5.1)

We further introduce a speaker classifier network Ms which maps the deep features F to the

speaker posteriors ps(a|xi; θs, θf ), a ∈ A as follows:

Ms(Mf (xi)) = ps(a|xi; θs, θf ) (5.2)

where a is one speaker in the set of all speakers A.

To make the deep features F speaker-invariant, the distributions of the features from different

speakers should be as close to each other as possible. Therefore, the Mf and Ms are jointly trained

with an adversarial objective, in which θf is adjusted to maximize the speaker classification loss

Lfspeaker(θf ) while θs is adjusted to minimize the frame-level speaker classification loss Lsspeaker(θs)

below:

Lspeaker(θf , θs) = −
N∑
i

log ps(si|xi; θf )

= −
N∑
i

∑
a∈A

1[a=si] logMs(Mf (xi)) (5.3)

where si denote the speaker label for the input frame xi of the acoustic model.

This minimax competition will first increase the discriminativity ofMs and the speaker-invariance

of the features generated by Mf , and will eventually converge to the point where Mf generates ex-

tremely confusing features that Ms is unable to distinguish.

At the same time, we want to make the deep features senone-discriminative by minimizing the

cross-entropy loss between the predicted senone posteriors and the senone labels as follows:

Lsenone(θf , θy) = −
∑
i

py(yi|xi; θf , θy)My(Mf (xi)) (5.4)

In SIT, the acoustic model network and the condition classifier network are trained to jointly

optimize the primary task of senone classification and the secondary task of speaker classification
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with an adversarial objective function. Therefore, the total loss is constructed as

Ltotal(θf , θy, θs) = Lsenone(θf , θy)− λLspeaker(θs, θf ) (5.5)

where λ controls the trade-off between the senone loss and the speaker classification loss in Eq.(5.4)

and Eq.(5.3) respectively.

We need to find the optimal parameters θ̂y, θ̂f and θ̂s such that

(θ̂f , θ̂y) = min
θy ,θf
Ltotal(θf , θy, θ̂s) (5.6)

θ̂s = max
θs
Ltotal(θ̂f , θ̂y, θs) (5.7)

All the parameters of acoustic model network and the speaker classifier network are updated

jointly as follows via back propagation with stochastic gradient descent (SGD):

θf ← θf − µ
[
∂Lsenone

∂θf
− λ

∂Lspeaker

∂θf

]
(5.8)

θs ← θs − µ
∂Lspeaker

∂θs
(5.9)

θy ← θy − µ
∂Lsenone

∂θy
(5.10)

where µ is the learning rate.

Note that the negative coefficient −λ in Eq. (5.8) induces reversed gradient that maximizes

Lspeaker(θf , θs) in Eq. (5.3) and makes the deep feature speaker-invariant. Without the reversal gra-

dient, SGD would make representations different across domains in order to minimizeLspeaker(θf , θs).

For easy implementation, gradient reversal layer is introduced in [23], which acts as an identity

transform in the forward propagation and multiplies the gradient by −λ during the backward prop-

agation.

The optimized network consisting of Mf and Ms is used as the SIT acoustic model for ASR on

test data.
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5.4 Experiments

In this chapter, we perform SIT on a FNN-hidden Markov model (HMM) acoustic model for ASR

on CHiME-3 dataset.

5.4.1 Dataset Description

The CHiME-3 dataset is released with the 3rd CHiME speech Separation and Recognition Chal-

lenge [132], which incorporates the Wall Street Journal corpus sentences spoken in challenging

noisy environments, recorded using a 6-channel tablet based microphone array. CHiME-3 dataset

consists of both real and simulated data. The real speech data was recorded in five real noisy envi-

ronments (on buses (BUS), in cafés (CAF), in pedestrian areas (PED), at street junctions (STR) and

in booth (BTH)). To generate the simulated data, the clean speech is first convolved with the esti-

mated impulse response of the environment and then mixed with the background noise separately

recorded in that environment [133]. The noisy training data consists of 1999 real noisy utterances

from 4 speakers, and 7138 simulated noisy utterances from 83 speakers in the WSJ0 SI-84 training

set recorded in 4 noisy environments. There are 3280 utterances in the development set including

410 real and 410 simulated utterances for each of the 4 environments. There are 2640 utterances

in the test set including 330 real and 330 simulated utterances for each of the 4 environments. The

speakers in training set, development set and the test set are mutually different (i.e., 12 different

speakers in the CHiME-3 dataset). The training, development and test data sets are all recorded in

6 different channels.

In the experiments, we use 9137 noisy training utterances in the CHiME-3 dataset as the training

data. The real and simulated development data in CHiME-3 are used as the test data. Both the

training and test data are far-field speech from the 5th microphone channel. The WSJ0 text corpus

with 5K-word lexicon is used to train a 3-gram language model utilized in out experiments.

5.4.2 Baseline System

In the baseline system, we first train an SI deep FNN-HMM acoustic model using 9137 noisy

training utterances with cross-entropy criterion.
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The 29-dimensional log Mel filterbank features together with 1st and 2nd order delta features

(totally 87-dimensional) for both the clean and noisy utterances are extracted by following the pro-

cess in [134]. Each frame is spliced together with 5 left and 5 right context frames to form a 957-

dimensional feature. The spliced features are fed as the input of the deep FNN after global mean and

variance normalization. The FNN has 7 hidden layers with 2048 hidden units for each layer. The

output layer of the FNN has 3012 output units corresponding to 3012 senone labels. Senone-level

forced alignment of the clean data is generated using a Gaussian mixture model-HMM system. As

shown in Table 5.1, the WERs for the SI FNN are 17.84% and 17.72% respectively on real and

simulated test data respectively. Note that our experimental setup does not achieve the state-of-the-

art performance on CHiME-3 dataset (e.g., we did not perform beamforming, sequence training or

use recurrent neural network language model for decoding.) since our goal is to simply verify the

effectiveness of SIT in reducing inter-speaker variability.

5.4.3 Speaker-Invariant Training for Robust Speech Recognition

We further perform SIT on the baseline noisy FNN acoustic model with 9137 noisy training utter-

ances in CHiME-3. The feature extractor Mf is initialized with the first Nh layers of the FNN and

the senone classifier is initialized with the rest (7−Nh) hidden layers plus the output layer. Nh in-

dicates the position of the deep hidden feature in the acoustic model. The speaker classifier Ms is a

feedforward FNN with 2 hidden layers and 512 hidden units for each layer. The output layer of Ms

has 87 units predicting the posteriors of 87 speakers in the training set. Mf , My and Ms are jointly

trained with an adversarial multi-task objective as described in Section 5.3. Nh and λ are fixed at

2 and 3.0 in our experiments. The SIT FNN acoustic model achieves 16.95% and 16.54% WER

on the real and simulated test data respectively, which are 4.99% and 6.66% relative improvements

over the SI FNN baseline.

5.4.4 Visualization of Deep Features

We randomly select two male speakers and two female speakers from the noisy training set and

extract speech frames aligned with the phoneme “ah” for each of the four speakers. In Figs. 5.2 and

5.3, we visualize the deep features F generated by the SI and SIT FNN acoustic models when the
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Table 5.1: The ASR WER (%) performance of SI and SIT FNN acoustic models on real and simu-
lated development set of CHiME-3.

System Data BUS CAF PED STR Avg.

SI
Real 24.77 16.12 13.39 17.27 17.84
Simu 18.07 21.44 14.68 16.70 17.72

SIT
Real 22.91 15.63 12.77 16.66 16.95
Simu 16.64 20.23 13.53 15.96 16.54

“ah” frames of the four speakers are given as the input using t-SNE. In Fig. 5.2, the deep feature

distributions in the SI model for the male (in red and green) and female speakers (in back and

blue) are far away from each other and even the distributions for the speakers of the same gender

are separated from each other. While after SIT, the deep feature distributions for all the male and

female speakers are well aligned with each other as shown in Fig. 5.3. The significant increase in

the overlap among distributions of different speakers justifies that the SIT remarkably enhances the

speaker-invariance of the deep features F . The adversarial optimization of the speaker classification

loss does not just serve as a regularization term to achieve better generalization on the test data.

Figure 5.2: t-SNE visualization of the deep features F generated by the SI FNN acoustic model
when speech frames aligned with phoneme “ah” from two male and two female speakers in CHiME-
3 training set are fed as the input. 1095, 729, 1057, 423 deep features are generated for “female 1”,
“female 2”, “male 1” and “male 2” respectively.
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Figure 5.3: t-SNE visualization of the deep features F generated by the SIT FNN acoustic model
when the same speech frames as in Fig. 5.2 are fed as the input. 1095, 729, 1057, 423 deep features
are generated for “female 1”, “female 2”, “male 1” and “male 2” respectively.

5.4.5 Unsupervised Speaker Adaptation

SIT aims at suppressing the effect of inter-speaker variability on FNN acoustic model so that the

acoustic model is more compact and has stronger discriminative power. When adapted to the same

test speakers, the SIT FNN is expected to achieve higher ASR performance than the baseline SI

FNN due to the smaller overlaps among the distributions of different speech units.

In our experiment, we adapt the SI and SIT FNNs to each of the 4 speakers in the test set in

an unsupervised fashion. The constrained re-training (CRT) [135] method is used for adaptation,

where we re-estimate the FNN parameters of only a subset of layers while holding the remaining

parameters fixed during cross-entropy training. The adaptation target (1-best alignment) is obtained

through the first-pass decoding of the test data, and the second-pass decoding is performed using

the SA SI and SI FNNs.

The WER results for unsupervised speaker adaptation is shown in Table 5.2, in which only

the bottom 2 layers of the SI and SIT FNNs are adapted during CRT. The speaker-adapted (SA)

SIT FNN achieves 15.46% WER which is 4.86% relatively higher than the SA SI FNN. The CRT
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adaptation provides 8.91% and 8.79% relative WER gains over the unadapted SI and SIT models

respectively. The lower WER after speaker adaptation indicates that SIT has effectively reduced the

high variance and overlap in an SI acoustic model caused by the inter-speaker variability.

Table 5.2: The ASR WER (%) performance of SA SI and SA SIT FNN acoustic models after CRT
unsupervised speaker adaptation on real development set of CHiME-3.

System BUS CAF PED STR Avg.
SA SI 22.76 15.56 11.52 15.37 16.25

SA SIT 21.42 14.79 11.11 14.70 15.46

5.5 Conclusions

In this chapter, SIT is proposed to suppress the effect of inter-speaker variability on the SI DNN

acoustic model. In SIT, a DNN acoustic model and a speaker classifier network are jointly opti-

mized to minimize the senone classification loss, and simultaneously mini-maximize the speaker

classification loss. Through this adversarial multi-task learning procedure, a feature extractor net-

work is learned to map the input frames from different speakers to deep hidden features that are

both speaker-invariant and senone-discriminative.

Evaluated on CHiME-3 dataset, a deep SIT FNN acoustic model achieves 4.99% relative WER

improvement over the baseline SI FNN. With the unsupervised adaptation towards the test speakers

using CRT, the SA SIT FNN achieves additional 8.79% relative WER gain, which is 4.86% rela-

tively improved over the SA SI FNN. With t-SNE visualization, we show that, after SIT, the deep

feature distributions of different speakers are well aligned with each other, which verifies the strong

capability of SIT in reducing speaker-variability.

SIT forgoes the need of estimating any additional SI bases or speaker representations which are

necessary in other conventional approaches such as SAT. The SIT trained DNN acoustic model can

be directly used to generate the transcription for unseen test speakers through one-pass online de-

coding. It enables a lightweight speaker-invariant ASR system with reduced number of parameters

for both training and testing. Additional gains are achievable by performing further unsupervised

speaker adaptation on top of the SIT model.

In the future, we will evaluate the performance of the i-vector based speaker-adversarial multi-
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task learning [125] on CHiME-3 dataset and compare it with the proposed SIT. Moreover, we will

perform SIT on thousands of hours of data to verify the its scalability to large dataset.
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CHAPTER 6

ADVERSARIAL TEACHER-STUDENT LEARNING FOR UNSUPERVISED

ADAPTATION

6.1 Introduction

With the advance of deep learning, the performance of ASR has been greatly improved [136, 137,

116, 138, 117]. However, the ASR still suffers from large performance degradation when a well-

trained acoustic model is presented in a new domain [67, 139]. Many domain adaptation techniques

were proposed to address this issue, such as regularization-based [68, 70, 120, 72], transformation-

based [76, 121, 122], singular value decomposition-based [123, 77, 78] and subspace-based [79, 82,

118, 124] approaches. Although these methods effectively mitigate the mismatch between source

and target domains, they reply on the transcription or the first-pass decoding hypotheses of the

adaptation data.

To address these limitations, teacher-student (T/S) learning [24] is used to achieve unsupervised

adaptation [25] with no exposure to any transcription or decoded hypotheses of the adaptation data.

In T/S learning, the posteriors generated by the teacher model are used in lieu of the hard labels

derived from the transcriptions to train the target-domain student model. Although T/S learning

achieves large word error rate (WER) reduction in domain adaptation, it is similar to the traditional

training criterion such as cross entropy (CE) which implicitly handles the variations in each speech

unit (e.g. senone) caused by the speaker and environment variability in addition to phonetic vari-

ations. The structure of vocal tract, regional dialect and speaker idiosyncracies contribute to the

variations in the characteristics of the speakers’ voice. Differences in signal-to-noise ratios, types of

noise sources, room impulse responses lead to the environment variations in the adaptation speech.

Recently, adversarial training has become a hot topic in deep learning with its great success

in estimating generative models [22]. It has also been applied to noise-robust [26, 83, 27, 30]

and speaker-invariant [21] ASR using gradient reversal layer [23] or domain separation network

[29]. A deep intermediate feature is learned to be both discriminative for the main task of senone
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classification and invariant with respect to the shifts among different conditions. Here, one condition

refers to one particular speaker or one acoustic environment. For unsupervised adaptation, both

the T/S learning and adversarial training forgo the need for any labels or decoded results of the

adaptation data. T/S learning is more suitable for the situation where parallel data is available since

the paired data allows the student model to be better-guided by the knowledge from the source

model, while adversarial training is more powerful when such data is not available.

To benefit from both methods, in this chapter, we advance T/S learning with adversarial T/S

training for condition-robust unsupervised domain adaptation, where a student acoustic model and

a domain classifier are jointly trained to minimize the Kullback-Leibler (KL) divergence between

the output distributions of the teacher and student models as well as to min-maximize the condition

classification loss through adversarial multi-task learning. A senone-discriminative and condition-

invariant deep feature is learned in the adapted student model through this procedure. Based on

this, we further propose the multi-factorial adversarial (MFA) T/S learning where the condition

variabilities caused by multiple factors are minimized simultaneously. Evaluated with the noisy

CHiME-3 test set, the proposed method achieves 44.60% and 5.38% relative WER improvements

over the clean model and a strong T/S adapted baseline acoustic model, respectively.

6.2 Teacher-Student Learning

By using T/S learning for unsupervised adaption, we want to learn a student acoustic model that can

accurately predict the senone posteriors of the target-domain data from a well-trained source-domain

teacher acoustic model. To achieve this, we only need two sequences of unlabeled parallel data, i.e.,

an input sequence of source-domain speech frames to the teacher model XT = {xT1 , . . . , xTN} and

an input sequence of target-domain speech frames to the student model XS = {xS1 , . . . , xSN}. XT

and XS are parallel to each other, i.e, each pair of xSi and xTi ,∀i ∈ {1, . . . , N} are frame-by-frame

synchronized.

T/S learning aims at minimizing the Kullback-Leibler (KL) divergence between the output dis-

tributions of the teacher model and the student model by taking the unlabeled parrallel data XT

and XS as the input to the models. The KL divergence between the teacher and student output
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distributions pT (q|xTi ; θT ) and pS(q|xSi ; θS) is

KL(pT ||pS) =
∑
i

∑
q∈Q

pT (q|xTi ; θT ) log

(
pT (q|xTi ; θT )

pS(q|xSi ; θS)

)
(6.1)

where q is one of the senones in the senone setQ, i is the frame index, θT and θS are the parameters

of the teacher and student models respectively. To learn a student network that approximates the

given teacher network, we minimize the KL divergence with respect to only the parameters of the

student network while keeping the parameters of the teacher model fixed, which is equivalent to

minimizing the loss function below:

L(θS) = −
∑
i

∑
q∈Q

pT (q|xTi ; θT ) log pS(q|xSi ; θS) (6.2)

The target domain data used to adapt the student model is usually recorded under multiple con-

ditions, i.e., the adaptation data often comes from a large number of different talkers speaking under

various types of environments (e.g., home, bus, restaurant and etc). T/S learning can only implicitly

handle the inherent speaker and environment variability in the speech signal and its robustness can

be improved if it can explicitly handle the condition invariance.

6.3 Adversarial Teacher-Student Learning

In this section, we propose the adversarial T/S learning (see Fig. 6.1) to effectively suppress the

condition (i.e., speaker and environment) variations in the speech signal and achieve robust unsu-

pervised adaptation with multi-conditional adaptation data.

Similar to the T/S learning, we first clone the student acoustic model from the teacher and use

unlabeled parallel data as the input to adapt the student model. To achieve condition-robustness,

we learn a condition-invariant and senone-discriminative deep feature in the adapted student model

through the senone posteriors generated by the teacher model and the condition label for each frame.

In order to do so, we view the first few layers of the acoustic model as a feature extractor with pa-

rameters θf that maps input speech frames XS of different conditions to deep intermediate features

FS = {fS1 , . . . , fSN} and the upper layers of the student network as a senone classifier My with
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Figure 6.1: The framework of adversarial T/S learning for unsupervised adaptation of the acoustic
models

parameters θy that maps the intermediate features FS to the senone posteriors pS(q|fSi ; θy), q ∈ Q

as follows:

My(f
S
i ) = My(Mf (xSi )) = pS(q|xSi ; θf , θy) (6.3)

where we have θS = {θf , θy} as the student model.

We further introduce a condition classifier network Mc with θc which maps the deep features

FS to the condition posteriors pc(a|xSi ; θc, θf ), a ∈ A as follows:

Mc(Mf (xSi )) = pc(a|xSi ; θc, θf ) (6.4)

where a is one condition in the set of all conditions A.

To make the deep features FS condition-invariant, the distributions of the features from different

conditions should be as close to each other as possile. Therefore, the Mf and Mc are jointly trained

with an adversarial objective, in which θf is adjusted to maximize the condition classification loss
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Lcondition(θf , θc) while θc is adjusted to minimize the Lcondition(θf , θc) below:

Lcondition(θf , θc) = −
N∑
i

log pc(c
S
i |xSi ; θf , θc)

= −
N∑
i

∑
a∈A

1[a=cSi ] logMc(Mf (xSi )) (6.5)

where cSi denote the condition label for the input frame xSi of the student model.

This minimax competition will first increase the discriminativity of Mc and the condition-

invariance of the features generated by Mf and will eventually converge to the point where Mf

generates extremely confusing features that Mc is unable to distinguish.

At the same time, we use T/S learning to let the behavior of the student model in the target

domain approach the behavior of the teacher model in the source domain by minimizing the KL di-

vergence of the output distributions between the student and teacher acoustic models. Equivalently,

we minimize the loss function in Eq. (6.2) as re-formulated below:

LTS(θf , θy) = −
∑
i

∑
q∈Q

pT (q|xTi ; θf , θy)My(Mf (xSi )) (6.6)

In adversarial T/S learning, the student network and the condition classifier network are trained to

jointly optimize the primary task of T/S learning using soft targets from the teacher model and the

secondary task of condition classification with an adversarial objective function. Therefore, the total

loss is constructed as

Ltotal(θf , θy, θc) = LTS(θf , θy)− λLcondition(θf , θc) (6.7)

where λ controls the trade-off between the T/S loss and the condition classification loss in Eq.(6.6)

and Eq.(6.5) respectively.
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We need to find the optimal parameters θ̂y, θ̂f and θ̂c such that

(θ̂f , θ̂y) = min
θy ,θf
Ltotal(θf , θy, θ̂c) (6.8)

θ̂c = max
θc
Ltotal(θ̂f , θ̂y, θc) (6.9)

The parameters are updated as follows via back propagation through time with stochastic gradi-

ent descent (SGD):

θf ← θf − µ
[
∂LTS

∂θf
− λ∂Lcondition

∂θf

]
(6.10)

θc ← θc − µ
∂Lcondition

∂θc
(6.11)

θy ← θy − µ
∂LTS

∂θy
(6.12)

where µ is the learning rate.

Note that the negative coefficient −λ in Eq. (6.10) induces reversed gradient that maximizes

Lcondition(θf , θc) in Eq. (6.5) and makes the deep feature condition-invariant. For easy implementa-

tion, gradient reversal layer is introduced in [23], which acts as an identity transform in the forward

propagation and multiplies the gradient by −λ during the backward propagation.

The optimized student network consisting of Mf and My is used as the adapted acoustic model

for ASR in the target-domain.

6.4 Multi-factorial Adversarial Teacher-Student Learning

Speaker and environment are two different factors that contribute to the inherent variability of the

speech signal. In Section 6.3, adversarial T/S learning is proposed to reduce the variations induced

by the single condition. For a more comprehensive and thorough solution to the condition variability

problem, we further propose the multi-factorial adversarial (MFA) T/S learning, in which multiple

factors causing the condition variability are suppressed simultaneously through adversarial multi-

task learning.

In MFA T/S framework, we keep the senone classifier My and feature extractor Mf the same
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as in adversarial T/S, but introduce R condition classifiers M r
c , r = 1, . . . , R. M r

c maps the deep

feature to the posteriors of the p-th condition. To make the deep features FS condition-invariant

to each factor, we jointly train Mf and Mc with an adversarial objective, in which θf is adjusted

to maximize the total condition classification loss of all factors while θrc is adjusted to minimize the

total condition classification loss of all factors. At the same time, we minimize the KL divergence

between the output distributions of the teacher and student models. The total loss function for MFA

T/S learning is formulated as

Ltotal(θf , θy, θ
1
c , . . . , θ

R
c ) = LTS(θf , θy)− λ

R∑
r=1

Lrcondition(θrc , θf )

(6.13)

where LTS is defined in Eq. (6.6) and Lrcondition for each r are formulated in the same way as in Eq.

(6.5). All the parameters are optimized in the same way as in Eq. (6.8) to Eq. (6.12). Note that

better performance may be obtained when the condition losses have different combination weights.

However, we just equally add them together in Eq. (6.13) to avoid tuning.

6.5 Experiments

To compare directly with the results in [25], we use exactly the same experiment setup as in [25]. We

perform unsupervised adaptation of a clean long short-term memory (LSTM)- recurrent neural net-

works (RNN) [140] acoustic model trained with 375 hours of Microsoft Cortana voice assistant data

to the noisy CHiME-3 dataset [132] using T/S and adversarial T/S learning. The CHiME-3 dataset

incorporates Wall Street Journal (WSJ) corpus sentences spoken in challenging noisy environments,

recorded using a 6-channel tablet. The real far-field noisy speech from the 5th microphone channel

in CHiME-3 development data set is used for testing. A standard WSJ 5K word 3-gram language

model (LM) is used for decoding.

The clean acoustic model is an LSTM-RNN trained with cross-entropy criterion. We extract

80-dimensional input log Mel filterbank feature as the input to the acoustic model. The LSTM has

4 hidden layers with 1024 units in each layer. A 512-dimensional projection layer is inserted on
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top each hidden layer to reduce the number of parameters. The output layer has 5976 output units

predicting senone posteriors. A WER of 23.16% is achieved when evaluating the clean model on

the test data. The clean acoustic model is used as the teacher model in the following experiments.

6.5.1 T/S Learning for Unsupervised Adaptation

We first use parallel data consisting of 9137 pairs of clean and noisy utterances in the CHiME-3

training set (named as “clean-noisy”) as the adaptation data for T/S learning. In order to let the

student model be invariant to environments, the training data for student model should include both

clean and noisy data. Therefore, We extend the original T/S learning work in [25] by also including

9137 pairs of the clean and clean utterances in CHiME-3 (named as “clean-clean”) for adaptation.

By perform T/S learning with both the “clean-noisy” and “clean-clean” parallel data, the learned

student model should perform well on both the clean and noisy data because it will approach the

behavior of teacher model on clean data no matter it is presented with clean or noisy data.

The unadapted Cortana model has 6.96% WER on the clean test set. After T/S learning with

both the “clean-noisy” and “clean-clean” parallel data, the student model has 6.99% WER on the

clean test. As the focus of this study is to improve T/S adaptation on noisy test data, we will only

report results with the CHiME-3 real noisy channel 5 test set. The WER results on the noisy channel

5 test set of T/S learning are shown in Table 6.1. The T/S learning achieves 13.88% and 13.56%

average WERs when adapted to “clean-noisy” and “clean-noisy & clean-clean” respectively, which

are 40.05% and 41.45% relative improvements over the unadapted clean model. Note that our

experimental setup does not achieve the state-of-the-art performance on CHiME-3 dataset (e.g.,

we did not perform beamforming, sequence training or use RNN LM for decoding.) since our

goal is to simply verify the effectiveness of adversarial T/S learning in achieving condition-robust

unsupervised adaptation.

6.5.2 Adversarial T/S Learning for Environment-Robust Unsupervised Adaptation

We adapt the clean acoustic model with the “clean-noisy & clean-clean” parallel data using adver-

sarial T/S learning so that the resulting student model is environment invariant. The feature extractor

Mf is initialized with the firstNh hidden layers of the clean student LSTM and the senone classifier

84



Table 6.1: The WER (%) performance of unadapted, T/S learning adapted LSTM acoustic models
for robust ASR on the real noisy channel 5 test set of CHiME-3.

System Adaptation Data BUS CAF PED STR Avg.
Unadapted - 27.93 24.93 18.53 21.38 23.16

T/S
clean-noisy 16.00 15.24 11.27 13.07 13.88

clean-noisy, clean-clean 15.96 14.32 11.00 13.04 13.56

Table 6.2: The WER (%) performance of adversarial T/S learning adapted LSTM acoustic models
for robust ASR on the real noisy channel 5 test set of CHiME-3. The adaptation data consists of
“clean-noisy” and “clean-clean”.

System Conditions BUS CAF PED STR Avg.

Adversarial
T/S

2 environments 15.24 13.95 10.71 12.76 13.15
6 environments 15.58 13.23 10.65 13.10 13.12

87 speakers 14.97 13.63 10.84 12.24 12.90
87 speakers, 6 environments 15.38 13.08 10.47 12.45 12.83

My is initialized with the last (4−Nh) hidden layers plus the output layer of the clean LSTM. Nh

indicates the position of the deep feature in the student network. The condition classifier network

Mc has 2 hidden layers with 512 units in each hidden layer.

To achieve environment-robust unsupervised adaptation, the condition classifier network Mc is

designed to predict the posteriors of different environments at the output layer. As the adaptation

data comes from both the clean and noisy environments, we first use an Mc with 2 output units

to predict these two environments. As shown in Table 6.2, the adversarial T/S learning with 2-

environment condition classifier achieves 13.15% WER, which are 43.22% and 3.02% relatively

improved over the unadapted and T/S learning adapted models respectively. The Nh and λ are fixed

at 4 and 5.0 respectively in all our experiments.

However, the noisy data in CHiME-3 is recorded under 5 different noisy environments, i.e, on

buses (BUS), in cafes (CAF), in pedestrian areas (PED), at street junctions (STR) and in booth

(BTH). To mitigate the speech variations among these environments, we further use an Mc with 6

output units to predict the posteriors of the 5 noisy and 1 clean environments. The WER with 6-

environment condition classier is 13.12% which achieves 43.35% and 3.24% relative improvement

over the unadapted and T/S learning adapted baseline models respectively. The increasing amount

of noisy environments to be normalized through adversarial T/S learning lead to very limited WER

85



improvement which indicates that the differences among various kinds of noises are not significant

enough in CHiME-3 as compared to the distinctions between clean and noisy data.

6.5.3 Adversarial T/S Learning for Speaker-Robust Unsupervised Adaptation

To achieve speaker-robust unsupervised adaptation, Mc is designed to predict the posteriors of dif-

ferent speaker identities at the output layer. The 7138 simulated and 1999 real noisy utterances in

CHiME-3 training set are dictated by 83 and 4 different speakers respectively and the 9137 clean ut-

terances are read by the same speakers. In speaker-robust adversarial T/S adaptation, anMc with 87

output units are used to predict the posteriors of the 87 speakers. From Table 6.2, the adversarial T/S

learning with 87-speaker condition classifier achieves 12.90% WER, which is 44.30% and 4.87%

relative improvement over the unadapted and T/S adapted baseline models respectively. Larger

WER improvement is achieved by speaker-robust unsupervised adaptation than the environment-

robust methods. This is because T/S learning itself is able to reduce the environment variability

through directly teaching the noisy student model with the senone posteriors from the clean data,

which limits the space of improvement that environment-robust adversarial T/S learning can obtain.

6.5.4 Multi-factorial Adversarial T/S Learning for Unsupervised Adaptation

Speaker and environment robustness can be achieved simultaneously in unsupervised adaptation

through MFA T/S learning, in which we need two condition classifiers: M1
c predicts the posteriors

of 87 speakers and M2
c predicts the posteriors of 1 clean and 5 noisy environments in the adaptation

data. From Table 6.2, the MFA T/S learning achieves 12.83% WER, which is 44.60% and 5.38%

relative improvement over unadapted and T/S baseline models. The MFA T/S achieves lower WER

than all the unifactorial adversarial T/S systems because it addresses the variations caused by all

kinds of factors.

6.6 Conclusions

In this chapter, adversarial T/S learning is proposed to adapt a clean acoustic model to highly mis-

matched multi-conditional noisy data in a purely unsupervised fashion. To suppress the condition

variability in speech signal and achieve robust adaptation, a student acoustic model and a condition
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classifier are jointly optimized to minimize the KL divergence between the output distributions of

the teacher and student models while simultaneously mini-maximize condition classification loss.

We further propose the MFA T/S learning where multiple condition classifiers are introduced to

reduce the condition variabilities caused by different factors. The proposed methods requires only

the unlabeled parallel data for domain adaptation.

For environment adaptation on CHiME-3 real noisy channel 5 dataset, T/S learning gets 41.45%

relative WER reduction from the clean-trained acoustic model. Adversarial T/S learning with en-

vironment and speaker classifiers achieves 3.24% and 4.87% relative WER improvements over the

strong T/S learning model, respectively. MFA T/S achieves 5.38% relative WER improvement over

the same baseline. On top of T/S learning, reducing speaker variability proves to be more effec-

tive than reducing environment variability T/S learning on CHiME-3 dataset because T/S learning

already addresses most environment mismatch issues. Simultaneously decreasing the condition

variability in multiple factors can further slightly improve the ASR performance.

The adversarial T/S learning was verified its effectiveness with a relatively small CHiME-3 task.

We recently developed a far-field speaker system using thousands of hours data with T/S learning

[141]. We are now currently applying the proposed adversarial T/S learning to further improve our

far-field speaker system.
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CHAPTER 7

DOMAIN SEPARATION NETWORKS FOR UNSUPERVISED ADAPTATION

7.1 Introduction

In recent years, advances in deep learning have led to remarkable performance boost in ASR [142,

136, 137, 116, 138, 117]. However, ASR systems still suffer from large performance degradation

when acoustic mismatch exists between the training and test conditions [67, 139]. Many factors

contribute to the mismatch, such as variation in environment noises, channels and speaker charac-

teristics. Domain adaptation is an effective way to address this limitation, in which the acoustic

model parameters or input features are adjusted to compensate for the mismatch.

One difficulty with domain adaptation is that available data from the target domain is usu-

ally limited, in which case the acoustic model can be easily overfitted. To address this issue,

regularization-based approaches are proposed in [68, 70, 120, 143] to regularize the neuron output

distributions or the model parameters. In [75, 76], transformation-based approaches are introduced

to reduce the number of learnable parameters. In [123, 77, 78], the trainable parameters are further

reduced by singular value decomposition of weight matrices of a neural network. Although these

methods utilize the limited data from the target domain, they still require labelling for the adaptation

data and can only be used in supervised adaptation.

Unsupervised domain adaptation is necessary when human labelling of the target domain data

is unavailable. It has become an important topic with the rapid increase of the amount of untran-

scribed speech data for which the human annotation is expensive. Pawel et al. proposed to learn

the contribution of hidden units by additional amplitude parameters [121] and differential pooling

[144]. Recently, Wang et al. proposed to adjust the linear transformation learned by batch normal-

ized acoustic model in [145]. Although these methods lead to increased performance in the ASR

task when no labels are available for the adaptation data, they still rely on the senone (tri-phone

state) alignments against the unlabeled adaptation data through first pass decoding. The first pass

decoding result is unreliable when the mismatch between the training and test conditions is signifi-
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cant. It is also time-consuming and can be hardly applied to huge amount of adaptation data. There

are even situations when decoding adaptation data is not allowed because of the privacy agreement

signed with the speakers. These methods depending on the first pass decoding of the unlabeled

adaptation data is sometimes called “semi-supervised” adaptation in literature.

The goal of our study is to achieve purely unsupervised domain adaptation without any exposure

to the labels or the decoding results of the adaptation data in the target domain. In [73] we show

that the source-domain model can be effectively adapted without any transcription by using teacher-

student (T/S) learning [74], in which the posterior probabilities generated by the source-domain

model can be used in lieu of labels to train the target-domain model. However, T/S learning relies

on the availability of parallel unlabeled data which can be usually simulated. However, if parallel

data is not available, we cannot use T/S learning for model adaptation. In this study, we are ex-

ploring the solution to domain adaptation without parallel data and without transcription. Recently,

adversarial training has become a very hot topic in deep learning because of its great success in es-

timating generative models [22]. It was first applied to the area of unsupervised domain adaptation

by Ganin et al. in [23] in a form of multi-task learning. In their work, the unsupervised adaptation

is achieved by learning deep intermediate representations that are both discriminative for the main

task (image classification) on the source domain and invariant with respect to mismatch between

source and target domains. The domain invariance is achieved by the adversarial training of the

domain classification objective functions. This can be easily implemented by augmenting any feed-

forward models with a few standard layers and a gradient reversal layer (GRL). This GRL approach

has been applied to acoustic models for unsupervised adaptation in [27] and for increasing noise

robustness in [26, 83]. Improved ASR performance is achieved in both scenarios.

However, the GRL method focuses only on learning a domain-invariant representation, ignor-

ing the unique characteristics of each domain, which could also be informative. Inspired by this,

Bousmailis et al. [29] proposed the domain separation networks (DSNs) to separate the deep repre-

sentation of each training sample into two parts: one private component that is unique to its domain

and one shared component that is invariant to the domain shift. In this chapter, we propose to ap-

ply DSN for unsupervised domain adaptation on a DNN-hidden Markov model (HMM) acoustic

model, aiming to increase the noise robustness in speech recognition. In the proposed framework,
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the shared component is learned to be both senone-discriminative and domain-invariant through ad-

versarial multi-task training of a shared component extractor and a domain classifier. The private

component is trained to be orthogonal with the shared component to implicitly increase the degree

of domain-invariance of the shared component. A reconstructor DNN is used to reconstruct the

original speech feature from the private and shared components, serving for regularization. The

proposed method achieves 11.08% relative WER improvement over the GRL training approach for

robust ASR on the CHiME-3 dataset.

7.2 Domain Separation Networks

In the purely unsupervised domain adaptation task, we only have access to a sequence of speech

framesXs = {xs1, . . . , xsNs} from the source domain distribution, a sequence of senone labels Y s =

{ys1, . . . , ysNs} aligned with source data Xs and a sequence of speech frames Xt = {xt1, . . . , xtNt}

from a target domain distribution. Senone labels or other types of transcription are not available for

the target speech sequence Xt.

When applying domain separation networks (DSNs) to the unsupervised adaptation task, our

goal is to learn the shared (or common) component extractor DNN Mc that maps an input speech

frame xs from source domain or xt from target domain to a domain-invariant shared component

fsc or f tc respectively. At the same time, learn a senone classifier DNN My that maps the shared

component fsc from the source domain to the correct senone label ys.

To achieve this, we first perform adversarial training of the domain classifier DNNMd that maps

the shared component fsc or f tc to its domain label ds or dt, while simultaneously minimizing the

senone classificaton loss of My given shared component fsc from the source domain to ensure the

senone-dicriminativeness of fsc .

For the source or the target domain, we extract the source or the target private component fsp or

f tp that is unique to the source or the target domain through a source or a target private component

extractor M s
p or M t

p. The shared and private components of the same domain are trained to be

orthogonal to each other to further enhance the degree of domain-invariance of the shared compo-

nents. The extracted shared and private components of each speech frame are concatenated and fed

as the input of a reconstructor Mr to reconstruct the input speech frame xs or xt.
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Figure 7.1: The architecture of domain separation networks.

The architecture of DSN is shown in Fig. 7.1, in which all the sub-networks are jointly opti-

mized using SGD. The optimized shared component extractor M c and senone classifier My form

the adapted acoustic model for subsequent robust speech recognition.

7.2.1 Deep Neural Networks Acoustic Model

The shared component extractor Mc and senone predictor of the DSN are initialized from an

DNN-HMM acoustic model. The DNN-HMM acoustic model is trained with labeled speech data

(Xs, Y s) from the source domain. The senone-level alignment Ys is generated by a well-trained

GMM-HMM system.

Each output unit of the DNN acoustic model corresponds to one of the senones in the setQ. The

output unit for senone q ∈ Q is the posterior probability p(q|xsn) obtained by a softmax function.

7.2.2 Shared Component Extraction with Adversarial Training

The well-trained acoustic model DNN in Section 7.2.1 can be decomposed into two parts: a share

component extractor Mc with parameters θc and a senone classifier My with parameters θy. An

input speech frame from source domain xs is first mapped by the Mc to a K-dimensional shared
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component f sc ∈ RK . fsc is then mapped to the senone label posteriors by a senone classifier My

with parameters θy as follows.

My(f
s
c ) = My(Mc(x

s
i )) = p(ŷsn = q|xsi ; θc, θy) (7.1)

where ŷsi denotes the predicted senone label for source frame xsi and q ∈ Q.

The domain classifier DNN Md with parameters θd takes the shared component from source

domain f sc or target domain f tc as the input to predict the two-dimensional domain label posteriors

as follows (the 1st and 2nd output units stand for the source and target domains respectively).

Md(Mc(x
s
i )) = p(d̂si = a|xsi ; θc, θd), a ∈ {1, 2} (7.2)

Md(Mc(x
t
j)) = p(d̂tj = a|xtj ; θc, θd), a ∈ {1, 2} (7.3)

where d̂si and d̂tj denote the predicted domain labels for the source frame xsi and the target frame xtj

respectively.

In order to adapt the source domain acoustic model (i.e., Mc and My) to the unlabeled data

from target domain, we want to make the distribution of the source domain shared component

P (f sc ) = P (Mc(x
s)) as close to that of the target domain P (f tc) = P (Mc(x

t)) as possible. In other

words, we want to make the shared component domain-invariant. This can be realized by adversarial

training, in which we adjust the parameters θc of shared component extractor to maximize the loss

of the domain classifier Lcdomain(θc) below while adjusting the parameters θd to minimize the loss of

the domain classifier Lddomain(θd) below.

Lddomain(θd) = −
Ns∑
i

log p(d̂si = 1|xsi ; θd)−
Nt∑
j

log p(d̂tj = 2|xtj ; θd) (7.4)

Lcdomain(θc) = −
Ns∑
i

log p(d̂si = 1|xsi ; θc)−
Nt∑
j

log p(d̂tj = 2|xtj ; θc) (7.5)

This minimax competition will first increase the capability of both the shared component extractor
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and the domain classifier and will eventually converge to the point where the shared component ex-

tractor generates extremely confusing representations that domain classifier is unable to distinguish

(i.e., domain-invariant).

Simultaneously, we minimize the loss of the senone classifier below to ensure the domain-

invariant shared component fsc is also discriminative to senones.

Lsenone(θc, θy) = −
Ns∑
i

log p(ysi |xsi ; θy, θc) (7.6)

Since the adversarial training of the domain classifier Md and shared component extractor Mc

has made the distribution of the target domain shared-component f tc as close to that of fsc as possible,

the f tc is also senone-discriminative and will lead to minimized senone classification error given

optimized My. Because of the domain-invariant property, good adaptation performance can be

achieved when the target domain data goes through the network.

7.2.3 Private Components Extraction

To further increase the degree of domain-invariance of the shared components, we explicitly model

the private component that is unique to each domain by a private component extractor DNN Mp

parameterized by θp. M s
p and M t

p map the source frame xs and the target frame xt to hidden

representations fsp = M s
p (xs) and f tp = M t

p(x
t) which are the private components of the source

and target domains respectively. The private component for each domain is trained to be orthogonal

to the shared component by minimizing the difference loss below.

Ldiff(θc, θ
s
p, θ

t
p) =

∣∣∣∣∣
∣∣∣∣∣
Ns∑
i

Mc(x
s
i )M

s
p (xsi )

>

∣∣∣∣∣
∣∣∣∣∣
2

F

+

∣∣∣∣∣∣
∣∣∣∣∣∣
Nt∑
j

Mc(x
t
j)M

t
p(x

t
j)
>

∣∣∣∣∣∣
∣∣∣∣∣∣
2

F

(7.7)

where || · ||2F is the squared Frobenius norm. All the vectors are assumed to be column-wise.

As a regularization term, the predicted shared and private components are then concatenated

and fed into a reconstructor DNN Mr with parameters θr to recover the input speech frames xs and

xt from both source and target domains respectively. The reconstructor is trained to minimize the
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mean square error based reconstruction loss as follows:

Lrecon(θc, θ
s
p, θ

t
p, θr) =

Ns∑
i

||x̂si − xsi ||22 +

Nt∑
j

||x̂tj − xtj ||22 (7.8)

x̂si = Mr([Mc(x
s
i ),M

s
p (xsi )]) (7.9)

x̂tj = Mr([Mc(x
t
j),M

t
p(x

t
j)]) (7.10)

where [·, ·] denotes concatenation of two vectors.

The total loss of DSN is formulated as follows and is jointly optimized with respect to the

parameters.

Ltotal(θy, θc, θd, θ
s
p, θ

t
p, θr) = Lsenone(θc, θy) + Lddomain(θd)

− αLcdomain(θc) + βLdiff(θc, θ
s
p, θ

t
p) + γLrecon(θc, θ

s
p, θ

t
p, θr) (7.11)

min
θy ,θc,θd,θsp,θ

t
p,θr
Ltotal(θy, θc, θd, θ

s
p, θ

t
p, θr) (7.12)

All the parameters of DSN are jointly optimized through backprogation with stochastic gradient

descent (SGD) as follows:

θc ← θc − µ
[
∂Lsenone

∂θc
− α

∂Lcdomain
∂θc

+ β
∂Ldiff

∂θc
+ γ

∂Lrecon

∂θc

]
(7.13)

θd ← θd − µ
∂Lddomain
∂θd

(7.14)

θy ← θy − µ
∂Lsenone

∂θy
(7.15)

θsp ← θsp − µ
[
β
∂Ldiff

∂θsp
+ γ

∂Lrecon

∂θsp

]
(7.16)

θtp ← θtp − µ
[
β
∂Ldiff

∂θtp
+ γ

∂Lrecon

∂θtp

]
(7.17)

θr ← θr − µ
∂Lrecon

∂θr
(7.18)

Note that the negative coefficient −α in Eq. (7.13) induces reversed gradient that maximizes

the domain classification loss in Eq. (7.5) and makes the shared components domain-invariant.

Without the reversal gradient, SGD would make representations different across domains in order
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to minimize Eq. (7.4). For easy implementation, GRL is introduced in [23], which acts as an

identity transform in the forward pass and multiplies the gradient by −α during the backward pass.

The optimized shared component extractor Mc and senone classifier My form the adapted

acoustic model for robust speech recognition.

7.3 Experiments

In this chapter, we perform the pure unsupervised environment adaptation of a deep FNN-HMM

acoustic model with domain separation networks for robust speech recognition on CHiME-3 dataset.

7.3.1 Dataset Description

The CHiME-3 dataset is released with the 3rd CHiME speech Separation and Recognition Chal-

lenge [132], which incorporates the Wall Street Journal corpus sentences spoken in challenging

noisy environments, recorded using a 6-channel tablet based microphone array. CHiME-3 dataset

consists of both real and simulated data. The real speech data was recorded in four real noisy

environments (on buses (BUS), in cafés (CAF), in pedestrian areas (PED), and at street junctions

(STR)). To generate the simulated data, the clean speech is first convoluted with the estimated im-

pulse response of the environment and then mixed with the background noise separately recorded in

that environment [133]. The noisy training data consists of 1600 real noisy utterances from 4 speak-

ers, and 7138 simulated noisy utterances from 83 speakers in the WSJ0 SI-84 training set recorded

in 4 noisy environments. There are 3280 utterances in the development set including 410 real and

410 simulated utterances for each of the 4 environments. There are 2640 utterances in the test set

including 330 real and 330 simulated utterances for each of the 4 environments. The speakers in

training set, development set and the test set are mutually different (i.e., 12 different speakers in

the CHiME-3 dataset). The training, development and test data sets are all recorded in 6 different

channels.

8738 clean utterances corresponding to the 8738 noisy training utterances in the CHiME-3

dataset are selected from the WSJ0 SI-85 training set to form the clean training data in our ex-

periments. WSJ 5K word 3-gram language model is used for decoding.
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7.3.2 Baseline System

In the baseline system, we first train a deep FNN-HMM acoustic model with clean speech and then

adapt the clean acoustic model to noisy data using GRL unsupervised adaptation in [23]. Hence,

the source domain is with clean speech while the target domain is with noisy speech.

The 29-dimensional log Mel filterbank features together with 1st and 2nd order delta features

(totally 87-dimensional) for both the clean and noisy utterances are extracted by following the pro-

cess in [134]. Each frame is spliced together with 5 left and 5 right context frames to form a

957-dimensional feature. The spliced features are fed as the input of the FNN after global mean

and variance normalization. The FNN has 7 hidden layers with 2048 hidden units for each layer.

The output layer of the FNN has 3012 output units corresponding to 3012 senone labels. Senone-

level forced alignment of the clean data is generated using a GMM-HMM system. The FNN is first

trained with 8738 clean training utterances in CHiME-3 and the alignment to minimize the cross

entropy loss and then tested with simulation and real development data of CHiME-3.

The FNN well-trained with clean data is then adapted to the 8738 noisy utterances from Channel

5 using GRL method. No senone alignment of the noisy adaptation data is used for the unsupervised

adaptation. The feature extractor is initialized with the first 4 hidden layers of the clean FNN and the

senone classifier is initialized with the last 3 hidden layers plus the output layers of the clean FNN.

The domain classifier is a deep FNN with two hidden layers and each hidden layer has 512 hidden

units. The output layer of the domain classifier has 2 output units representing source and target

domains. The 2048 hidden units of the 4th hidden layer of the FNN acoustic model is fed as the

input to the domain classifier. A GRL is inserted in between the deep representation and the domain

classifier for easy implementation. The GRL adapted system is tested on real and simulation noisy

development data in CHiME-3 dataset.

7.3.3 Domain Separation Networks for Unsupervised Adaptation

We adapt the clean FNN acoustic model trained in Section 7.3.2 to the 8738 noisy utterances using

DSN. No senone alignment of the noisy adaptation data is used for the unsupervised adaptation.

The DSN is implemented with CNTK 2.0 Toolkit [146]. The shared component extractor Mc is
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initialized with the firstNh hidden layers of the clean FNN and the senone classifierMy is initialized

with the last (7−Nh) hidden layers plus the output layer of the clean FNN.Nh indicates the position

of shared component in the FNN acoustic model and ranges from 3 to 7 in our experiments. The

domain classifier Md of the DSN has exactly the same architecture as that of the GRL.

The private component extractors M s
p and M t

p for the clean and noisy domains are both feed-

forward FNNs with 3 hidden layers and each hidden layer has 512 hidden units. The output layers

of both M s
p and M t

p have 2048 output units. The reconstructor Mr is a FNN with 3 hidden layers

and each hidden layer has 512 hidden units. The output layer of the Mr has 957 output units with

no non-linear activation functions to reconstruct the spliced input features.

The activation functions for the hidden units of Mc is sigmoid. The activation functions for

hidden units of M s
p , M t

p, Md and Mr are rectified linear units (ReLU). The activation functions for

the output units ofMc andMd are softmax. The activation functions for the output units ofM s
p , M t

p

are sigmoid. All the sub-networks except forMy andMc are randomly initialized. The learning rate

is fixed at 5× 10−5 throughout the experiments. The adapted DSN is tested on real and simulation

development data in CHiME-3 Dataset.

Table 7.1: The WER (%) performance of unadapted acoustic model, GRL and DSN adapted acous-
tic models for robust ASR on real and simulated development set of CHiME-3.

System Data BUS CAF PED STR Avg.

Clean
Real 36.25 31.78 22.76 27.18 29.44
Simu 26.89 37.74 24.38 26.76 28.94

GRL
Real 35.93 28.24 19.58 25.16 27.16
Simu 26.14 34.68 22.01 25.83 27.16

DSN
Real 32.62 23.48 17.29 23.46 24.15
Simu 23.38 30.39 19.51 22.01 23.82

7.3.4 Result Analysis

Table 7.1 shows the WER performance of clean, GRL adapted and DSN adapted FNN acoustic

models for ASR. The clean FNN achieves 29.44% and 28.25% WERs on the real and simulated

development data respectively. The GRL adapted acoustic model achieves 27.16% and 27.16%

WERs on the real and simulated development data. The best WER performance for DSN adapted

acoustic model are 24.15% and 23.82% on real and simulated development data, which achieve
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Table 7.2: The ASR WERs (%) for the DSN adapted acoustic models with respect to Nh reversal
gradient coefficient α on the real development set of CHiME-3.

Nh
Reversal Gradient Coefficient α

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 Avg.
3 27.2 26.24 25.76 26.51 26.12 26.92 26.65 26.91 27.41 26.64
4 26.56 26.08 25.75 25.99 25.88 26.76 27.0 27.13 27.74 26.54
5 26.53 25.9 26.07 25.88 25.72 26.17 27.36 26.67 27.37 26.41
6 25.77 25.17 25.06 24.94 24.6 25.19 25.53 25.42 25.93 25.29
7 25.99 25.5 24.73 24.43 25.08 24.53 25.07 24.15 24.29 24.86

11.08% and 12.30% relative improvement over the GRL baseline system and achieve 17.97 % and

17.69% relative improvement over the unadapted acoustic model. The best WERs are achieved

when Nh = 7 and α = 8.0. By comparing the GRL and DSN performance at Nh = 4, we observe

that the introduction of private components and reconstructor lead to 5.1% relative improvements

in WER.

We investigate the impact of shared component positionNh and the reversal gradient coefficient

α on the WER performance as in Table 7.2. We observe that the WER decreases with the growth of

Nh, which is reasonable as the higher hidden representation of a well-trained DNN acoustic model

is inherently more senone-discriminative and domain-invariant than the lower layers and can serve

as a better initialization for the DSN unsupervised adaptation.

7.4 Conclusions

In this chapter, we investigate the domain adaptation of the DNN acoustic model by using domain

separation networks. Different from the conventional supervised, semi-supervised and T/S adapta-

tion approaches, DSN is capable of adapting the acoustic model to the adaptation data without any

exposure to its transcription, decoded lattices or unlabeled parallel data from the source domain.

The shared component between source and target domains extracted by DSN through adversarial

multi-task training is both domain-invariant and senone-discriminative. The extraction of private

component that is unique to each domain significantly improves the degree of domain-invariance

and the ASR performance.

When evaluated on the CHiME-3 dataset for environment adaption task, the DSN achieves
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11.08% and 17.97% relative WER improvement over the GRL baseline system and the unadapted

FNN acoustic model. The WER decreases when higher hidden representations of the DNN acoustic

model are used as the initial shared component. The WER first decreases and then increases with

the growth of the reversal gradient coefficient.
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CHAPTER 8

ADAPTIVE BEAMFORMING NETWORKS FOR MULTICHANNEL ROBUST SPEECH

RECOGNITION

8.1 Introduction

Although extraordinary performance has been achieved in ASR with the advent of DNNs [1, 2],

the performance still degrades dramatically in noisy and far-field situations [147, 133]. To achieve

robust speech recognition, multiple microphones can be used to enhance the speech signal, reduce

the effects of noise and reverberation, and improve the ASR performance. In this scenario, an

essential step of the ASR front-end processing is multichannel filtering, or beamforming, which

steers a spatial sensitivity region, or “beam,” in the direction of the target source, and inserts spatial

suppression regions, or “nulls,” in the directions corresponding to noise and other interference.

Delay-and-sum (DAS) beamforming is widely used for multichannel signal processing [148],

in which the multichannel inputs of an microphone array are delayed to be aligned in time and then

summed up to be a single channel signal. The signal from the target direction is enhanced and the

noises and interferences coming from other directions are attenuated. Filter-and-sum beamforming

applies filters to the input channels before summing them up [149]. As a filter-and-sum beamformer,

minimum variance distortionless response (MVDR) minimizes the estimated noise level under the

condition of no distortion in the desired signal [150]. In addition, the generalized eigenvalue (GEV)

beamforming with blind analytic normalization controls the desired signal by a single channel post-

filter which requires no knowledge about the array geometry, the impulse response from source to

microphone array or the direction-of-arrival [151]. In [152] and [153], speech or noise masks are

predicted through LSTM for MVDR and GEV respectively.

Although these methods have achieved good performance in beamforming, their goal is to op-

timize only the signal-level objective (e.g., SNR). In order to achieve robust speech recognition, it

is more important to jointly optimize beamforming and acoustic model with the objective of maxi-

mizing the ASR performance. In [154], the parameters of a frequency-domain beamformer are first
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estimated by a DNN based on the generalized cross correlation between microphones. Conven-

tional features are extracted from the beamformed signal before passing through a second DNN for

acoustic modeling. Instead of filtering in the frequency domain, [155] performs spatial and spectral

filtering through time-domain convolution over raw waveform. The output feature is then passed to

a convolutional LSTM DNN (CLDNN) acoustic model to predict the context-dependent state output

targets. In [156], the beamforming and frequency decomposition are factorized into separate layers

in the network. These approaches assume that the speaker position and the environment are fixed

and estimate constant filter coefficients for either beamforming or spatial and spectral filtering.

However, in real noisy and far-field scenarios, as the position of the source (speaker), noise

and room impulse response keep changing, the time-invariant filter coefficients estimated by these

neural networks may fail to robustly enhance the target signal. Therefore, we propose to adaptively

estimate the beamforming filter coefficients at each time frame using an LSTM to deal with any

possible changes of the source, noise or channel conditions. The enhanced signal is generated

by applying these time-variant filter coefficients to the short-time Fourier transform (STFT) of the

array signals. Log filter-bank like features are obtained from the enhanced signal and then passed

to a deep LSTM acoustic model to predict the senone posterior. The LSTM beamforming network

and the LSTM acoustic model are jointly trained using truncated back-propagation through time

(BPTT) with a cross-entropy objective. STFT coefficients of the array signals are used as the input

of the beamforming network. In ASR systems of [157, 158], the speech signal is enhanced by NMF

and LSTM before fed into the acoustic model. But speech enhancement module and the acoustic

model are not jointly optimized to minimize the WER and the input is only single channel signal.

Previous work [159] has shown that the speech separation performance can be improved by

incorporating the speech recognition alignment information within the speech enhancement frame-

work. Inspired by this, we feed the units of the top hidden layer of the LSTM acoustic model at

the previous time step back as an auxiliary input to the beamforming network to predict the cur-

rent filter coefficients. Note that our work is different from [160] in that: (1) we perform adaptive

beamforming over 5 different input channels, but their system works only on 2 input channels; (2)

our adaptive LSTM beamformer predicts only the frequency domain filter coefficients and performs

frequency domain filter-and-sum over STFT coefficients, while their work majorly focuses on the
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time-domain filtering with raw waveforms as the input; (3) the log Mel filter bank like features are

generated with fixed log Mel transform over the beamformed STFT coefficients for acoustic model-

ing in our work, while time/frequency domain convolution is performed with trainable parameters

on the beamformed features in their work; (4) no additional gate modulation is applied to the feed-

back to reduce the system complexity for our much smaller dataset. In the experiments, we show

that this feedback captures high-level knowledge about the acoustic states and increases the perfor-

mance. The experiments are conducted with the CHiME 3 dataset. The joint training of LSTM

adaptive beamforming network and deep LSTM acoustic model achieves 7.75% absolute gain over

the single channel signal on the real test data. The acoustic model feedback provides an extra gain

of 0.22%.

8.2 LSTM Adaptive Beamforming

8.2.1 Adaptive Filter-and-Sum Beamforming

As a generalization of the delay-and-sum beamforming, filter-and-sum beamformer processes the

signal from each microphone using a finite impulse response (FIR) filter before summing them up.

In frequency domain, this operation can be written as:

x̂t,f =
M∑
m=1

gf,mxt,f,m, (8.1)

where xt,f,m ∈ C is the complex STFT coefficient for the time-frequency index (t, f) of the signal

from channel m, gf,m ∈ C is the beamforming filter coefficient and x̂t,f ∈ C is the complex STFT

coefficient of the enhanced signal. In Eq. (8.1), t = 1, . . . , T, f = 1, . . . , F and M,T, F are

the numbers of microphones, time frames and frequencies. To cope with the time-variant source

position and room impulse response, we make the filter coefficients time-dependent and propose

the adaptive filter-and-sum beamforming:

x̂t,f =

M∑
m=1

gt,f,mxt,f,m, (8.2)

where gt,f,m ∈ C is time-variant complex filter coefficient.
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8.2.2 Adaptive LSTM Beamforming Network

The LSTM network is a special kind of recurrent neural network (RNN) with purpose-built memory

cells to store information [161]. The LSTM has been successfully applied to many different tasks

[162, 163] due to its strong capability of learning long-term dependencies. The LSTM takes in an

input sequence x = {x1, . . . , xT } and computes the hidden vector sequence h = {h1, . . . , hT } by

iterating the equation below

ht = LSTM(xt, ht−1) (8.3)

We implement the LSTM in Eq. (8.3) with no peep hole connections.

In this chapter, we apply real-value LSTM to the adaptive filter-and-sum beamformer to predict

the real and imaginary parts of the complex filter coefficients at time t and channel m. That is, we

introduce the following real-value vectors for complex values gt,f,m and xt,f,m in Eq. (8.2):

gt,m , [<(gt,f,m),=(gt,f,m)]Ff=1 ∈ R
2F

xt , [<(xt,f,m),=(xt,f,m)]F,Mf=1,m=1 ∈ R
2FM .

With this representation, the real-value LSTM predicts gt,m as follows:

pt = Wx,pxt (8.4)

ht = LSTMBF (pt, ht−1) (8.5)

gt,m = tanh(Wh,mht), m = 1, . . . ,M, (8.6)

where Wx,p and Wh,m are projection matrices. We use tanh(·) function to limit the range of the

filter coefficients within [−1, 1].

The real and imaginary parts of the STFT coefficient x̂t,f of the beamformed signal are gener-
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ated by Eq. (8.2) as follows


<(x̂t,f ) =

∑M
m=1<(xt,f,m)<(gt,f,m)−=(xt,f,m)=(gt,f,m)

=(x̂t,f ) =
∑M

m=1<(xt,f,m)=(gt,f,m) + =(xt,f,m)<(gt,f,m).

(8.7)

More sophisticated features can be extracted from the beamformed STFT coefficients and are passed

to the LSTM acoustic model to predict the senone posterior. In our experiments, the log Mel filter-

bank like feature is generated from Eq. (8.7) by

zt = log (Mel(Pt)) (8.8)

Pt =
[
<(x̂t,f )2 + =(x̂t,f )2

]F
f=1
∈ RF (8.9)

where Mel(·) is the operation of Mel matrix multiplication, and Pt is F dimensional real-value

vector of the power spectrum of the beamformed signal at time t. Global mean and variance nor-

malization is applied to this log Mel filterbank like feature. Note that all operations in this section

are performed with the real-value computation, and can be easily represented by a differentiable

computational graph.

8.2.3 Deep LSTM Acoustic Model

Recently, LSTMs are shown to be more effective than DNNs [1, 2] and conventional RNNs [44, 45]

for acoustic modeling as they are able to model temporal sequences and long-range dependencies

more accurately than the others especially when the amount of training data is large. LSTM has been

successfully applied in both the RNN-HMM hybrid systems [46, 47] and the end-to-end system [50,

51] with connectionist temporal classification objective [50, 164, 165, 52] or attention mechanism

[51, 166, 167].

In this chapter, the deep LSTM-HMM hybrid system is utilized for acoustic modeling. A forced

alignment is first generated by a GMM-HMM system and is then used as the frame-level acoustic

targets which the LSTM attempts to classify. The LSTM is trained with cross-entropy objective

function using truncated BPTT. In this chapter, to connect the deep LSTM with the adaptive LSTM
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beamformer, we compute log Mel filterbank zt from the beamformed STFT coefficients.

qt = Wz,pzt (8.10)

st = LSTMAM (qt, st−1) (8.11)

yt = softmax(Ws,yst) (8.12)

qt is the projection of zt into a high-dimensional space and yt is the senone posterior.

8.2.4 Integrated Network of LSTM Adaptive Beamformer and Deep LSTM Acoustic Model

In order to achieve robust speech recognition by making use of multichannel speech signals, LSTM

beamformer in Section 8.2.2 and the deep LSTM acoustic model in Section 8.2.3 need to be jointly

optimized with the objective of maximizing the ASR performance. In other words, the beamforming

LSTM needs to be concatenated with the LSTM acoustic model to form an integrated network that

takes multichannel STFT coefficients as the input and produces senone posteriors as illustrated in

Fig. 8.1. The deep LSTM has three hidden layers in our experiments but only one is shown here for

simplicity.

To train the integrated LSTM network, we connect the beamforming network (8.2) – (8.6), log

Mel filtering (8.8), and the acoustic model (8.10) – (8.12) as a single feed forward network, and

back-propagate the gradient of the cross-entropy objective function through the network so that

both the adaptive beamformer and the acoustic model are optimized for the ASR task by using

multi-channel training data.

On top of that, we feed the hidden units of the top hidden layer of the deep LSTM acoustic model

back to the input of the LSTM beamformer as the auxiliary feature to predict the filter coefficients

at next time. By introducing the acoustic model feedback, the Eq. (8.5) is re-written as

ht = LSTMBF ((pt, st−1), ht−1) (8.13)

where (pt, st−1) is the concatenation of the acoustic feedback from previous time st−1 and the

current projection pt.
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Figure 8.1: The unfolded integrated network of an LSTM adaptive beamformer and an LSTM
acoustic model. The acoustic feedback (in blue) is introduced to allow the hidden units in LSTM
acoustic model to assist in predicting the filter coefficient at current time.
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Direct training of the integrated network easily falls into a local optimum as the gradients for

the LSTM beamformer and the deep LSTM acoustic model have different dynamic ranges. For a

robust estimation of the model parameters, the training should be performed in sequence as shown

in Algorithm 1.

Algorithm 1 Train LSTM adaptive beamformer and deep LSTM acoustic model
1: Train a deep LSTM acoustic model with log Mel filterbank feature extracted from the speech

of all channels to minimize the cross-entropy objective.
2: Initialize the integrated network with the deep LSTM acoustic model in Step 1.
3: Train the integrated network with the ASR cross-entropy objective, update only the parameters

in the LSTM beamformer.
4: Jointly train the integrated network in Step 3 with the ASR cross-entropy objective, updating

all parameters in the LSTM beamformer and deep LSTM acoustic model.
5: Introduce the acoustic feedback and re-train the integrated network with the ASR objective,

updating all the parameters.

During recognition, the acoustic probabilities yielded by the integrated network and test utter-

ances are combined with the state transition probabilities from the HMM and the word transition

probabilities from the language model which can be performed through weighted finite state trans-

ducer.

8.3 Experiments

8.3.1 Dataset Description

The CHiME-3 dataset is released with the 3rd CHiME speech Separation and Recognition Chal-

lenge [132], which incorporates the Wall Street Journal corpus sentences spoken by talkers situ-

ated in challenging noisy environment recorded using a 6-channel tablet based microphone array.

CHiME-3 dataset consists of both real and simulated data. The real data is recorded speech spoken

by actual talkers in four real noisy environments (on buses, in cafés, in pedestrian areas, and at street

junctions). To generate the simulated data, the clean speech is first convoluted with the estimated

impulse response of the environment and then mixed with the background noise separately recorded

in that environment [133]. The training set consists of 1600 real noisy utterances from 4 speakers,

and 7138 simulated noisy utterances from the 83 speakers in the WSJ0 SI-84 training set recorded

in 4 noisy environments. There are 3280 utterances in the development set including 410 real and
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Table 8.1: The WER performance (%) of the baseline LSTM acoustic model (AM), BeamformIt-
enhanced signal as the input of the AM, joint training of LSTM beamformer and LSTM acoustic
model (BF+AM) with or without acoustic feedback.

System
Input

Feature
Simu
Dev

Real
Dev

Simu
Test

Real
Test

AM (baseline) Fbank 16.15 19.24 23.02 32.88
BeamformIt+AM STFT 14.32 12.99 24.36 21.21
BF+AM (fixed) STFT 15.23 15.01 23.14 25.64

BF+AM STFT 14.43 15.19 22.40 25.13
BF+AM+Feedback STFT 14.28 15.10 22.23 24.91

410 simulated utterances for each of the 4 environments. There are 2640 utterances in the test set

including 330 real and 330 simulated utterances for each of the 4 environments. The speakers in

training set, development set and the test set are mutually different (i.e., 12 different speakers in the

CHiME-3 dataset). The training, development and test data are all recorded in 6 different channels.

The WSJ0 text corpus is also used to train the language model.

8.3.2 Baseline System

The baseline system is built with Chainer [168] and Kaldi [91] toolkits. 40-dimensional log Mel

filterbank features extracted by Kaldi from all 6 channels are used to train a deep LSTM acoustic

model using Chainer. The LSTM has 3 layers and each hidden layer has 1024 units. The output layer

has 1985 units, each of which corresponds to a senone target. The input feature is first projected

to a 1024 dimensional space before being fed into the LSTM. The forced alignment generated by a

GMM-HMM system trained with data from all 6 channels is used as the target for LSTM training.

During evaluation, only the development and test data from the 5th channel is used for testing (only

for the baseline system). The LSTM is trained using BPTT with a truncation size of 100 and a

learning rate of 0.01. The batch size for stochastic gradient descent (SGD) is 100. The WER

performance of the baseline system is shown in Table 8.1.

8.3.3 LSTM Adaptive Beamformer

The 257-dimensional complex STFT coefficients are extracted for the speech in channels 1, 3, 4, 5, 6.

The real and imaginary parts of STFT coefficients from all the 5 channels are concatenated together
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to form 257×2×5 = 2570 dimensional input of the beamforming LSTM. The input is projected to

1024 dimensional space before being fed into the LSTM. The beamforming LSTM has one hidden

layer with 1024 units. The hidden units vector is projected to 5 sets of 257× 2 = 514 dimensional

filter coefficients for adaptively beamforming signals from 5 channels using Eq. (8.2). The MSE

objective is computed between the beamformed signal and BeamformIt [169]. The beamforming

LSTM is trained using BPTT with a truncation size of 100, a batch size of 100 and a learning rate

of 1.0.

8.3.4 Joint Training of the Integrated Network

The baseline LSTM acoustic model trained in Section 8.3.2 and the LSTM adaptive beamformer

trained in Section 8.3.3 are concatenated together as the initialization of the integrated network. A

feature extraction layer is inserted in between the two LSTMs to extract 40-dimensional log Mel

filterbank features with Eq. (8.8). The integrated network is trained in a way described in Steps 3,

4 and 5 of Section 8.2.4. BPTT with a truncation size of 100 and a batch size of 100 and a learning

rate of 0.01 is used for training. The data from all 5 channels in the development and test set is used

for evaluating the integrated network. The WER performance for different cases are shown in Table

8.1.

8.3.5 Result Analysis

From Table 8.1, the best system is the integrated network of an LSTM adaptive beamformer and a

deep LSTM acoustic model with the acoustic feedback, which achieves 14.28%, 15.10%, 22.23%,

24.91% WERs on the simulated development set, real development set, simulated test set and real

test set of the CHiME-3 dataset respectively. The joint training of the integrated network without

updating the deep LSTM acoustic model achieves absolute gains of 0.92%, 4.23% and 7.24% over

the baseline system on the simulated development set, real development set and real test set respec-

tively. The joint training of the integrated network with all the parameters updated achieves absolute

gains of 1.72%, 4.05%, 0.62% and 7.75% respectively over the baseline systems on the simulated

development set, real development set, simulated test set and real test set respectively. The large

performance improvement justifies that the LSTM adaptive beamformer is able to estimate the real-

109



time filter coefficients adaptively in response to the changing source position, environmental noise

and room impulse response with the LSTM acoustic model jointly trained to optimize the ASR

objective. Further absolute gains of 0.15%, 0.09%, 0.17% and 0.22% are achieved with the intro-

duction of acoustic feedback, which indicates that the high-level acoustic information is also helpful

in predicting the filter coefficients at the next time step.

Note that although the proposed system with acoustic feedback achieves 0.04% and 2.13%

absolute gains over the beamformed signal generated by BeamformIt on the simulated development

and test sets, it does not work as well as the BeamformIt on the real development and test sets.

One possible reason is that the training data of the integrated network is mostly simulated data

(7138 out of 8738 training utterances are simulated). The integrated network is over-fitted to the

simulated data such that it does not perform as good as on the real data in the test set. However, the

BeamformIt does not need any training data and is not over-fitted to either simulated or real data,

therefore, it works better than the proposed method on real data but worse than proposed method

on simulated data. Another factor is that the BeamformIt implementation, the two-step time delay

of arrival Viterbi postprocessing makes use of both the past and future information in predicting the

best alignment of multiple channels at the current time, while in our system, only the history in the

past is utilized to estimate the current filter coefficients. This also explains the differences in WER

performance and can be alleviated by using bidirectional LSTM as part of the future work.

8.3.6 Beamformed Feature

The LSTM beamformer adaptively predicts the time-variant beamforming coefficients and performs

filter-and-sum beamforming over the 5 input channels. The log Mel filter bank feature is obtained

from the STFT coefficients. From Fig. 8.2, we see that the log Mel filter bank feature obtained from

the LSTM adaptive beamformer is quite similar to the log Mel filter bank feature extracted from

the STFT coefficients beamformed by BeamformIt for the same utterance. The SNR is not high but

matches the LSTM acoustic model well for maximizing the ASR performance.
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Figure 8.2: The comparison of the log Mel filter bank coefficients of the same utterance ex-
tracted from STFT coefficients beamformed by BeamformIt (upper) and LSTM adaptive beam-
former (lower) .
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8.4 Conclusions

In this chapter, LSTM adaptive beamforming is proposed to adaptively predict the real-time beam-

forming filter coefficients to deal with the time-variant source location, environmental noise and

room impulse response inherent in the multichannel speech signal. To achieve robust ASR, the

LSTM adaptive beamformer is jointly trained with a deep LSTM acoustic model to optimize the

ASR objective. This framework achieves absolute gains of 1.72%, 4.05%, 0.62% and 7.75% over

the baseline system on the CHiME-3 dataset. Further improvement is achieved by introducing the

acoustic feedback to assist in predicting the filter coefficients.

However, our approach does not work as well as the BeamformIt on real data because the ma-

jority of the training data is simulated such that our integrated network is overfitted to the simulated

data while BeamformIt is not a data-driven approach which does not have model to be overfitted to

any kind of data.
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CHAPTER 9

CONCLUSIONS

In this thesis, we have achieved robust automatic speech understanding (ASU) through discrimi-

native training of the DNN acoustic models in two different ways. To expand the application of

ASU to various environments and conditions, we have proposed four adaptive training approaches

to address three crucial problems regarding acoustic modeling.

The ASU is first achieved by recognizing the keywords that are semantically important. We

formulate the keyword spotting as a non-uniform error ASR problem and demonstrate that DNNs

acoustic models can be successfully trained on the non-uniform minimum classification error (MCE)

criterion which weighs the errors on keywords much more significantly than those on non-keywords

in an ASR task. The integration with a FNN-HMM system enables modeling of multi-frame distri-

butions, which conventional systems find difficult to accomplish. The non-uniform MCE training

of FNN achieves 2.48% and 7.26% FOM improvements over the cross entropy baseline system

on Switchboard and HKUST datasets respectively. The further composition with the BLSTM-

HMM system enables the capturing of long-term dependencies within the variable-duration dy-

namic speech signal instead of a fixed-size window using a FNN-HMM. The non-uniform MCE

training of BLSTM achieves 4.49% and 7.37% FOM improvements over the cross entropy baseline

system on Switchboard and HKUST datasets respectively. The keyword spotting system is imple-

mented within a weighted finite state transducer (WFST) framework and the DNN is optimized

using standard backpropagation and stochastic gradient decent.

ASU is commonly the process of ASR followed by spoken language understanding (SLU). To

compensate for the mismatch between the ASR and objectives, we propose the minimum semantic

error cost (MSEC) training of a deep BLSTM-HMM acoustic model for generating lattices that are

semantically accurate and are better suited for topic spotting with LSRK. With the MSEC training,

the expected semantic error cost of all possible word sequences on the lattices is minimized given

the reference. The word-word semantic error cost is first computed from either the latent semantic
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analysis or distributed vector-space word representations learned from the RNNs and is then accu-

mulated to form the expected semantic error cost of the hypothesized word sequences. The MSEC

achieves 3.5% - 4.5% absolute topic classification accuracy improvement over the baseline BLSTM

trained with cross-entropy on Switchboard dataset.

To expand the application of ASU to various conditions and environments, we first suppress the

effect of inter-speaker variability on speaker-independent (SI) DNN acoustic model by proposing

speaker-invariant training (SIT). In SIT, a DNN acoustic model and a speaker classifier network are

jointly optimized to minimize the senone (tied triphone state) classification loss, and simultaneously

mini-maximize the speaker classification loss. A speaker-invariant and senone-discriminative deep

feature is learned through this adversarial multi-task learning. With SIT, a canonical DNN acoustic

model with significantly reduced variance in its output probabilities is learned with no explicit SI

transformations or speaker-specific representations used in training or testing. Evaluated on the

CHiME-3 dataset, the SIT achieves 4.99% relative word error rate (WER) improvement over the

conventional SI acoustic model. With the unsupervised adaptation towards the test speakers, the

speaker-adapted (SA) SIT acoustic model achieves additional 8.79% relative WER gain, which is

4.86% relatively improved over the SA SI acoustic model. With t-SNE visualization, we show that,

after SIT, the deep feature distributions of different speakers are well aligned with each other, which

verifies the strong capability of SIT in reducing speaker-variability.

Secondly, to compensate for the acoustic mismatch between training and test conditions, we

propose adversarial teacher-student (T/S) learning for unsupervised adaptation of the DNN acoustic

model. In this method, a student acoustic model and a condition classifier are jointly optimized to

minimize the Kullback-Leibler divergence between the output distributions of the teacher and stu-

dent models, and simultaneously, to min-maximize the condition classification loss. A condition-

invariant deep feature is learned in the adapted student model through this procedure. We fur-

ther propose multi-factorial adversarial (MFA) T/S learning which suppresses condition variabilities

caused by multiple factors simultaneously. Evaluated with the noisy CHiME-3 test set, adversarial

T/S learning achieves relative WER improvements of 44.30% and 4.87%, respectively, over a clean

source model and a strong T/S learning baseline model on by suppressing speaker variability. MFA

T/S learning achieves 44.60% and 5.38% relative WER over the unadapted and T/S adapted models.
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To further improve the capability of adversarial learning in unsupervised adaptation, we pro-

pose to use domain separation network to characterize the difference between the source and tar-

get domain distributions by explicitly modeling the private component of each domain in addition

to learning a domain-invariant feature (i.e. the shared component between domains) that is also

senone-discriminative via adversarial learning. The private component is trained to be orthogonal

with the shared component and thus implicitly increases the degree of domain-invariance of the

shared component. When applied to the unsupervised environment adaptation task, DSN achieved

17.97% and 11.08% relative WER reductions from the unadapted acoustic model and the gradi-

ent reversal layer, a representative adversarial training method, for ASR on CHiME-3 dataset. The

WER decreases when higher hidden representations of the DNN acoustic model are used as the

initial shared component.

Thirdly, we address the far-field speech recognition in noisy and reverberant conditions prob-

lem by proposing adaptive LSTM beamforming network for multichannel ASR. An LSTM-RNN

adaptively estimates the real-time beamforming filter coefficients to cope with non-stationary en-

vironmental noise and dynamic nature of source and microphones positions which results in a set

of time-varying room impulse responses. The LSTM adaptive beamformer is jointly trained with a

deep LSTM acoustic model to predict senone labels. Further, we use hidden units in the deep LSTM

acoustic model to assist in predicting the beamforming filter coefficients. The LSTM beamforming

network achieves 7.97% absolute gain over baseline systems with no beamforming on CHiME-3

real evaluation set.
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