77 research outputs found

    QoE-Centric Control and Management of Multimedia Services in Software Defined and Virtualized Networks

    Get PDF
    Multimedia services consumption has increased tremendously since the deployment of 4G/LTE networks. Mobile video services (e.g., YouTube and Mobile TV) on smart devices are expected to continue to grow with the emergence and evolution of future networks such as 5G. The end user’s demand for services with better quality from service providers has triggered a trend towards Quality of Experience (QoE) - centric network management through efficient utilization of network resources. However, existing network technologies are either unable to adapt to diverse changing network conditions or limited in available resources. This has posed challenges to service providers for provisioning of QoE-centric multimedia services. New networking solutions such as Software Defined Networking (SDN) and Network Function Virtualization (NFV) can provide better solutions in terms of QoE control and management of multimedia services in emerging and future networks. The features of SDN, such as adaptability, programmability and cost-effectiveness make it suitable for bandwidth-intensive multimedia applications such as live video streaming, 3D/HD video and video gaming. However, the delivery of multimedia services over SDN/NFV networks to achieve optimized QoE, and the overall QoE-centric network resource management remain an open question especially in the advent development of future softwarized networks. The work in this thesis intends to investigate, design and develop novel approaches for QoE-centric control and management of multimedia services (with a focus on video streaming services) over software defined and virtualized networks. First, a video quality management scheme based on the traffic intensity under Dynamic Adaptive Video Streaming over HTTP (DASH) using SDN is developed. The proposed scheme can mitigate virtual port queue congestion which may cause buffering or stalling events during video streaming, thus, reducing the video quality. A QoE-driven resource allocation mechanism is designed and developed for improving the end user’s QoE for video streaming services. The aim of this approach is to find the best combination of network node functions that can provide an optimized QoE level to end-users through network node cooperation. Furthermore, a novel QoE-centric management scheme is proposed and developed, which utilizes Multipath TCP (MPTCP) and Segment Routing (SR) to enhance QoE for video streaming services over SDN/NFV-based networks. The goal of this strategy is to enable service providers to route network traffic through multiple disjointed bandwidth-satisfying paths and meet specific service QoE guarantees to the end-users. Extensive experiments demonstrated that the proposed schemes in this work improve the video quality significantly compared with the state-of-the- art approaches. The thesis further proposes the path protections and link failure-free MPTCP/SR-based architecture that increases survivability, resilience, availability and robustness of future networks. The proposed path protection and dynamic link recovery scheme achieves a minimum time to recover from a failed link and avoids link congestion in softwarized networks

    Seamless multimedia delivery within a heterogeneous wireless networks environment: are we there yet?

    Get PDF
    The increasing popularity of live video streaming from mobile devices such as Facebook Live, Instagram Stories, Snapchat, etc. pressurises the network operators to increase the capacity of their networks. However, a simple increase in system capacity will not be enough without considering the provisioning of Quality of Experience (QoE) as the basis for network control, customer loyalty and retention rate and thus increase in network operators revenue. As QoE is gaining strong momentum especially with increasing users’ quality expectations, the focus is now on proposing innovative solutions to enable QoE when delivering video content over heterogeneous wireless networks. In this context, this paper presents an overview of multimedia delivery solutions, identifies the problems and provides a comprehensive classification of related state-of-the-art approaches following three key directions: adaptation, energy efficiency and multipath content delivery. Discussions, challenges and open issues on the seamless multimedia provisioning faced by the current and next generation of wireless networks are also provided

    Quality of experience-centric management of adaptive video streaming services : status and challenges

    Get PDF
    Video streaming applications currently dominate Internet traffic. Particularly, HTTP Adaptive Streaming ( HAS) has emerged as the dominant standard for streaming videos over the best-effort Internet, thanks to its capability of matching the video quality to the available network resources. In HAS, the video client is equipped with a heuristic that dynamically decides the most suitable quality to stream the content, based on information such as the perceived network bandwidth or the video player buffer status. The goal of this heuristic is to optimize the quality as perceived by the user, the so-called Quality of Experience (QoE). Despite the many advantages brought by the adaptive streaming principle, optimizing users' QoE is far from trivial. Current heuristics are still suboptimal when sudden bandwidth drops occur, especially in wireless environments, thus leading to freezes in the video playout, the main factor influencing users' QoE. This issue is aggravated in case of live events, where the player buffer has to be kept as small as possible in order to reduce the playout delay between the user and the live signal. In light of the above, in recent years, several works have been proposed with the aim of extending the classical purely client-based structure of adaptive video streaming, in order to fully optimize users' QoE. In this article, a survey is presented of research works on this topic together with a classification based on where the optimization takes place. This classification goes beyond client-based heuristics to investigate the usage of server-and network-assisted architectures and of new application and transport layer protocols. In addition, we outline the major challenges currently arising in the field of multimedia delivery, which are going to be of extreme relevance in future years

    Systems and Methods for Measuring and Improving End-User Application Performance on Mobile Devices

    Full text link
    In today's rapidly growing smartphone society, the time users are spending on their smartphones is continuing to grow and mobile applications are becoming the primary medium for providing services and content to users. With such fast paced growth in smart-phone usage, cellular carriers and internet service providers continuously upgrade their infrastructure to the latest technologies and expand their capacities to improve the performance and reliability of their network and to satisfy exploding user demand for mobile data. On the other side of the spectrum, content providers and e-commerce companies adopt the latest protocols and techniques to provide smooth and feature-rich user experiences on their applications. To ensure a good quality of experience, monitoring how applications perform on users' devices is necessary. Often, network and content providers lack such visibility into the end-user application performance. In this dissertation, we demonstrate that having visibility into the end-user perceived performance, through system design for efficient and coordinated active and passive measurements of end-user application and network performance, is crucial for detecting, diagnosing, and addressing performance problems on mobile devices. My dissertation consists of three projects to support this statement. First, to provide such continuous monitoring on smartphones with constrained resources that operate in such a highly dynamic mobile environment, we devise efficient, adaptive, and coordinated systems, as a platform, for active and passive measurements of end-user performance. Second, using this platform and other passive data collection techniques, we conduct an in-depth user trial of mobile multipath to understand how Multipath TCP (MPTCP) performs in practice. Our measurement study reveals several limitations of MPTCP. Based on the insights gained from our measurement study, we propose two different schemes to address the identified limitations of MPTCP. Last, we show how to provide visibility into the end- user application performance for internet providers and in particular home WiFi routers by passively monitoring users' traffic and utilizing per-app models mapping various network quality of service (QoS) metrics to the application performance.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/146014/1/ashnik_1.pd

    Seamless Multimedia Delivery Within a Heterogeneous Wireless Networks Environment: Are We There Yet?

    Get PDF
    The increasing popularity of live video streaming from mobile devices, such as Facebook Live, Instagram Stories, Snapchat, etc. pressurizes the network operators to increase the capacity of their networks. However, a simple increase in system capacity will not be enough without considering the provisioning of quality of experience (QoE) as the basis for network control, customer loyalty, and retention rate and thus increase in network operators revenue. As QoE is gaining strong momentum especially with increasing users' quality expectations, the focus is now on proposing innovative solutions to enable QoE when delivering video content over heterogeneous wireless networks. In this context, this paper presents an overview of multimedia delivery solutions, identifies the problems and provides a comprehensive classification of related state-of-the-art approaches following three key directions: 1) adaptation; 2) energy efficiency; and 3) multipath content delivery. Discussions, challenges, and open issues on the seamless multimedia provisioning faced by the current and next generation of wireless networks are also provided

    MSPlayer: Multi-Source and multi-Path LeverAged YoutubER

    Full text link
    Online video streaming through mobile devices has become extremely popular nowadays. YouTube, for example, reported that the percentage of its traffic streaming to mobile devices has soared from 6% to more than 40% over the past two years. Moreover, people are constantly seeking to stream high quality video for better experience while often suffering from limited bandwidth. Thanks to the rapid deployment of content delivery networks (CDNs), popular videos are now replicated at different sites, and users can stream videos from close-by locations with low latencies. As mobile devices nowadays are equipped with multiple wireless interfaces (e.g., WiFi and 3G/4G), aggregating bandwidth for high definition video streaming has become possible. We propose a client-based video streaming solution, MSPlayer, that takes advantage of multiple video sources as well as multiple network paths through different interfaces. MSPlayer reduces start-up latency and provides high quality video streaming and robust data transport in mobile scenarios. We experimentally demonstrate our solution on a testbed and through the YouTube video service.Comment: accepted to ACM CoNEXT'1

    Towards enabling cross-layer information sharing to improve today's content delivery systems

    Get PDF
    Content is omnipresent and without content the Internet would not be what it is today. End users consume content throughout the day, from checking the latest news on Twitter in the morning, to streaming music in the background (while working), to streaming movies or playing online games in the evening, and to using apps (e.g., sleep trackers) even while we sleep in the night. All of these different kinds of content have very specific and different requirements on a transport—on one end, online gaming often requires a low latency connection but needs little throughput, and, on the other, streaming a video requires high throughput, but it performs quite poorly under packet loss. Yet, all content is transferred opaquely over the same transport, adhering to a strict separation of network layers. Even a modern transport protocol such as Multi-Path TCP, which is capable of utilizing multiple paths, cannot take the (above) requirements or needs of that content into account for its path selection. In this work we challenge the layer separation and show that sharing information across the layers is beneficial for consuming web and video content. To this end, we created an event-based simulator for evaluating how applications can make informed decisions about which interfaces to use delivering different content based on a set of pre-defined policies that encode the (performance) requirements or needs of that content. Our policies achieve speedups of a factor of two in 20% of our cases, have benefits in more than 50%, and create no overhead in any of the cases. For video content we created a full streaming system that allows an even finer grained information sharing between the transport and the application. Our streaming system, called VOXEL, enables applications to select dynamically and on a frame granularity which video data to transfer based on the current network conditions. VOXEL drastically reduces video stalls in the 90th-percentile by up to 97% while not sacrificing the stream's visual fidelity. We confirmed our performance improvements in a real-user study where 84% of the participants clearly preferred watching videos streamed with VOXEL over the state-of-the-art.Inhalte sind allgegenwärtig und ohne Inhalte wäre das Internet nicht das, was es heute ist. Endbenutzer konsumieren Inhalte von früh bis spät - es beginnt am Morgen mit dem Lesen der neusten Nachrichten auf Twitter, dem online hören von Musik während der Arbeit, wird fortgeführt mit dem Schauen von Filmen über Online-Streaming Dienste oder dem spielen von Mehrspieler Online Spielen am Abend, und sogar dem, mit dem Internet synchronisierten, Überwachens des eigenen Schlafes in der Nacht. All diese verschiedenen Arten von Inhalten haben sehr spezifische und unterschiedliche Ansprüche an den Transport über das Internet - auf der einen Seite sind es Online Spiele, die eine sehr geringe Latenz, aber kaum Durchsatz benötigen, auf der Anderen gibt es Video-Streaming Dienste, die einen sehr hohen Datendurchsatz benötigen, aber, sehr nur schlecht mit Paketverlust umgehen können. Jedoch werden all diese Inhalte über den selben, undurchsichtigen, Transportweg übertragen, weil an eine strikte Unterteilung der Netzwerk- und Transportschicht festgehalten wird. Sogar ein modernes Übertragungsprotokoll wie MPTCP, welches es ermöglicht mehrere Netzwerkpfade zu nutzen, kann die (oben genannten) Anforderungen oder Bedürfnisse des Inhaltes, nicht für die Pfadselektierung, in Betracht ziehen. In dieser Arbeit fordern wir die Trennung der Schichten heraus und zeigen, dass ein Informationsaustausch zwischen den Netzwerkschichten von großem Vorteil für das Konsumieren von Webseiten und Video Inhalten sein kann. Hierzu haben wir einen Ereignisorientierten Simulator entwickelt, mit dem wir untersuchten wie Applikationen eine informierte Entscheidung darüber treffen können, welche Netzwerkschnittstellen für verschiedene Inhalte, basierend auf vordefinierten Regeln, welche die Leistungsvorgaben oder Bedürfnisse eines Inhalts kodieren, benutzt werden sollen. Unsere Regeln erreichen eine Verbesserung um einen Faktor von Zwei in 20% unserer Testfälle, haben einen Vorteil in mehr als 50% der Fälle und erzeugen in keinem Fall einen Mehraufwand. Für Video Inhalte haben wir ein komplettes Video-Streaming System entwickelt, welches einen noch feingranulareren Informationsaustausch zwischen der Applikation und des Transportes ermöglicht. Unser, VOXEL genanntes, System ermöglicht es Applikationen dynamisch und auf Videobild Granularität zu bestimmen welche Videodaten, entsprechend der aktuellen Netzwerksituation, übertragen werden sollen. VOXEL kann das stehenbleiben von Videos im 90%-Perzentil drastisch, um bis zu 97%, reduzieren, ohne dabei die visuelle Qualität des übertragenen Videos zu beeinträchtigen. Wir haben unsere Leistungsverbesserung in einer Studie mit echten Benutzern bestätigt, bei der 84% der Befragten es, im vergleich zum aktuellen Stand der Technik, klar bevorzugten Videos zu schauen, die über VOXEL übertragen wurden
    • …
    corecore