
Towards Enabling Cross-layer

Information Sharing to Improve Today’s

Content Delivery Systems

Dissertation zur Erlangung des Grades

des Doktors der Ingenieurwissenschaften

der Fakultät für Mathematik und Informatik

der Universität des Saarlandes

vorgelegt von

Mirko R. Palmer

Saarbrücken, 2022

https://www.uni-saarland.de/en/department/department-of-computer-science.html
http://www.uni-saarland.de/

Kolloquium

Datum: 02. März 2023

Dekan der Fakultät MI: Univ.-Prof. Dr. Jürgen Steimle

Prüfungsausschuss

Der Vorsitzende: Prof. Dr. Ingmar Weber

Die Berichterstatter: Prof. Dr. Anja Feldmann

Prof. Dr. Balakrishnan Chandrasekaran

Prof. Dr. Oliver Hohlfeld

Der akademische Mitarbeiter: Dr. Jialong Li

This work is licensed under a Creative Commons

Attribution-NonCommercial-ShareAlike International 4.0 License.

This work was supported in part by the SupraCoNex (16KIS1194) project.

Abstract

Content is omnipresent and without content the Internet would not be what it is today.

End users consume content throughout the day, from checking the latest news on Twitter

in the morning, to streaming music in the background (while working), to streaming

movies or playing online games in the evening, and to using apps (e.g., sleep trackers)

even while we sleep in the night. All of these different kinds of content have very specific

and different requirements on a transport—on one end, online gaming often requires

a low latency connection but needs little throughput, and, on the other, streaming a

video requires high throughput, but it performs quite poorly under packet loss. Yet, all

content is transferred opaquely over the same transport, adhering to a strict separation

of network layers. Even a modern transport protocol such as Multi-Path TCP, which

is capable of utilizing multiple paths, cannot take the (above) requirements or needs

of that content into account for its path selection. In this work we challenge the layer

separation and show that sharing information across the layers is beneficial for consuming

web and video content. To this end, we created an event-based simulator for evaluating

how applications can make informed decisions about which interfaces to use delivering

different content based on a set of pre-defined policies that encode the (performance)

requirements or needs of that content. Our policies achieve speedups of a factor of

two in 20% of our cases, have benefits in more than 50%, and create no overhead in

any of the cases. For video content we created a full streaming system that allows an

even finer grained information sharing between the transport and the application. Our

streaming system, called VOXEL, enables applications to select dynamically and on a

frame granularity which video data to transfer based on the current network conditions.

VOXEL drastically reduces video stalls in the 90th-percentile by up to 97% while not

sacrificing the stream’s visual fidelity. We confirmed our performance improvements in a

real-user study where 84% of the participants clearly preferred watching videos streamed

with VOXEL over the state-of-the-art.

i

Zusammenfassung

Inhalte sind allgegenwärtig und ohne Inhalte wäre das Internet nicht das, was es heute

ist. Endbenutzer konsumieren Inhalte von früh bis spät—es beginnt am Morgen mit dem

Lesen der neusten Nachrichten auf Twitter, dem online hören von Musik während der Ar-

beit, wird fortgeführt mit dem Schauen von Filmen über Online-Streaming Dienste oder

dem spielen von Mehrspieler Online Spielen am Abend, und sogar dem, mit dem Internet

synchronisierten, Überwachens des eigenen Schlafes in der Nacht. All diese verschiedenen

Arten von Inhalten haben sehr spezifische und unterschiedliche Ansprüche an den Trans-

port über das Internet—auf der einen Seite sind es Online Spiele, die eine sehr geringe

Latenz, aber kaum Durchsatz benötigen, auf der Anderen gibt es Video-Streaming Dien-

ste, die einen sehr hohen Datendurchsatz benötigen, aber, sehr nur schlecht mit Paketver-

lust umgehen können. Jedoch werden all diese Inhalte über den selben, undurchsichtigen,

Transportweg übertragen, weil an eine strikte Unterteilung der Netzwerk- und Trans-

portschicht festgehalten wird. Sogar ein modernes Übertragungsprotokoll wie MPTCP,

welches es ermöglicht mehrere Netzwerkpfade zu nutzen, kann die (oben genannten) An-

forderungen oder Bedürfnisse des Inhaltes, nicht für die Pfadselektierung, in Betracht

ziehen. In dieser Arbeit fordern wir die Trennung der Schichten heraus und zeigen, dass

ein Informationsaustausch zwischen den Netzwerkschichten von großem Vorteil für das

Konsumieren von Webseiten und Video Inhalten sein kann. Hierzu haben wir einen

Ereignisorientierten Simulator entwickelt, mit dem wir untersuchten wie Applikationen

eine informierte Entscheidung darüber treffen können, welche Netzwerkschnittstellen für

verschiedene Inhalte, basierend auf vordefinierten Regeln, welche die Leistungsvorgaben

oder Bedürfnisse eines Inhalts kodieren, benutzt werden sollen. Unsere Regeln erreichen

eine Verbesserung um einen Faktor von Zwei in 20% unserer Testfälle, haben einen

Vorteil in mehr als 50% der Fälle und erzeugen in keinem Fall einen Mehraufwand. Für

Video Inhalte haben wir ein komplettes Video-Streaming System entwickelt, welches

einen noch feingranulareren Informationsaustausch zwischen der Applikation und des

Transportes ermöglicht. Unser, VOXEL genanntes, System ermöglicht es Applika-

tionen dynamisch und auf Videobild Granularität zu bestimmen welche Videodaten,

entsprechend der aktuellen Netzwerksituation, übertragen werden sollen. VOXEL kann

das stehenbleiben von Videos im 90%-Perzentil drastisch, um bis zu 97%, reduzieren,

ohne dabei die visuelle Qualität des übertragenen Videos zu beeinträchtigen. Wir haben

unsere Leistungsverbesserung in einer Studie mit echten Benutzern bestätigt, bei der

84% der Befragten es, im vergleich zum aktuellen Stand der Technik, klar bevorzugten

Videos zu schauen, die über VOXEL übertragen wurden.

iii

Acknowledgements

Doing a PhD is not an easy task. And I am not primarily talking about the academ-

ical challenges but dealing with the frustration of any failed submissions before finally

publishing your precious work into which you put so much heart and effort. With this

I want to thank my advisor Anja Feldmann for all the support you gave me. Working

in your group was a privilege, as you give your students enough freedom to grow but

always check that things do not go south. This means that one might get a, definitely

well deserved, lecture of what one did wrong - in Germany we do call our advisor “Dok-

tormutter” for a reason. Though, it also meant that you get an advisor who cares about

your progression, even teaching you how to write better papers until deep in the night

of the day of the deadline.

Thank you to Bala Chandrasekaran for teaching me that receiving even a bad paper

review can be useful, for all the great discussions, and, most importantly, for showing

me that the writing in research papers can be both functional and aesthetic. Thank

you to Reese Enghardt for not only sharing an office with me in Berlin, a time I have

fond memories of, but also for helping me get started as a PhD student at INET. Same

goes to Philipp Tiesel, also for the joint work on our transfer simulator. Thank you to

Thorben Krüger for sharing an office in Saarbrücken with me, for the delightful time I

had doing pair programming with you and for helping me to grow as a person. Thank

you to Malte Appel for the, likely, most productive time I had in my entire PhD, and

for sharing the pain that taming the beast that the GQUIC code base was.

Thank you to my other collaborators: Kevin Spiteri and Ramesh K. Sitaraman - without

collaborators like this, today’s research would not be possible. In our research field the

saying that something is more than the sum of its parts is very fitting because only by

working together with great minds, we accomplish even greater things.

Thank you to all my colleagues at INET, many of which I call friends. Thank you to

Florian Streibelt, Franziska Lichtblau, Thomas Krenc and Lars Prehn for the fun times

hanging out with you. Thank you to Jawad Saidi for all the nice chats and never saying

no when one needs help. A special thank you to all the admins back in Berlin and now

here in Saarbrücken for always keeping the show running.

Thank you to my family who encouraged my passion for technology even from early age

and for allowing me to not worry about anything but my passion. Thank you to all my

friends from back in Berlin with whom I, as life unfortunately often goes, have less and

less contact, but who are not forgotten.

Last, but most certainly not least, I would like to thank my girlfriend Susanne Dally for

accompanying me, for always having my back and bearing with me, even when I was

stressed out, yet again, because there was always another paper deadline.

v

Publications

This thesis was created with the help of contributions of our collaborations with several

authors. Scientific work, in our discipline, is always a joint effort of combining expertise.

The following list presents pre-published work, software and other collaborations of

this author. A more detailed version of this author’s main contributions are shown in

Chapter 1.4.

Pre-published Papers

Parts of this thesis are based on the following peer-reviewed papers that have already

been published.

Workshops

Mirko Palmer, Thorben Krüger, Balakrishnan Chandrasekaran, Anja Feldmann

“The QUIC Fix for Optimal Video Streaming” In: Proceedings of the Workshop on the

Evolution, Performance, and Interoperability of QUIC. ACM EPIQ 2018.

ACM, 2018, pp. 43-49. ISBN: 978-1-4503-6082-1. DOI: 10.1145/3284850.3284857.

International Conferences

Mirko Palmer, Malte Appel, Kevin Spiteri, Balakrishnan Chandrasekaran, Anja Feld-

mann, Ramesh K. Sitaraman

“VOXEL: cross-layer optimization for video streaming with imperfect transmission” In:

Proceedings of the 17th International Conference on emerging Networking EXperiments

and Technologies. ACM CoNEXT 2021.

ACM, 2021, pp. 359-374. ISBN: 978-1-4503-9098-9. DOI: 10.1145/3485983.3494864.

Internet-Drafts

Philipp S. Tiesel, Mirko Palmer, Balakrishnan Chandrasekaran, Anja Feldmann, Jörg

Ott

“Considerations for Unreliable Streams in QUIC” Internet Draft draft-tiesel-quic-unreliable-

streams-01, Oct. 2017.

https://tools.ietf.org/html/draft-tiesel-quic-unreliable-streams-01

vii

https://tools.ietf.org/html/draft-tiesel-quic-unreliable-streams-01

Other collaborations

Philipp S. Tiesel, Theresa Enghardt, Mirko Palmer, Anja Feldmann

“Socket Intents: OS Support for Using Multiple Access Networks and its Benefits for

Web Browsing”

Pre-print ArXiv, 2018, arXiv: 1804.08484.

The Data Transfer Simulator from Chapter 3 was joint work with Philipp Tiesel.

Our frame importance ranking algorithm, explained in Chapter 5 was initially started

as a collaboration with Malte Appel in the context of his Master Thesis, which I co-

supervised. The continuation of the work on our frame ranking was published by the

author of this thesis as part of VOXEL [1], and is presented in this thesis.

Software

The following software developed as part of this work has been made publicly available:

VOXEL.

https://github.com/derbroti/VOXEL

Data Transfer Simulator.

https://github.com/fg-inet/dtsimulator

viii

https://github.com/derbroti/VOXEL
https://github.com/fg-inet/dtsimulator

Contents

1 Introduction 1

1.1 Problem Definition . 3

1.2 Approach . 3

1.3 Contributions . 4

1.4 Pre-published Work and Collaborations 5

1.5 Structure of this Thesis . 5

2 Background 7

2.1 Sockets . 7

2.2 Socket Intents Concept . 8

2.3 Challenges Imposed by BSD Sockets . 9

2.3.1 Multi-Path TCP . 10

2.3.2 Socket Intents with Multi-Path TCP 11

2.4 Video Streaming . 12

2.5 Codecs . 13

2.6 Adaptive Bitrate Algorithms . 13

2.7 QoE Metrics . 14

3 Socket Intents 17

3.1 Combining Multi-Path TCP with Socket Intents 18

3.2 Policy Design . 20

3.2.1 Implementation Considerations . 20

3.2.2 MPTCP-aware Policies . 21

3.3 Data Transfer Simulator . 22

3.3.1 Design . 22

3.3.2 Implementation . 23

3.3.3 Web Object Dependencies . 24

3.3.4 Policy Realization . 25

3.4 Evaluation Scenario . 26

3.4.1 Network Scenario . 26

ix

3.4.2 Experimental Design for Simulator Evaluation 27

3.4.3 Web Workload . 28

3.5 Evaluation . 29

3.5.1 Validation of our Simulator with the Proxy 29

3.5.2 Simulator vs. Actual Page Load Time 30

3.5.3 Benefits of Combining Multiple Access Networks 31

3.5.4 Benefits of Using MPTCP . 33

3.5.5 Explaining Page Load Time Speedups 34

3.6 Related Work . 35

3.7 Summary . 37

4 Video Transfer Design 39

4.1 Related Work . 41

4.2 Insights . 43

4.2.1 Drop Frames while still Delivering a high QoE 44

4.2.2 Reorder “unimportant” Frames to Segment’s Tail 45

4.2.3 Fine-grained Quality Switching via Drame-drops 47

4.3 Summary of our Contributions . 48

5 On Frame Importance 51

5.1 Frame Orders and their Implications . 53

5.1.1 Original Order - Dropping the Tail without Reordering 54

5.1.2 The Summed Reference Order - An Intermediate Step 55

5.1.3 The Chained Reference Order . 57

5.2 Summary . 59

6 VOXEL 61

6.1 Extending the Manifest . 61

6.2 QUIC*: Enriching the Transport Layer 63

6.3 ABR*: Enhancing the ABR Algorithm . 64

6.3.1 Optimize for QoE . 64

6.3.2 Support Partial-segment Downloads 64

6.3.3 Segment Abandonment Options . 65

6.4 Evaluation Scenario . 66

6.4.1 Video Selection . 66

6.4.2 Widely used Videos from Prior Work 66

6.4.3 Public YouTube Videos . 69

6.4.4 Network Testbed . 70

6.4.5 Network Traces . 71

6.4.6 ABR Algorithms . 72

x

6.4.7 Experiment Considerations . 73

6.5 ABR Algorithms with QUIC* . 73

6.5.1 In-lab Trials with Network Traces 73

6.5.2 In-lab Trials with Cross Traffic . 76

6.6 ABR* with QUIC* (or VOXEL) . 77

6.6.1 In-lab Trials with Network Traces 78

6.6.2 In-lab Trials with Long Network Queues 83

6.6.3 In-lab Trials without Partial Reliability 83

6.6.4 In-lab Trials with Cross Traffic. 85

6.6.5 In-lab Trials with Synthetic Network Traces 85

6.6.6 In-the-wild Trials . 86

6.7 Real User Survey . 87

6.8 Summary . 89

7 Summary and Outlook 91

Glossary 95

Bibliography 97

List of Figures 110

List of Tables 112

List of Listings 113

xi

Chapter 1

Introduction

Bill Gates’ essay “Content is King” [2] proved to be well-founded. Innovation on the

Internet was, according to Gates, and continues to be, shaped by answering the question

of how to quickly, efficiently and reliably distribute content to billions [3] of people

around the world. Content, in this case, is everything from small private homepages,

posts on social media, to videos hosted on huge commercial streaming platforms. With

video content as the largest1 contributor to traffic on the Internet [5], the attention of

many engineers and researchers is given towards video delivery. Many aspects of video

delivery, and with that many aspects of the Internet itself, have improved significantly

over time. These improvements range from the locality of video data with Content

Delivery Networks (CDNs), the quality of video encodings with new codecs, to the

quality of transferring video data with Adaptive Bitrate (ABR) Algorithms. For all the

benefits these innovations brought to the Internet, it is impractical to repeat this process

for any new, let alone all existing, types of content. We could, though, allow applications

to influence the way content is delivered—an application knows exactly what type of

content is to be transferred, but we are stuck with a many decades old layered internet

architecture. Could we do better if we would allow a breaking of the layer separation?

Answering the question if breaking the separation, or, in other words, if allowing an

information sharing across layers is beneficial, is the focus of this thesis.

In order to optimize any content delivery by cross-layer information sharing, we first

have to look at the kind of devices that are used to consume content. With an esti-

mated 4.7B 4G subscriptions [6], mobile internet devices are more common than ever.

Next, we have to ask how these mobile devices are connected to the internet? Mobile de-

vices can, today, usually access the Internet over more than one access network, as they

often have the choice between WiFi and a cellular network. Data in mobile networks

is, though, still a sparse [7], imperfect [8] and expensive [9] resource. Having a system

to utilize the available resource efficiently is, thus, very significant. A bulk download,

1Researchers forecast that video will account for 82% of all IP traffic by 2022 [4].

1

1. Introduction

e.g., an automatic software update, that is not aware of a parallel video stream, can

degrade an end-user’s quality-of-experience. It is not enough, though, to simply coor-

dinate between applications, the transport needs to be managed as well. Applications

know their needs and intents, e.g., a background download neither needs low latency,

nor a high throughput connection, an instant messenger needs low latency, a live video

stream needs both. The transport layer knows the availability of links and their char-

acteristics, e.g., which link does fit the needs of an application. Such a system could,

for streaming video, with the help of systems like MPTCP, select a lower capacity, low

latency connection for a fast video startup. The system could then then switch to a

high throughout link or bond multiple links for the highest possible video quality, while

throttling, currently unimportant, background downloads. Despite the possible bene-

fits, the available diversity is usually not exploited. While the application knows its

demands, selecting the path and destination within the application is impractical most

of the time. This impracticability stems from the required selection information, which

is often not available. The selection information encompasses detailed characteristics of

the available paths or information about cross-traffic from other applications.

One approach for enabling applications to actually exploit the available paths is Socket

Intents [10]. To first investigate feasibility, we evaluated a Socket Intents equipped

system in the general area of web traffic. Unlike video streaming, web traffic has less

strict real-time requirements and is, thus, easier to evaluate. It is noted, though, that

Socket Intents can indeed be used for video streaming applications as shown by Enghardt

et. al. [11].

With a system in place to communicate across layers, i.e., between application and

transport layer, we can, next, take the cross-layer approach even further with video

streaming. Compared to web traffic, the continuous playback of streamed video has a

real-time requirement in the form of constantly needing fresh data from the video player.

In other words, if a video frame arrives late, i.e., after it was supposed to be shown to

the user, for example due to head-of-line blocking or retransmissions, it becomes useless

and the playback stalls.

Late frames, resulting in playback stalls, are, for end users, the most detrimental aspect

of streaming video [12–14]. Tackling the challenging task of streaming video in varying,

and often less-than-ideal, network conditions while keeping end-users’ Quality of Expe-

riences (QoEs) unaffected is, hence, more dire than ever before [15–17]. To avoid stalls,

or rebuffering, reducing the required amount of data is presumably one of the most

viable solutions. Today, adaptive-bitrate algorithms, which in regular intervals switch

between downloading different encoding versions of a video, adapt the required data to

the available link capacity. This process suffers from a quantization problem. Without

2

1.1. Problem Definition

excessive storage requirements, there can only be a limited number of discrete encoding

qualities. There encoding, or quality levels, can not perfectly match a continuous signal

like throughput. We propose a system that can match the throughput signal. By ana-

lyzing a video, we can determine which frames are essential to not degrade an end-users’

experience. Video data is highly compressed, how can anything not be essential? Video

codecs are not perfect, a significant amount of still redundant video data can be dropped

without users noticing it. If you allow minor visual glitches, this number is even higher.

Though, this information is only available on the application layer, thus, we need a tight

coupling between the application and the transport. A tight coupling would allow an

application to not only influence the link selection but to determine data importance,

i.e., if lost data is worth retransmitting or if the data is even required.

1.1 Problem Definition

Transferring content is a hard problem, especially if the available network connectivity is

less-than-ideal. This problem is exacerbated when there is more than one network con-

nection to chose from, i.e., the transport layer has information about link characteristics

but can not communicate this information to the application.

While the application has knowledge about the type of content to transfer, it can not

communicate this information back to the transport layer. We want to investigate the

possibility to improve the performance of content delivery by breaking the traditional

layered approach of networking. In other words, we ask if a cross-layer information

sharing can improve today’s content delivery systems.

The largest contributors to the overall traffic on the internet [18], are video streaming

and web traffic. Web sites have many objects in various sizes [19, 20] and should, thus,

be a prime candidate to investigate if an information sharing and a resulting network

connection selection is indeed beneficial. Video streaming, the largest traffic contributor,

has real-time requirements, i.e., video frames need to be delivered in time or are wasted

bandwidth as they are unusable by the already moved on video player. These real-time

requirements would need an even tighter coupling between the network layers to not

only select a connection per object, or video, but per individual video frame.

1.2 Approach

We start with Socket Intents, a relatively coarse-grained approach towards cross-layer

communication between the transport and the application layer. We take advantage of

3

1. Introduction

today’s end-user devices’ capability of connecting to multiple access networks by using

Multi-Path TCP. We revisit the design space of video streaming systems with a novel

view of imperfect transmissions by coupling the application and transport even tighter.

To make informed decisions about how such an imperfect transmission would work, we

get a better understanding of video streaming and specifically video codecs themselves.

We make use of recent, in user-space implemented, transport protocols like Quick UDP

Internet Connections (QUIC) that open up new possibilities to interact and alter the

transport from an application. Finally, we design and evaluate a system, we call VOXEL,

that allows cross-layer interactions and exploits video characteristics.

1.3 Contributions

This thesis presents work covering the following aspects:

Socket Intents. We evaluate our system based on the use case of Web browsing: Using

a flow-based simulator and a full factorial experimental design, we study a broad range of

access network combinations (based on typical Digital subscriber line (DSL) and Long-

Term Evolution (LTE) scenarios) and real workloads (Alexa Top 100 and Top 1000 Web

Sites). Our policies achieve performance benefits in more than 50% of the cases and

speedups of more than factor two in 20% of the cases without adding overhead in the

other cases.

VOXEL. We propose VOXEL, a cross-layer optimization system for video streaming.

We use VOXEL to demonstrate how to combine application-provided “insights” with a

partially reliable protocol for optimizing video streaming. To this end, we present a novel

ABR algorithm that explicitly trades off losses for improving end-users’ video-watching

experiences.

VOXEL is fully compatible with DASH, and backward-compatible with VOXEL-unaware

servers and clients. In our experiments emulating a wide range of network conditions,

VOXEL outperforms the state-of-the-art: We stream videos in the 90th-percentile with

up to 97% less rebuffering than the state-of-the-art without sacrificing visual fidelity.

We also demonstrate the benefits of VOXEL for small-buffer regimes like the emerging

use case of low-latency and live streaming. In a survey of 54 real users, 84% of the

participants indicated that they prefer videos streamed using VOXEL compared to the

state-of-the-art.

4

1.4. Pre-published Work and Collaborations

1.4 Pre-published Work and Collaborations

As early as 1963, Derek de Solla Price [21] showed a trend towards collaborative research

work with an expected extinction of single-author publications by 1980. We want to

emphasize that this trend prevails in our discipline’s scientific work. This thesis is, thus,

naturally based on collaborations and pre-published work with several authors.

In the following, we will outline the main contributions of this thesis’ author to the work

used in this thesis.

Chapter 3: This chapter lays the groundwork for the idea of the need for an infor-

mation sharing across layers. The concept of Socket Intents, used here, was originally

presented by Schmidt et. al. [10], and extended, in collaboration with this author, by

Tiesel et. al. [22]. The main contributions of this author are (a) extending the existing

prototype to work with MPTCP, (b) the joint implementation of the event simulator

used for evaluation the concept, and (c) the Earliest Arrival First policy also used in

the evaluation.

Chapter 4: The insights presented in this chapter originated from this thesis’ author

and are used in Palmer et. al. [1].

Chapter 5: This chapter extends on the frame importance ranking started in collabo-

ration with Malte Appel in his master thesis.

Chapter 6: Here, we present VOXEL by Palmer et. al., published at CoNEXT 2021.

As the main author of VOXEL, this author’s contributions are (a) the overall concepts

used, (b) a joint implementation of the system, which is published by the author as

open-source, and (c) a joint evaluation of the system.

Chapter 7: Lastly, in this chapter, the author concludes this thesis in a summary and

an outlook towards future work.

1.5 Structure of this Thesis

The remainder of the thesis is structured as follows.

Chapter 2 introduces background knowledge about sockets and socket intents, video

coding and streaming, and approaches and metrics to determine the perceived quality

of a video.

5

1. Introduction

Chapter 3 investigates how to incorporate a multi-path transport into an existing

multi-access prototype. We create an event simulator to analyze the performance of

informed applications when delivering content, specifically web traffic.

Chapter 4 moves the focus towards another prevalent type of content, namely video.

We study how video codecs operate and show that even though their compressed nature

that there is still room for reducing file sizes, by dropping frames, which can alleviate

the load on a network.

Chapter 5 takes the insights of dropping frames and we create “frame-orders” which

sort video frames by importance to enable gracefully terminating video downloads pre-

maturely while still guaranteeing a high perceived video quality.

Chapter 6 completes our frame-order approach into a full-fledged cross-layer video

streaming system we call VOXEL. We explain in detail how VOXEL is created and

performed an extensive performance analysis.

Chapter 7 finally concludes the thesis with a summary of our findings and provides an

outlook towards future work.

6

Chapter 2

Background

In this section we will review the basic concepts involved in content consumption over

the internet from the point of view of the transport layer and the application layer. We

start with Sockets, the standard communication interface between applications and the

operating system’s network stack. Following, we explain how sockets are extended to

allow an application to convey an intended use of a socket and discuss the challenges in-

volved. Last in the transport, we show the basics of Multi-path TCP (MPTCP), a Linux

kernel extension to TCP that allows to utilize multiple network interfaces simultaneously

and how we combined it with socket intents.

Moving on to the application layer we explain how today’s video streaming works on

top of a transport. We start with video codecs themselves and how to make use of

different encodings to generate video qualities that fit different network characteristics,

i.e., generating a lower bitrate video requires less network throughput. Finally, we will

go over how video quality can be measured and what care needs to be taken when

comparing a video to a reference.

2.1 Sockets

In Unix-like OSes, BSD Sockets are the standard interface between applications and

the network stack. Typically, applications that want to connect to a server first re-

solve the server’s hostname using getaddrinfo(), then create a socket file descriptor

using socket() and call connect() to establish the connection. To each of these calls

information obtained from getaddrinfo() is passed.

With Vanilla BSD Sockets, taking advantage of multiple paths or choosing among several

destinations is complicated. One reason is that the BSD Socket API designers considered

multi-homed hosts a corner case. The bind() socket call allows applications to choose

7

2. Background

the source address of an outgoing communication1. If the system is configured with a

routing policy to send traffic with a specific source address over an associated paths,

application can set the source address to implicitly choose the outgoing interface and

next-hop and, therefore, large portions of the path.

Besides this hack, Vanilla BSD Sockets do not offer support for multiple access networks:

Applications that want to use multiple interfaces usually have to have their own heuris-

tics for selecting paths. Choosing among paths is difficult as the necessary information

is often difficult to gather and may require special privileges. Moreover, it differs greatly

by Unix flavor.

2.2 Socket Intents Concept

To perform path and destination selection within the OS, the OS needs to know what to

optimize for – the application demands. Therefore, we introduced the concept of Socket

Intents [23]. Socket Intents allow applications to share their knowledge about their com-

munication patterns and express performance preferences in a generic and portable way.

Intents are hints for the OS, pieces of information, that allow an application programmer

to express what they know about the application’s needs or intentions for each commu-

nication unit. They indicate what the application wants to achieve, knows, or assumes.

In contrast to transport features or QoS-style reservations, they are not requirements

but only considered in a best-effort manner, e.g., as input to path and destination se-

lection heuristics within the OS. Possible intents, as shown in Table 2.1, include Traffic

Category, Size to be Sent/Received, Timeliness, Duration, or Resilience of connectivity.

Applications have an incentive to specify their intents as accurately as possible to take

advantage of the most suitable resources. We expect applications to selfishly specify

their preferences. Since the OS knows about the available network resources and the

intents of multiple applications, it can balance the different requirements and penalize

misbehaving applications.

Socket Intents are independent of the actual Socket API and can be applied to message

granularity communications, e.g., UDP messages or HTTP requests, as well as stream

granularity communications, e.g., TCP connections. The information provided by the

application is structured as key-value-pairs. The key is a simple string representing the

type of a Socket Intent. Values can be represented as an enum, int, float, string, or a

sequence of the aforementioned data types. Table 2.1 gives an overview of Socket Intent

types as specified in our recent IETF draft [24]. Despite the variety of Intents we define

in this section, the remainder of this paper focuses on how to realize Socket Intents as

1Otherwise, the OS uses the IP address of the interface via which it routes to the given destination.

8

2.3. Challenges Imposed by BSD Sockets

an extension to the BSD Socket API and the benefits of using the Size to be Received

Intent.

2.3 Challenges Imposed by BSD Sockets

With Vanilla BSD Sockets, taking advantage of multiple paths or choosing among several

destinations is complicated. One reason is that the BSD Socket API designers considered

multi-homed hosts a corner case. The bind() socket call allows applications to choose

the source address of an outgoing communication2. If the system is configured with a

routing policy to send traffic with a specific source address over an associated paths,

application can set the source address to implicitly choose the outgoing interface and

next-hop and, therefore, large portions of the path.

Besides this hack, Vanilla BSD Sockets do not offer support for multiple access networks:

Applications that want to use multiple interfaces usually have to have their own heuris-

tics for selecting paths. Choosing among paths is difficult as the necessary information

is often difficult to gather and may require special privileges. Moreover, it differs greatly

by Unix flavor.

Another complication occurs when selection a destination: When resolving the host-

name to obtain a destination address, applications need to ensure not to mix results for

the same hostname resolved via a different interface. For example, CDNs and major

Web sites often rely on Domain Name System (DNS)-based server selection and load

balancing. These mechanisms are most useful if the DNS query is sent via the same

interface as the actual traffic. If the application sends the traffic over another interface,

the chosen server may be suboptimal, which can lead to significant performance degra-

dation. Yet, the resolver library of the vanilla BSD Socket API does not allow us to

isolate results acquired via multiple paths. For a more detailed discussion, see [25].

Furthermore, the communication units used by vanilla BSD Socket API are implied

by the transport protocol and must match the socket type passed to the socket()

call. Thus, for stream-based communication protocols like TCP, the application can

only choose a path and endpoint for the whole stream. But communication units of

actual applications are often not aligned with the communication granularity of the

transport protocol. For example, requests in HTTP —the dominant protocol on the

Internet [26, 27]— correspond to a message based communication performed over a

stream transport. An HTTP based application can choose for each request to either

open a new TCP connection or reuse an existing one. The former allows choosing

2Otherwise, the OS uses the IP address of the interface via which it routes to the given destination.

9

2. Background

Application

Socket API

MPTCP

SubflowSubflow Subflow

WiFi 3G LTE

Path-Manager

Figure 2.1: Structured overview of an MPTCP connection on a device with three
network interfaces, i.e., WiFi, 3G and LTE. The individual sub-flows are full-fledged
TCP connections, isolated from the application, initiated by the MPTCP kernel code
and controlled by the path-manager.

among multiple interfaces using bind(). The latter saves 2 round-trip times (RTTs) for

the TCP handshake, a few 100 KB for the Transport Layer Security (TLS) handshake

(if applicable), and time spent in TCP slow-start. Therefore, the abstraction provided

by the vanilla BSD Sockets does not assist the application in distributing traffic among

multiple paths. Rather, it puts a huge burden on applications that want to do so.

In conclusion, these problem areas demonstrate that the vanilla BSD Socket API is not

well suited to enable multiple access connectivity in an easy and portable way.

2.3.1 Multi-Path TCP

MPTCP is a set of kernel extensions to regular TCP[28]. It allows TCP connections to

use multiple paths simultaneously. This means a single TCP connection is split up into

several sub-flows, which represent full-fledged TCP connections by themselves which

can be routed independently (see Figure 2.1). The possible gains are manifold. In a

data center that is connected to multiple upstream providers, a server can increase its

maximum throughput by simultaneously creating and maintaining multiple connections

to a single endpoint. On the other end, mobile phones and an increasing number of

notebooks have multiple network interfaces, which can be bundled to achieve better

Internet connectivity without connection losses. This is due to MPTCP’s ability of

adding and removing sub-flows on demand, meaning that interfaces can be removed

without affecting the connection as long as a single sub-flow is available. However,

for this to work both ends of the communication need to be MPTCP-capable and no

middle-box may alter the packets in a way that removes the MPTCP-added information.

10

2.3. Challenges Imposed by BSD Sockets

In general MPTCP establishes multiple TCP connections (including the 3-way hand-

shake) and schedules the transmission of packets through all of them. In the current

implementation, any application that wants to utilize MPTCP does not have to be

modified but in turn is not able to interface with or control MPTCP. This is possible

since applications use the normal socket API, but a MPTCP enabled kernel adds the

TCP option MP CAPABLE into the SYN packet in order to negotiate multi-path ca-

pabilities [29]. Additionally a hash (token) is calculated from random keys that were

exchanged during the connection (session) establishment to be able to identify connec-

tions. Now, if client and server are multi-path capable, sub-flows will be created by the

path-manager, using the token to identify membership to a session, by establishing new

TCP connections equipped with the MP JOIN option.

MPTCP and the TCP stack are heavily interwoven. When a new session is established,

the MPTCP kernel code copies all relevant information (e.g. struct sock) from the client

socket to its internal data structure (e.g. struct mptcp cb). This structure contains the

identifying token, a list of sub-flows, the master socket, meaning the socket that the

application sees, and all interfaces (local and remote) that can be used by MPTCP.

Path-managers are part of the MPTCP kernel modules that control how new sub-flows

are created. There are three path-managers: full-mesh, ndiffports and binder. ndiffports

is primarily used for testing purposes, as it does not utilize the ability of MPTCP to use

multiple interfaces. It is nevertheless a convenient tool for specific scenarios, for example

a link which limits the bandwidth of single TCP connections. It uses one interface and

creates all sub-flows on it using different ports. binder is the newest path-manager that

implements source routing for community networks [30], making it only useful for special

purposes. The last path-manager, which is used in this thesis, is full-mesh. It is the

most general purpose path-manager available. It creates a full mesh of sub-flows on

all available local and remote interfaces and uses the structure mptcp cb to determine

which interfaces are available for establishing new connections. Each sub-flow is created

in kernel space, meaning without the socket API, and is identifiable via the hash token.

2.3.2 Socket Intents with Multi-Path TCP

MPTCP is an orthogonal approach to Socket Intents to take advantage of multiple

access networks. MPTCP splits a TCP stream across multiple network interfaces and

can achieve almost the combined bandwidth for large transfers.

Since Socket Intents operate on request/response pairs and MPTCP offers a connec-

tion abstraction we can combine both approaches and (a) make MPTCP available via

Socket Intents and (b) enable the Socket Intents Policy to control the usage of MPTCP.

11

2. Background

Table 2.1: Socket Intents Types

Intent Type Data Type Applicable Granularity
Message Stream

Traffic Category Enum ✓
Size to be Sent Int (bytes) ✓ ✓
Size to be Received Int (bytes) ✓ ✓
Duration Int (msec) ✓
Bitrate Sent Int (bytes/sec) ✓
Bitrate Received Int (bytes/sec) ✓
Burstiness Enum ✓
Timeliness Enum ✓ ✓
Disruption Resilience Enum ✓ ✓
Cost Preferences Enum ✓ ✓

As a result, Socket Intents promises good results for both small communication units—

which the policy can distribute—as well as large ones—which MPTCP can handle.

To achieve (a) it is sufficient to use an MPTCP enabled kernel. To support (b) we modi-

fied the Linux MPTCP implementation to enable communication between the Socket In-

tents Policy Manager in user-space and the MPTCP path-manager in kernel-space via

Netlink [31] sockets. If a policy decides to use MPTCP it selects an interface for the ini-

tial TCP connection of MPTCP. If MPTCP is available the path-manager notifies the

policy, which can then add additional connections—the sub-flows. MPTCP can then

distribute the TCP stream over all chosen interfaces. For more details on our imple-

mentation, we refer to [32]. Using MPTCP allows more fine-grained bandwidth sharing

than on a per request/response basis while the policy can circumvent the head-of-line

blocking problem of MPTCP for small objects.

2.4 Video Streaming

Streaming video over HTTP typically entails using either DASH [33] or HTTP live

streaming (HLS) [34]. Although DASH and HLS have similar requirements regarding the

video format, we restrict our attention to the codec-agnostic DASH. The video data itself

is usually encoded as H.264, the most widely used video codec [35, 36], and encapsulated

in an MP4 container. The video file is split into equal-duration, typically 2-10 s long,

segments. A manifest file specifies the names and locations of the video segments stored

on the server, the available quality levels or bitrates per segment, encoding details, and

other relevant metadata. Streaming via DASH begins with the client requesting the

12

2.5. Codecs

manifest file from the server [33]. To handle varying network conditions, clients utilize

an ABR algorithm to determine which of the available quality levels of a segment to

download.

2.5 Codecs

The H.264 codec defines three types of Frames: Intra-coded (I), Predicted (P), and Bi-

directional predicted (B). Prediction refers to a frame using other frame(s) as reference

to reduce the amount of data it contains; the referrer only stores the difference with

respect to the reference(s). References between frames are at macroblock granularity.

I -Frames do not have references to any other frames, and can, hence, be rendered

instantaneously by the client. A P -Frame, in contrast, depends on one or more previous

frames, of any type, and a B -Frame depends on both previous and following frames. The

loss of a frame that is referenced by many other frames introduces errors in decoding

the referring frames, which in turn results in visible impairments.

Technically, the H.264 codec defines slices, which refer to spatially distinct regions of a

frame, and predictions happen at the slice level [37]. Since frames in our videos consist

of only one slice, we use the generic term, frames.

2.6 Adaptive Bitrate Algorithms

Adaptive Bitrate (ABR) algorithms guide the client in selecting a video quality level

that is appropriate for the current network conditions (e.g., throughput). Quality levels

correspond to bitrates that are known a priori. Thus, the algorithms help a client to de-

termine the highest segment quality that can be downloaded on time (i.e., before it must

be rendered by the client) under the estimated conditions. There are 3 categories of ABR

algorithms: throughput-, time-, and buffer-based. Throughput-based ABR algorithms,

(e.g., PANDA [38]), base their decision, on estimated network throughput. Time-based

ABR algorithms, (e.g., ABMA+ [39]), use segment download times, while buffer-based

algorithms rely solely on playback buffer occupancy [40]. Recent hybrid ABR algorithms

(e.g., Model predictive control (MPC) [41] and the Buffer Occupancy based Lyapunov

Algorithm (BOLA) [42]) combine throughput and buffer-based approaches to improve

performance.

13

2. Background

2.7 QoE Metrics

QoE metric are divided into two main categories: subjective and objective measures [43].

The former is used traditionally, e.g., in surveys, and, given their nature, allow direct

measurement of people’s sentiment towards, in this case, the quality of experience when

watching a streamed video. Subjective tests, involving human test subjects are, though,

expensive and time consuming. To automate and streamline quality assessment, objec-

tive metrics can be used, for which a model is created to estimates the responses of human

subjects. The structural similarity (SSIM) is a widely used objective full-reference QoE

metric that captures the visual quality of a video stream [44]. To calculate SSIM scores,

each frame is compared to its pristine version, the difference is scored and averaged over

all compared frames (e.g., a segment). Such an average is widely used and is well-suited

for our evaluations: 3 low-score (e.g., SSIM=0.6) frames in a 4 s segment suffice to lower

the total segment score to drop below excellent (e.g., SSIM< 0.99).

As with any metric, SSIM has its shortcomings. In our case, it may mask the loss, if any,

of temporal smoothness of the video. Alternatives to SSIM, including ITU p.1203 [45]

and, the more recent, VMAF [46], exist. Both VMAF and p.1203, however, use trained

models to assess the visual quality of videos delivered without any loss (i.e., via reliable

transport). Unlike SSIM, utilizing these models on videos with corrupted frames will

result in undefined model behavior and may yield invalid results [45, 46], which is also

confirmed by the authors of p.1203 [47]. We focus, hence, on SSIM in our tests, but

also use Video Multi-Method Assessment Fusion (VMAF) and Peak signal-to-noise ra-

tio (PSNR), wherever feasible, to demonstrate that the Video-streaming Optimization

Across Enriched Layers (VOXEL) is QoE-metric agnostic.

SSIM, as a full-reference metric, requires a pristine reference copy of the material that

is to be examined. Ideally this reference copy is uncompressed source video material, to

not introduce any artifacts. We do not use the original uncompressed source video as

reference, as compression-artifacts are orthogonal to this study. We measure, instead,

the difference between the highest quality a user could see and the quality that they

actually see. An ideal video playback at the highest encoding would, thus, result in a

perfect QoE score. Any deviation from the highest quality would result in a reduced

QoE which can be captured in the QoE score accordingly. The quality score, hence,

indicates how close the stream’s quality is to the highest feasible quality.

Low-resolution video will be scaled up to the native resolution of end-users’ devices,

potentially degrading visual quality. To accurately capture the QoE of users with high-

resolution devices, we chose 4K as the pristine reference in the SSIM, VMAF, and PSNR

calculations. We chose 4K because more than half of the TV’s shipped in 2018 are native

14

2.7. QoE Metrics

4K [48] and half of YouTube’s recommended mobile devices have ≥1440 p screens [49].

YouTube also recommends uploading content in up to 4K [50].

15

Chapter 3

Socket Intents

The separation of network layers makes it undesirable for an application to have knowl-

edge about the underlying transport it uses. We argue that this separation is detri-

mental, e.g., end-user devices are equipped with multiple network interfaces, with vastly

different characteristics and protocols like MPTCP exist, yet the transport is unable

to communicate their capabilities to an application. Vice versa, a multitude of differ-

ent kinds of content with different communication needs exist, e.g., receiving the latest

tweets quickly requires a low latency connection but needs hardly any throughout, yet a

background download needs as much bandwidth as possible, but not on a volume limited

connection. Having transports with different characteristics which can not coordinate

with applications with vastly different needs make it obvious that there is a need for

sharing information across layers to improve content delivery.

We start tackling this information sharing issue with Socket Intents [23], an easy but

coarse-grained approach.

Socket Intents, as described in §2.2, allow applications to share their knowledge about

their communication pattern and express performance preferences in a generic and

portable way. With Socket Intents, an application developer can inform the OS about

what the intended of the communication is and what they know about the communica-

tion itself:

• Preferences to whether to optimize for bandwidth, latency, or cost.

• Characteristics of expected packet rates, bitrates or the size of the transferred

content.

• Expectations towards path availability or packet loss.

• Resilience of the application against certain error cases.

17

3. Socket Intents

Those intents are soft requirements, e.g., transport protocol guarantees or QoS style

reservation. They are, however, crucial for the OS to do path and destination selection

on behalf of the application.

We demonstrate, In the remainder of this chapter, how MPTCP can be integrated

into Socket Intents on top of vanilla BSD Sockets by designing a system that enables

automated multi-path and destination selection within the OS and evaluate the impact

of Socket Intents on Web performance.

The existing prototype implementation [10] extends the BSD Socket API and demon-

strates the feasibility of automated path and destination selection within the OS.

Our evaluation demonstrates that using applications’ knowledge for multi-path selection

can largely improve applications’ performance. We, therefore, use the Size to be Received

Intent of individual Web objects as input to our path selection logic for the Earliest

Arrival First (EAF) policy and for multi-path selection for the Earliest Arrival First

with MPTCP (EAF-MPTCP) policy. EAF predicts the arrival times of the requested

objects for all available paths and assigns each request to the path it is predicted to

complete on first.

Our main contributions, described in the following chapters, are:

• We extend the existing Socket Intents prototype [22, 23] to support and control

MPTCP.

• We introduce the EAF and EAF-MPTCP policies as informed multi-path selection

strategy for Web objects. Based on the information provided by the Size to be

Received Intent, the policies assign each request to the set of paths it is predicted

to complete on first.

• We study the benefits of using Socket Intents with the EAF policy in an extensive

evaluation using a custom flow-based simulator. Our simulation utilizes a full

factorial experimental design and covers the Alexa Top 100 and Top 1000 Web

sites over a wide range of network characteristics resembling typical residential

broadband and cellular network characteristics.

3.1 Combining Multi-Path TCP with Socket Intents

Modern end-user devices are always equipped with at least two network interfaces on

different mediums, i.e., WiFi and cellular. The typical approach is to simple disable any

cellular data if the device is connected to a WiFi network.

18

3.1. Combining Multi-Path TCP with Socket Intents

We extend the existing Socket Intents prototype to make use of MPTCP to split a

TCP stream across multiple paths. This split allows bandwidth aggregation for large

transfers and complements a per-request scheduling. As a result, Socket Intents can

choose appropriate interfaces for both small communication units—which a policy can

distribute appropriately—as well as large ones— which MPTCP can handle. This in-

formed distribution of communication units via the Socket Intents Policy avoids opening,

for example, MPTCP sub-flows on already crowded or high latency interfaces, and, thus,

avoids head-of-line blocking for small objects.

On a high level, we added an additional path-manager to the Linux MPTCP imple-

mentation, to enable the Socket Intents Policy to control the usage of MPTCP. Our

user-space Multi Access Manager uses Netlink [31] sockets to communicate with the

kernel-space MPTCP path-manager. If a policy decides to use MPTCP it selects an in-

terface for opening the TCP connection, which acts as the the initial MPTCP sub-flow.

After the connection is fully established and the connection is MPTCP-capable, the

path-manager notifies the Multi Access Manager, which starts the policy which chooses

to add sub-flows on specific interfaces. MPTCP then distributes the TCP stream over

all chosen interfaces.

In more detail, implementing the combining of the MPTCP framework and the Multi-

Access Management (MAM) framework required a detailed understanding of how a

MPTCP path-manager works. The existing path-managers, at the time, utilized all

available network interfaces without any means to alter this behavior. In order to se-

lect a subset of all available interfaces, it was necessary to add means to control the

path-manager to create sub-flows on demand. A controllable path-manager requires

an interface to communicate with MAM and its decision making point, the Multi Ac-

cess Manager to pass the selected interface subset to MPTCPs kernel-module.

As stated, netlink [51], a Linux standard inter-process communication (IPC) interface,

was used as the communication channel between MAM in the user-space and MPTCP

in the kernel-space.

MAM was originally designed to be stateless, though, in order to accommodate a de-

layed, or on-demand, creation of connections the information necessary to establish a

connection, or specifically a sub-flow, needs to be cached. As MPTCP manages all

sub-flows as one logical connection, connection handover is achieved by simply closing

existing sub-flows and establishing new sub-flows on different interfaces. Although the

initial sub-flow does not need to be handled differently, i.e. closing it, while another

sub-flow is connected will keep the logical TCP connection established, it is not created

in the MPTCP path-manager. The initial sub-flow is, instead, created via the main

19

3. Socket Intents

socket of the client application and binding it to the desired interface has to be handled

by the MAM itself.

3.2 Policy Design

Integrating MPTCP into the MAM prototype requires MPTCP-aware policies. To create

MPTCP-aware policies, we first have to discuss the policy design in general. Socket In-

tents Policies are entities that decide which access network to use for a given communica-

tion unit. They range from simple static configurations to complex dynamic algorithms

that aim to take full advantage of all available information.

To make informed decisions, these Policies require knowledge about the intents of an

application as well as interface parameters and statistics, including byte counters and

transport protocol state. Within its decision logic, the policy needs to respect the

optimization of external communication partners, i.e., to only rely on DNS replies from

the same interface (see §2.3).

For the sake of simplicity, we chose not to support per-application policies, but rely on

the information provided by Socket Intents. This allows us to treat communication units

of a single application with different communication needs appropriately.

As a first application-aware policy, we introduce the EAF policy: This policy is based

on the idea that downloading objects of different sizes can benefit from different path

characteristics, as download time largely depends on the object’s file size as well as the

latency and throughput of the path. We use the Size to be Received Intent, which

allows an application to provide hints for the expected size of a communication unit,

e.g., an HTTP client may hint about the size of an object to be transferred. Assuming

the availability of at least two access networks which vary in delay and bandwidth, our

intuition is that if the communication unit is small, the policy should choose the interface

with the lower latency. If the communication unit is large, the interface with the larger

available throughput should be preferred. Each unit is, thus, scheduled on the interface

with the earlier arrival time, which, in turn, contributes to a shorter overall completion

time.

3.2.1 Implementation Considerations

A policy implements logic for interface selection, i.e., selecting an appropriate source and

destination address pair. The actual Socket Intents Policy is implemented as modules of

20

3.2. Policy Design

the Multi Access Manager. It is shared by all applications of a host that use the proto-

type’s socket interface, as their individual needs are communicated using Socket Intents

and are not realized via individual policies. A policy may pick a suitable interface for

each individual communication unit. Given a set of open sockets and a chosen interface,

for efficiency, a policy tries to select and, thus, reuse that socket that uses the chosen

interface. If no set is given or if no suitable socket is found, the policy advises the appli-

cation to open a new connection and suggests an IP address of the chosen interface as

source. When a policy has decided on a source and destination address pair, it instructs

the Multi Access Manager to send this information back to the socket library. With

MPTCP, the policy may have to keep track of the requests to aid, e.g., the setup of

MPTCP sub-flows. The Single Interface Policy, for example, always chooses a partic-

ular, statically configured interface. The Round Robin Policy uses multiple interfaces,

one after the other, in a round robin fashion.

The more complex EAF policy uses the Size to be Received Intent to predict the com-

pletion time of a communication units on each available interface and chooses based on

the arrival time. For EAF the Socket Intents Prototype uses estimates of the minimum

smoothed round-trip times (SRTT) per prefix and the available bandwidth on the in-

terface. EAF estimates the available throughput by dividing the maximum observed

interface bandwidth by the number of already scheduled objects on that interface.

We divide the file size by the estimated available throughput to approximate the down-

load duration. We add one RTT if a connection can be reused and two RTTs if a new

connection has to be established1. Finally, the interface with the shortest predicted

arrival time is chosen.

3.2.2 MPTCP-aware Policies

Using this knowledge of designing and implementing policies, we now describe policies

that utilize MPTCP. The first MPTCP-aware MAM policy is the default interface policy.

The default interface policy allows to select a single interface and establishes an MPTCP

connection on it. The selected interface can then be changed at any point in the lifetime

of the connection, e.g., when the network conditions on the interfaces changes. Consider

a user starting an application on their phone at home which is connected to a WiFi and

an LTE network. In case the mobile network connection is volume-limited, it is desired

to exclusively use the WiFi connection. In case the user leaves their home, though, a

seamless handover to the LTE network needs to happen to not interrupt the applications

network connections. This handover can be realized with the default interface policy.

1We do not consider TLS handshakes.

21

3. Socket Intents

The second implemented MPTCP-aware MAM policy is the file-size policy. The file-size

policy is used to select sets of interfaces depending on the size, hence the name, of the

data, e.g., HTTP traffic, to be transferred. Modern websites consist of many assets of

vastly different sizes, all transferred individually. Depending on the size of the asset and

the latency of the interfaces it can be beneficial to either select only one low-latency

interface or combine the throughput of multiple interfaces.

3.3 Data Transfer Simulator

To evaluate the benefits of seamlessly using multiple interfaces and scheduling requests

according to our policies at scale and across a wider range of network properties and

Web pages, we build an event-based data transfer simulator. As evaluation metric we

use page load time2, which has a high influence on the end-user QoE [52]. Additional

metrics, e.g., from Kelton et. al. [53], can easily be implemented in the simulator.

3.3.1 Design

The basic operation principle of our simulator is to take a Web page, a Socket In-

tents Policy and network interfaces as input, and to calculate a page load time. The

Web page includes all Web objects and their dependencies (represented as a HAR files

— see Section 3.4.3), the list of network interfaces include their path characteristics.

The simulator takes the input and replays the Web page download by transferring all

Web page objects while respecting their inter-dependencies. It uses the given policy to

distribute the object transfers across the given interfaces and calculates the total page

load time.

Since the simulator has global knowledge, it knows all object inter-dependencies a priori.

It can, thus, decide when a transfer can be scheduled, i.e, whether all objects that it

depends upon have already been loaded. To schedule a transfer, we assign it to a

“connection”. The scheduling is done by the policy module, which returns either an

existing TCP or MPTCP connection, an interface, or a list of interfaces to use for

opening a new connection, or postpones the transfer if the limit of parallel connections

has been reached. A connection is reused if the host name matches and it is either idle

or it is expected to become idle before a new connection can be established.

2Here we focus on network time, i.e., the total time to download the objects of the Web page. The
complete time to display a Web page also includes times for DNS resolution, page rendering and possibly
client-side JavaScript computation.

22

3.3. Data Transfer Simulator

The simulator then determines the next event for this connection, such as the completion

of a transfer or a TCP event. TCP events are triggered by connection handling, TLS

handshake, changed available bandwidth share, and once per RTT during slow-start.

When a transfer completes, the simulator records the time, marks all transfers that

depend on it as enabled, and schedules them. After the last transfer finishes, the total

page load time is reported.

The simulator supports persistent connections with and without pipelining for TCP as

well as MPTCP connections across multiple interfaces. It uses a default connection time-

out of 30 seconds and limits3 the number of parallel connections per server to 6 and the

overall number of connections to 17. We simulate TCP slow-start using a configurable

initial congestion window size with a default value of 10 segments [54]. Our motivation

for simulating slow-start is to generate more realistic load times especially for small

objects, which are common on Web pages, when they are downloaded on high latency

links, which are common in access networks. To simulate slow-start and fair bandwidth

sharing, we keep track of the current throughput for each connection. The throughput is

updated according to the TCP slow-start specification and is capped by the congestion

window or the available bandwidth share of that interface to assure TCP fairness4. Our

underlying assumption is that TCP tries to fairly share the available bandwidth between

all parallel connections [55]. Rather than fully simulating the congestion avoidance of

TCP we assume instantaneous convergence to the appropriate bandwidth share. The

available bandwidth share of each interface is adjusted by each connection event for

that interface if needed. The time of the next event is then adjusted accordingly. For

MPTCP, our simulator aggregates the bandwidth of the sub-flows by simulating them

as separate TCP flows. We do not implement a coupled congestion control, as it is not

required, as the network scenario we use in our evaluation, see §3.4.1, does not contain

a shared bottleneck.

3.3.2 Implementation

We implemented our data transfer simulator as a heap-based discrete event simulator.

It consists of approximately 3000 lines of Python code and is available under a relaxed

CRAPL license5. It models the process of loading a Web page by keeping track of the

status of the transfers, connections and interfaces.

3These values correspond to the defaults of the browser we use to retrieve our workload.
4In our simulator, a connection leaves slow-start once it reaches the available bandwidth share and

never returns to slow-start.
5https://github.com/fg-inet/dtsimulator

23

https://github.com/fg-inet/dtsimulator

3. Socket Intents

Each transfer corresponds to a Web object. A Web object has a size, a relationship

to other transfers, the hostname of server where the object is located and an indicator

whether the object was transferred via HTTPS.

A connection contains transfers and estimates and updating their completion times.

Connections also simulate (MP)TCP. In case of MPTCP, we maintain a master connec-

tion and per-interface sub-flows.

The interfaces bundle connections and calculate the available bandwidth shares.

The transfer-manager keeps track of all transfers and informs a policy if a transfer can

be scheduled.

The policy is the main decision-making entity of the simulation. A policy selects the

most appropriate set of interfaces to use or which connection to re-use for each transfer.

Once a connection or interface set is chosen, the policy notifies the transfer-manager to

schedule the transfer.

3.3.3 Web Object Dependencies

Web objects can not be schedules arbitrary, due to their interdependence. We, thus,

derive the order of the objects from the interdependence gathered from HAR files, see

Section 3.4.3. While identifying all objects of a Web page from the HAR files is trivial this

does not apply to all object dependencies. It is straightforward to extract some object

dependencies from the base page, the HTML document, and the client-side Document

Object Model (DOM). JavaScript or other Web objects, however, can modify the DOM,

by adding or removing objects, at any point during the page load. For example, when

using JavaScript to dynamically load images, the simulator may not start downloading

the images before the JavaScript object itself has been retrieved and, more importantly,

been executed.

We decided against using sophisticated systems to derive object interdependence, e.g.,

[56], since their focus is on finding the true dependency tree to speed up future down-

loads. Using these dependencies, thus, often leads to much more optimistic results com-

pared to the capabilities of current browsers. Ensuring compatibility, we, instead, use

a more conservative heuristic. We identify the dependencies from the download times

contained in the HAR files. This method is feasible, since we use a non-bandwidth

limited client to gather the HAR files. Given that a web browser cannot start a new

transfer before finishing the download of an object that the new transfer depends upon,

we assume that Web objects that are downloaded in parallel do not depend on each

other. The same holds true for an object download that has started before a previous

24

3.3. Data Transfer Simulator

object download has finished. In other words, an object can not depend on a partial, or

not yet fully downloaded, object.

Since the simulator tries to provide an upper bound of the benefits it relies on its global

knowledge about all currently active transfers. The latency and maximum interface

bandwidth, as well as the size of the objects for the Size to be Received Intent, are

known a priori. Within the simulation, we add one RTT if a connection can be reused,

two RTTs if a new connection has to be established, and two additional RTTs for each

TLS handshake.

Socket Intents Policies can use transfer predictions and policies can, thus, reuse the

simulator logic to obtain an estimate of the completion time given the current state and

an interface/connection option. This reuse is realized by partially cloning the simulator’s

state, including all currently active transfers, and simulating the completion time for that

transfer.

3.3.4 Policy Realization

In the following we give more detail of how our policies are actually implemented in the

simulator.

Single Interface. The policy always chooses a particular, statically configured inter-

face.

Round Robin. The policy uses multiple interfaces in a round robin fashion.

Earliest Arrival First (EAF). The policy (see § 3.2) uses the Size to be Received

Intent to predict the completion time for each available interface. The prediction is

based on estimating the available bandwidth as the difference between the current and

the maximum observed throughput and the interface latency. If additional downloads

have been scheduled on an interface, since the most recent measurement, we reduce

the available bandwidth in our calculation accordingly. We divide the file size by the

estimated available bandwidth to approximate the download duration. In other words,

the policy predicts the arrival time of each transfer by “scheduling” it on each candi-

date interface and computing the arrival time. Finally, the interface with the shortest

predicted arrival time is chosen.

MPTCP. The policy uses MPTCP with the vanilla full-mesh path manager across all

interfaces. It presumes that MPTCP sub-flows can be opened on all local and remote

interfaces. With two network interfaces at the client and one interface at the server, the

policy establishes two sub-flows. The interface for the initial sub-flow is configurable.

25

3. Socket Intents

End-User Device ServersInternet

Path A

Path B

Figure 3.1: Simplified network scenario with an end-user device equipped with two
network interfaces, one resembling WiFi and one a cellular connection. Both interfaces
are connected to the internet. The depicted servers resemble content server connected
to the internet with high bandwidth, low latency links.

We considered two variants: starting the initial MPTCP sub-flow on the same stati-

cally chosen interface (MPTCP if1) or always on a different, randomly chosen interface

(MPTCP rnd). This policy considers neither the Socket Intents nor the current network

performance.

Earliest Arrival First with MPTCP (EAF-MPTCP). The policy combines the

EAF Policy with MPTCP. In addition to predicting the arrival time for each interface, it

also considers MPTCP for all possible interface combinations by establishing sub-flows

accordingly. The intuition is that MPTCP is beneficial for some cases but not all cases.

This policy can, for example, avoid scheduling small communication units on a high

latency interface. We expect that this policy to give the best results.

We test the basic functionality of the various simulator policies using various traffic pat-

terns that can take advantage of MPTCP , EAF , and EAF-MPTCP , with and without

connection reuse. For these cases we manually calculate the expected page load times

and check the simulator results against them. In addition, we use extensive assertions

and cross checks within the simulator to ensure the consistency of the results.

3.4 Evaluation Scenario

To evaluate Socket Intents we assume the following network scenario, which serves as

the basis for our simulator.

3.4.1 Network Scenario

Our motivation for the network scenario is that, for mobile devices, access networks

almost always are the performance limiting bandwidth bottleneck introducing major

26

3.4. Evaluation Scenario

delays. Internet backbone delays are in the order of a few milliseconds, while access

delays are typically significantly larger. With increasing access network capacities, the

bottleneck might be in the core in some cases. Capacities are, however, not increasing in

all regions of the world. Our network scenario, see Fig. 3.1, thus, consists of a client, Web

servers, and the paths between them. We presume that all Web servers are reachable

via both network paths. Moreover, we choose to neglect the RTT variability introduced

by the Internet, since queuing delays on Internet core links (≥10 Gbit/s bandwidth) are

negligible [57]. Therefore, we capture the path characteristics as “interface” RTT and

bandwidth. To model connection reuse, we assume a separate server per hostname.

3.4.2 Experimental Design for Simulator Evaluation

To evaluate the potential benefits of using Socket Intents across a wide range of param-

eters, i.e., with different policies under different network scenarios and for different Web

pages, we use a full factorial experimental design. Each factor can, in principle, influence

the page load time. For each factor, we consider multiple values that cover the possible

value ranges. By simulating all combinations, see Table 3.1, we run 9M simulations.

In our experimental design, the primary factor is the Policy used with all of our

Socket Intents Policies, see Section 3.3.2, as levels. The Web pages of our workloads,

see Section 3.4.3, are the second factor: Here, the levels are the different Web pages

(with their 26 repeated crawls for Alexa Top 100 and one crawl for the Alexa Top 1000).

The remaining four factors describe the scenario: Since our simplified network scenario

as illustrated in Fig. 3.1 consists of one client using two access networks and various

Web servers which are reachable via both interfaces, these factors are: Interface 1

Table 3.1: Levels of the Factorial Experimental Design.

Factor Levels

Policy: Interface 1 , Interface 2
Round Robin (starting on if 1),
MPTCP starting on Interface 1 (MPTCP if1)
or on a random interface (MPTCP rnd),
Earliest Arrival First (EAF), or
EAF with MPTCP (EAF-MPTCP).

Web page: Alexa Top 100 and Top 1000.

Interface 1 RTT: 10, 20, 30, or 50 ms.
Interface 1 Bandwidth: 0.5, 2, 6, 12, 20, 50 Mbit/s.
Interface 2 RTT: 20, 50, 100, or 200 ms.
Interface 2 Bandwidth: 0.5, 5, 20, or 50 Mbit/s.

27

3. Socket Intents

RTT and Bandwidth as well as Interface 2 RTT and Bandwidth. The levels

for these were chosen to reflect typical interface characteristics: We consider mobile

devices that have WiFi as well as cellular connectivity. Interface 1 should resemble

the possible characteristics of fixed broadband connectivity (e.g., DSL or cable) and

Interface 2 should resemble the range of possible 3G/LTE coverage6. This results in the

levels shown in Table 3.1.

3.4.3 Web Workload

To include a wide range of Web pages, we crawl the landing pages of the Alexa Top 100

Web sites on 26 consecutive days starting on December 07 2015 and the Alexa Top 1000

Web sites on October 10 20167.

As browser we use Firefox version 38.4.0 automated with Selenium and the Firebug 2.0.13

and NetExport 0.9b7 plugins to retrieve the objects and to record the crawled Web pages

in the HTTP Archive (HAR) format. Each HAR file contains a summary of all objects

of the page as well as their sizes, types, origins (remote sites), and timings. We focus

on the mobile version of the pages by overriding the user-agent of our Firefox browser

to impersonate a generic Android mobile device.

We use a single vantage point with a high available network bandwidth, i.e., a virtual

machine within a university network.

While most of the pages comprise between 1 and 50 objects there are some with more

than 100 objects or even up to 260 objects. Many Web pages also have a low median

object size. Moreover, the number of hosts that have to be contacted ranges from a single

one to more than 20 with a median of 7. The total size of the Web pages is between

23.1 KB (5th quantile) and 1.8MB (95th quantile) with a large fraction of pages below

300 KB. These results are in line with previous work [19, 20].

For comparing with a less complex Web workload, we add handcrafted Web pages to

our workload. These pages consist of a different number of objects (ranging from 2 to

64) of various sizes (1 KB to 1 MB), and a mix of these objects.

6Costs or restrictions of the data plan are beyond the scope of this paper, but could easily be taken
into account by an elaborate policy.

7http://www.alexa.com/topsites

28

http://www.alexa.com/topsites

3.5. Evaluation

3.5 Evaluation

To explore the benefits of seamlessly combining multiple access networks for speeding

up Web page load time, we evaluate Socket Intents.

We use our simulator to explore speedups across a wide range of web pages and network

characteristics. Moreover, we validate our simulator against the existing Socket Intents

proxy in the existing testbed to show that the speedups are comparable. We show the

possible performance benefits of Socket Intents and highlight in which cases they are

most prominent.

3.5.1 Validation of our Simulator with the Proxy

lo
a
d
 t
im

e
[s

]

0

1

2

3

4

5

6

7

4*10KB 32*1KB 32*10KB 4*100KB mixed 32*100KB

Simulated

Testbed (with proxy)

Testbed (without proxy)

(a) Single Interface (50ms, 6Mbit/s)

lo
a
d
 t
im

e
[s

]

0

5

10

15

20

25

4*10KB 32*1KB 32*10KB 4*100KB mixed

Simulated

Testbed (with proxy)

Testbed (without proxy)

(b) Single Interface (10ms, 0.5Mbit/s)

lo
a
d
 t
im

e
[s

]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4*10KB 32*1KB 32*10KB 4*100KB mixed 32*100KB

Simulated

Testbed (with proxy)

(c) EAF with symmetric shaping

Figure 3.2: Comparison of simulated load time and actual load time in the testbed
with different synthetic workloads. There are differences in the y axes.

We validate our simulation results against the existing Socket Intents proxy by measuring

the Web page load time of our workload in the existing testbed with similar traffic shaper

settings as the interface parameters we use in the simulator. In Figure 3.2 we compare

the simulated and the actual load times for the handcrafted workloads of different sizes,

showing the median load time and the 95% confidence intervals. The mixed workload

consists of 32 objects of 1KB, 16 objects of 10 KB, 2 objects of 100 KB and 2 objects of

200 KB. Using a single interface with an RTT of 50 ms and a bandwidth of 6 Mbit/s,

29

3. Socket Intents

−20 −10 0 10 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

P
D

F

Actual − simulated page load time [s]
Relative difference of page load times [%]

Figure 3.3: Simulator validation: Relative and absolute difference of simulated vs.
actual page load time.

see Figure 3.2a, we see slightly higher load times on the testbed both with and without

the proxy, especially for large workloads. Using a single interface with only 0.5 Mbit/s,

see Figure 3.2b, we do not get a page load time for the workload with 32 objects of

100 KB because the browser times out after 10-20 seconds, so we do not show it in

this plot. Using our EAF policy with symmetric shaping (50 ms and 6 Mbit/s on one

interface, 50 ms and 5 Mbit/s on the other), we cannot test the case without proxy,

as we cannot use EAF without the proxy. Both our simulator and the proxy in the

testbed show speedups, see Figure 3.2c. We get similar results for RTTs up to 200 ms

and bandwidths up to 50 Mbit/s and similar load times with and without the proxy.

The speedups show that the two step download in the proxy does not have a major

influence on the load time. The simulator is, overall, more optimistic than the testbed,

however, the differences are quite small. These small differences can be explained by

the following observations: First, the gzip transfer encoding conflicts with range re-

quests: Sometimes the server sends the whole object even though only the initial part

is requested. First, disabling compression for the initial request is not feasible as it

eliminates compression also for the second request since the content-range refers to the

range after compression. Second, the simulator presumes that all independent transfers

start immediately, which is not always the case in practice. This can skew timings,

in particular for small workloads. These effects are independent from the use of the

Socket Intents Prototype. Accordingly, we can use the simulator to conduct a realistic

comparison between scenarios with and without Socket Intents.

3.5.2 Simulator vs. Actual Page Load Time

We compare the actual page load time to the simulated one for all Web pages of our

workload. Given that our crawl uses a machine with a single interface we use the single

30

3.5. Evaluation

interface with our policy “Single Interface” accordingly. To determine the interface

parameters, we estimate the available bandwidth as well as the RTT to the servers of

the actual download. To estimate the available bandwidth, we use all objects larger

than a minimum size of 50 KB. We take into account that several of these transfers can

occur in parallel. Using the median of the estimated bandwidth results in a typically

used bandwidth of 67.13 Mbit/s – this suggests that none of the transfers were actually

bandwidth bound. To estimate the RTT, the simulator issues a series of pings for each

Web page. The median RTT of all servers of that Web page is then used as an estimator

for the interface for the validation run for that Web page.

The simulator, as well as the validation, uses several simplifications. First, the simulator

assumes that all Web objects share a single network bottleneck and that the RTT is the

same for all servers. In reality, some embedded objects of Web pages are fetched from

hosts with different network bottlenecks and RTTs. We use ICMP ping rather than

TCP ping and the pings are not executed while the HAR files are gathered.

Figure 3.3 shows the absolute as well as the relative differences of the simulated vs.

the actual page load times for all Alexa Top 100 Web pages from Section 3.4.3. The

main mass of both distributions is around zero, indicating that the simulated page

load times are very close to the actual load times. This closeness is confirmed by the

median value which is 0.3548/1.5% for the absolute/relative differences. The small

difference highlights that the simplifying assumptions of the simulator still enable us to

approximate the actual page load times and that we capture most of the intra Web page

dependencies.

There are some differences for some Web pages. We manually checked them and found

a majority is caused by differences in the estimated bandwidth, server delays, and name

resolution overhead. These differences are, e.g., related to Web back-office interac-

tions [58]. Overall, the results are rather close and show that our simulations result in

reasonable approximations of the actual Web page load time.

3.5.3 Benefits of Combining Multiple Access Networks

To explore the benefits of combining multiple access networks by using Socket Intents,

we compare the speedups of the page load times against the baseline policy Interface 1 .

The baseline policy Interface 1 resembles what most current mobile OSes do: If WiFi

is available, use it, and therefore, the fixed broadband exclusively.

Fig. 3.4a shows the empirical cumulative distribution functions (ECDF) of the speedups

achieved using a simulated Socket Intents Policy relative to only using Interface 1 , all

31

3. Socket Intents

0.01 0.10 1.00 10.00 100.00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Speedup relative to using only Interface 1 [factor]

E
C

D
F

EAF
EAF_MPTCP
MPTCP if1
MPTCP rnd
Round Robin
Interface 2

(a) Full Data Range

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Speedup relative to using only Interface 1 [factor]

E
C

D
F

EAF
EAF_MPTCP
MPTCP if1
MPTCP rnd
Round Robin
Interface 2

(b) Speedups between 1 and 5.

Figure 3.4: CDF of Speedups vs. Interface 1 for the Alexa Top 100 workload.

0.01 0.10 1.00 10.00 100.00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Speedup relative to using only Interface 1 [factor]

E
C

D
F

EAF
EAF_MPTCP
MPTCP if1
MPTCP rnd
Round Robin
Interface 2

Figure 3.5: CDF of Speedups vs. Interface 1 for the Alexa Top 1000 workload.

other parameters being equal. The ECDF shows speedups across all network scenarios

outlined in Table 3.1 based on the Alexa Top 100 Web pages and categorized by the

Socket Intents Policy used. We see that in more than 42% of the cases for EAF and 63%

of the cases for EAF-MPTCP these policies provide a speedup of more than 1, which

means that loading a Web page using these policies is faster than using Interface 1 in

the same scenario. In the remaining cases, the policies almost always provide a speedup

of 1, which means that they neither gain nor lose from using multiple interfaces. In

the speedup of 1 cases, the page load was not bandwidth limited and simply loading

the page over Interface 1 was the fastest option. Using the other interface in addition,

thus, did not provide any speedup as the EAF and EAF-MPTCP simply choose to use

Interface 1. We also see that in about 1.5% of cases EAF and EAF-MPTCP is slower

than Interface 1 which turned out to be a limitation of the simulator. In these slower

cases, the simulator fetches a single huge object via the less suitable interface while the

connection limit prevents starting a new connection on a more suitable one. Overall,

these results show that using EAF and EAF-MPTCP is a good choice in any case.

The speedups of both MPTCP policies are very dissimilar: When establishing the first

sub-flow over Interface 1 (MPTCP if1), it shows a speedup greater than 1 in 78% of the

cases and neither improvement nor penalty in the other cases. In contrast, if starting

the first sub-flow for MPTCP over a randomly chosen interface (MPTCP rnd), MPTCP

32

3.5. Evaluation

0.01 0.10 1.00 10.00 100.00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Speedup relative to MPTCP, first subflow on Interface 1 [factor]

E
C

D
F

EAF
EAF_MPTCP
MPTCP rnd
Round Robin
Interface 1
Interface 2

Figure 3.6: CDF of Speedups vs. MPTCP if1 for the Alexa Top 100 workload.

performs worse than Interface 1 in 48% of the cases and can be up to 10x slower. We

take a closer look at these effects in Section 3.5.4.

The other baseline policies, Interface 2 and Round Robin, show a penalty in about 70%

of cases as in most network scenarios Interface 2 has a much higher RTT than Interface 1.

Figure 3.4b shows the speedups between 1 and 5 from Figure 3.4a in more detail. From

our data, we find that EAF was up to 2x faster than Interface 1 in about 23% of the

cases and from 2 to 5x faster in about 11% of the cases. We even see speedups of

more than 5x in 8.5% of the cases. EAF-MPTCP and MPTCP if1 shows negligibly

higher speedups than EAF . All three policies, overall, perform similarly and can have

significant advantage over not combining multiple access networks. Finally, Fig. 3.5

shows the ECDF of the speedups against Interface 1 for the Alexa 1000. These look

similar to the ones for Alexa 100 in 3.4a. This gives us confidence that our benefits are

stable for a wide variety of different Web pages.

3.5.4 Benefits of Using MPTCP

As described in Section 3.5.3, for our dataset MPTCP if1 and MPTCP rnd behave

very differently. While both show speedups in almost all cases, MPTCP rnd is at a

disadvantage in 48% of the cases while MPTCP if1 almost never encounters a penalty.

In Fig. 3.6, we compare speedups of our policies for all scenarios and Web pages against

MPTCP if1 . The curves for EAF and EAF-MPTCP are close to 1, which means

that the page load times are similar to MPTCP in most cases and never considerably

worse. In contrast, if establishing the first sub-flow for MPTCP over a randomly chosen

interface (MPTCP rnd), MPTCP performs worse and can be up to 10x slower than

using Interface 1 and about 30x slower than MPTCP if1 . This worse performances

stems from the fact that Interface 1 has a shorter RTT in most network scenarios. As

many Web page downloads, in our workloads, were short and not bandwidth bound,

33

3. Socket Intents

0 10000 20000 30000 40000 50000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Interface 1 Bandwith [KBit/s]

E
C

D
F

EAF slower than If1
EAF equal to If1
EAF up to 2x faster than If1
EAF 2−5x faster than If1
EAF 5−10x faster than If1
EAF > 10x faster than If1

(a) Interface 1 bandwidth

1000 10000 100000 10000000.
00

5
0.

02
0

0.
10

0
0.

50
0

Total Size [KB]

E
C

D
F

EAF slower than If1
EAF equal to If1
EAF up to 2x faster than If1
EAF 2−5x faster than If1
EAF 5−10x faster than If1
EAF > 10x faster than If1

(b) Sizes of Web pages

Figure 3.7: Levels of factors for which we see a certain level of speedup for Alexa Top
100.

MPTCP will often perform most of the download over the initial sub-flow. Thus, not

picking the most suitable interface in 50% of the cases bears a considerable performance

penalty. EAF-MPTCP can always choose the most suitable interface for the first sub-

flow and, therefore, can improve over MPTCP if1 in cases where Interface 1 is not the

most suitable first-sub-flow interface.

The EAF shows a similar performance as MPTCP if1 . The cases where EAF and

EAF-MPTCP perform slightly worse than MPTCP if1 seem negligible to us given the

benefits. These cases occur because EAF and EAF-MPTCP do not take future transfers

into account. They cannot change their decision whether to use MPTCP, while always

using MPTCP allows a later re-balance of traffic between sub-flows.

3.5.5 Explaining Page Load Time Speedups

To understand how the factors of the scenario and Web page affect the speedups of our

policies, we take a closer look at the cases when EAF is slower, similar to, or faster than

Interface 1 .

In Fig. 3.7, we bin the simulation results of EAF into six categories of benefits and show

how these distribute among the total Web page sizes and Interface 1 bandwidths. These

categories contain different numbers of observations, i.e., EAF is slower for just 1.5% of

all cases while EAF is equal to Interface 1 for 56.6% of all cases.

The CDF, in Figure 3.7a, shows the frequency of the speedup categories over the different

levels of Interface 1 bandwidths from Table 3.1. In cases were EAF was slower or equal

to Interface 1 , higher values for the Interface 1 bandwidth are more prevalent, while

high speedups mostly occur when the Interface 1 bandwidth is low. Similarly, we tend

to see high speedups for higher levels of Interface 2 bandwidth and for lower levels of

Interface 2 RTT (plots omitted).

34

3.6. Related Work

To explore what kind of Web pages can benefit from our EAF policy, we plot the CDF of

the speedup categories over the total Web page size in Fig. 3.7b. As high speedups occur

much more frequently for large Web pages, we conclude that these take most advantage

of using multiple access networks. For the median object size and the number of objects

in a Web page we see similar results, with high speedups occurring more frequently in

cases with high median object sizes.

Both analyses show that our multi-access policies are most useful when Web page down-

load is bandwidth limited.

3.6 Related Work

We, first, review related work regarding multipath support in general and on the end-

host’s acOS in particular, and then focus on how application needs are taken into ac-

count. Finally, we discuss the benefits of using multiple access networks in the context

of WiFi offloading and MPTCP.

Multipath

For a comprehensive survey of network layer multipath solutions see Qadir et al. [59].

They present a detailed analysis of the design choices of how to compute and select

routes as well as how to split the flow across the chosen paths.

A survey of multipath approaches in some current OSes [60] points out several problems

that we also discuss in Section 2.3. Many OSes support mechanisms for source and

destination address selection for IPv6 multihoming [61, 62] and there are proposed Socket

Application Programming Interface (API) extensions that enable applications to set

preferences [61]. These address selection algorithms, however, focus on reachability,

while we consider bandwidth aggregation and performance improvement. Some OSes

implement a central connection manager to choose the appropriate access network, as

is also proposed in current research such as by Kiefer et al. [63]. The latter uses policies

controlled by the application and the user and relies on observations of the current

network performance, which is similar to our Multi Access Manager. However, it only

works on a per-flow basis and not per communication unit. Also, their application

policies specify flow prioritization and constraints, but not different characteristics of

the traffic.

Application Needs. Previous work where an application can specify its requirements

and needs often focuses on QoS, e.g., QSockets [64]. We use the best-effort approach

35

3. Socket Intents

of Socket Intents. The term Intents has its origin in Intentional Networking [65], an

attempt to explore mobile network diversity by letting applications specify traffic char-

acteristics via an extended Socket API. However, they use a per-packet approach, which

introduces complications and overhead, while we use a per-socket/per-flow or per-request

approach. Moreover, they imply guarantees while we suggest best-effort. Other ap-

proaches include ideas from machine learning to guide application choices, e.g., Deng et

al [66].

Socket APIs

Alternative socket APIs move parts of the application logic to the socket API, e.g., by re-

questing a service rather than a protocol, port, and address in the protocol-independent

transport API [67] or by exposing all protocols and auxiliary information of the ap-

plication in a tree-like structure [68]. In contrast, the Socket Intents Prototype takes

transport protocols as given. Thus, the idea of Socket Intents is complementary to the

before-mentioned work.

Offloading. Multi-access connectivity enables one to balance traffic, e.g., from the mo-

bile network to the WiFi—offloading—or from WiFi to the mobile network—onloading.

Recently, both variants have gotten a lot of attention in the research community, e.g., [69–

72], as well as in industry, e.g., [73, 74]. For a survey on offloading, we refer to, e.g.,

Aijaz et al. [69]. For a summary of multi-access connectivity, we refer to, e.g., Schmidt

et al. [75]. Examples of recent work on offloading include the work by Lee et al. [70],

who demonstrate via a quantitative study the performance benefit of offloading 3G mo-

bile data to WiFi networks, and Balasubramanian et al. [71], who propose Wiffler to

augment mobile 3G capacity with WiFi. For onloading, we, e.g., point to Vallina et

al. [72]. For an analysis of the economics of offloading see Lee et al. [73]. Offloading

typically implements support for using multiple access networks within the network or

on the application layer, while we provide support for it within the end-host OS.

MPTCP

There have been many studies exploring how an end host can benefit from multiple paths

using MPTCP. Chen et al. [76] evaluate MPTCP performance in the wild by comparing

its use over a home WiFi network and several different cellular providers to the use of a

single path. They find that for small files, using a single path over WiFi is best, while

larger files benefit from MPTCP’s aggregated bandwidth. This observation is shared by

Raiciu et al. [77] and Deng et al. [78], who emphasize that the choice of the interface to

establish the first sub-flow is important, which is in line with our observations.

36

3.7. Summary

Han et al. [79] evaluate page load times of HTTP and SPDY over WiFi and LTE using

a proxy-based setup. They find that SPDY over MPTCP is always beneficial. This

is in contrast to HTTP over MPTCP which in some cases performs even worse than

plain TCP. Similarly, Nikravesh et al. [80] observe a performance penalty and energy

consumption overhead for apps with small flows in the wild. As a solution, they propose

a proxy with persistent connections over multiple paths.

A similar approach for controlling MPTCP (see Section 3.1) has been proposed by

Hartung and Milind [81] to use MPTCP for LTE bandwidth management.

Stream Control Transmission Protocol (SCTP)

Dreibholz et al. propose an advanced stream scheduling policy for SCTP[82] and achieve

performance benefits in asymmetric path scenarios using a simulation. It would be

possible to integrate such an advanced scheduler into our policies in future work.

3.7 Summary

We created an event-based transfer simulator to explore speedups across a wide range

of Web pages and network characteristics. Our simulations demonstrate that Socket In-

tents with the EAF policy can improve Web page load time in about 50% of the cases

without incurring penalties. Therefore, without kernel modification, we can achieve

about the same speedups possible by using MPTCP. In cases where the access networks

characteristics are very different, our EAF-MPTCP helps MPTCP to pick the right in-

terface for the initial sub-flow and prevents performance penalties that can occur when

using the ”‘wrong”’ interface.

Socket Intents are a first step for sharing information between applications, the OS, and

the network. This idea is not limited to the use case of multiple access networks, but

can also be beneficial to automatically choose among transport protocols and can give

valuable input to traffic management systems for datacenter networks.

It was also shown that Socket Intents can be beneficial for video streaming traffic [11].

We will, though, move away from Socket Intents, as we gained insights, described in

the next chapter, that require a more fine-grained control over the information sharing

between the application and the transport.

37

Chapter 4

Video Transfer Design

Following the cross-layer approach that Socket Intents brought us for web traffic, we

will now look at an even bigger player in today’s content landscape: video. Although

it was shown by Enghardt et al . [11] that an informed network selection does improve

video streaming performance, we want to take this approach even further and couple

the transport and application even tighter.

The focus of our efforts lie specifically on a key determinant of end-user QoEs: unin-

terrupted playback. Supporting uninterrupted playback will likely have a far reaching

impact, especially with live streaming and broadcasts over the Internet becoming com-

monplace [83, 84]. Streaming video over the Internet without interrupting playback at

the client (i.e., video player) is, though, a notoriously hard problem. Such playback

interruptions have a discernible impact on end users and degrade their video-watching

experiences, as measured via QoE metrics [85]. It is exacerbated by the fact that each

video frame has an implicit deadline within which it must be delivered to the client; the

client will, otherwise, stall playback to wait for the frame to arrive.

The frames are, in today’s HTTP streams, grouped into segments—sequences of bytes

spanning a predetermined (typically, 2-10 s) time duration [86]. There is a rich literature

on video streaming aiming to reduce playback interruptions, but virtually all of them

focus on either “fine-tuning” TCP or making clients “smarter” by using ABR algorithms.

Prior efforts on fine-tuning TCP for video streaming include side-stepping packet losses

[87], supporting real-time delivery [87–90], adding deadline-awareness [91, 92], using

retransmissions for sending new data [93], and using coding techniques for loss recov-

ery [94, 95]. They all use TCP, a reliable transport, although video streaming can

tolerate some packet loss [96]. Upgrading or improving TCP is also hard. While the

QUIC protocol makes it easy to extend the transport [97], it offers only reliable streams

39

4. Video Transfer Design

for communication,1 and, thus, inherits most of TCP’s problems. Using a reliable trans-

port for video streaming has remained, thus far, the status quo, and we question this

choice.

To make clients smarter, prior work also proposed numerous ways of improving ABR

algorithms [41, 42, 101–104], which are client-side mechanisms that dynamically choose

a bitrate for each video segment based on several factors, e.g., available bandwidth

estimate and playback buffer occupancy. They directly or indirectly optimize one or more

objective QoE metrics, e.g., rebuffering (or stall) duration, average bitrate, and bitrate

switches. Notwithstanding the ABR-algorithm improvements, they simply assume that

video segments must be downloaded in their entirety—thus, inherit the problems of

reliable delivery for video streaming.

Consequently, we present VOXEL, our two-pronged approach that combines a partially

reliable transport with application-provided “insights” for optimizing video streaming.

More specifically, VOXEL combines our partially reliable implementation of Google

QUIC (henceforth, referred to as QUIC*) with the insight that not all frames of a

video require reliable delivery—frame-drops do not necessarily compromise end-user

QoE [96, 105].

⋆ First, in Chapter 5, we present a new server-side algorithm that performs a one-time

analysis of the impact of varying amounts of frame-drops on the end-user QoE for a

given video.

One recent work, the bandwidth-efficient temporal adaptation (BETA) [105], pursues a

similar approach, though we show that BETA (a) implements only a subset of features

of VOXEL, (b) is not as deployment friendly as VOXEL, and (c) performs poorer than

VOXEL in most of our tests.

⋆ Second, in Chapter 6, we present a novel ABR algorithm that explicitly trades off

frame losses for optimizing end-user QoE.

While we leverage some ideas from prior work, VOXEL is the first end-to-end system

that introduces a QoE-metric-based frame-importance measure and ranking—a new ca-

pability not found in any prior work. This capability enables VOXEL to control video

quality in a fine-grained manner by dropping different types of frames (including refer-

enced frames) to combat challenging network conditions, with minimal QoE impairment.

Thus, VOXEL outperforms state-of-art solutions (e.g., MPC [41] and BOLA [42]) as well

as recent work, e.g., BETA (see §6.4).

1There have been a few proposals to support unreliable delivery in QUIC (e.g., [98–100], but none
have been standardized or implemented in Google QUIC, as of this writing.

40

4.1. Related Work

⋆ We want to emphasize that VOXEL is more than a simple research prototype.

VOXEL works seamlessly with Dynamic Adaptive Streaming over HTTP (DASH) and

is backward-compatible with existing VOXEL-unaware clients. VOXEL is also eas-

ily deployable given QUIC’s widespread adoption both on the server side (e.g., in

CDNs [106, 107]) and client side (e.g., in major web browsers [108, 109]). In our eval-

uations, VOXEL streams videos in the 90th-percentile with up to 97% less rebuffering

than the state-of-the-art without sacrificing end-users’ QoEs.

⋆ Lastly, VOXEL is QoE-metric-agnostic.

We use the all-component SSIM [44] of FFmpeg’s ssim filter for estimating QoE in these

evaluations, but also show that VOXEL is QoE-metric-agnostic: VOXEL outperforms

the state-of-the-art even with respect to other widely used metrics, e.g., VMAF [46] and

PSNR.

Following our insights, we will, in the next section, discuss work related to our video

transfer design.

4.1 Related Work

A rich body of work about improving video streaming exists, though, virtually all prior

work follow a piecemeal approach—either “tweaking” the fully reliable transport layer

or making the client “smarter.” Confining the parameter space even further, besides

early academic work on video streaming that used UDP, practically all recent work

and all HTTP streaming use TCP as the reliable transport. We are, in the following,

highlighting important related work, and compare similar, yet limited approaches from

recent work in Tab. 4.1.

Feamster et al. [96] and, more recently, we [110] demonstrated that video streaming will

benefit from a partially reliable transport. The idea that these prior work build on—

some frame losses do not substantially impair the visual quality of the video stream—

was also recently explored in BETA [105]. Unlike VOXEL, BETA considers loss of only

unreferenced B-Frames, uses TCP, and implements only a subset of features of VOXEL.

Almost all prior work on ABR algorithms (e.g., [38, 40, 41, 102–104]) leave the underlying

transport—typically, TCP—intact. Bhat et al., show that porting such ABR algorithms

to QUIC does not suffice [111].

Prior work also looked at “tweaking” or “tuning” TCP for video streaming. TCP vari-

ants such as TCP-RTM [87] and TL-TCP [91] either ignore retransmissions or avoid

41

4. Video Transfer Design

Feature / System VOXEL BETA PR-SCTP BOLA

QoE metric based optimization X (3)

Frame importance ranked by VQ X
Allows tail drop of less important frames X X

Frame-level quality selection X
dynamic quality switching 2 X (1)

Selective retransmissions X (4)
Partial segment request X (2)

Any frame type can be dropped X X
Allows minor visual glitches X X

No manifest alteration needed (non applicable) X
No video alteration needed X X X

Evaluated with real network traces X (non applicable) X
Open source X X X

Evaluated in user survey X

Table 4.1: List of features of different protocols and systems. Note: (1) BETA only
specifies a single visual quality (VQ) threshold per segment, per encoding, stays on
that quality level and falls back to the lowest quality if the required frames are not
downloaded in time. (2) BETA can stop segment downloads, resulting in a random
partial segment. VOXEL, instead, requests a specified partial segment. (3) While not
implemented, BOLA lends itself to utilizing a QoE metric as its optimization function
- VOXEL makes use of that. (4) PR-SCTP has a timed-reliability, though, requires an
application to determine it.

retransmitting data that have already missed the deadline. Both complicate application

design, making deployment impractical, if not impossible. Brosh et al. [89] suggest opti-

mizations to make TCP more friendly for delivering real-time media. In a similar vein,

Goel et al. [88] tune TCP’s send buffer for mitigating delays. These optimizations will

be even more beneficial when applied selectively—to only the portion of data that re-

quires reliability. McQuistin et al. [93] propose a TCP variant that uses retransmissions

to deliver new data. This idea alleviates some but not all of the overhead.

Research work on components for dropping frames exists, but seldomly as a full stream-

ing system. Yahia et al. [112] propose video delivery schemes that exploit HTTP/2

mechanisms to drop frames during low-latency live streaming. They, however, use only

single-bitrate videos without any ABR algorithm. Stewart et al. [113] present the Partial

Reliability Stream Control Transmission Protocol (PR-SCTP), a partial reliability ex-

tension to SCTP. The protocol allows disabling retransmissions on a per-message basis.

As a transport protocol, it does not have any notion of video frames and, thus, requires

an application on top to determine how to drop frames, and when to enable retransmis-

sions.

Feamster et al. [96] explore the effect of selective reliability for streaming video via RTP,

necessitating substantial changes to the network stack. VOXEL, in contrast, requires

2Allows quality switching mid-segment-download based on VQ adaptation function.

42

4.2. Insights

minimal changes and can be deployed incrementally. Fouladi et al. [114] designed Salsify,

a system for video conferencing, that adjusts the encoding quality per video frame. This

approach is less suitable for Video on Demand (VoD) as it would require re-encoding the

video for each and every view. VOXEL introduces a one-time computational overhead, a

priori when enriching the manifest, regardless of how many times the video is streamed.

BETA from Cyriac et al. [105] is most relevant to this work. BETA, however, uses

TCP and, thus, does not allow for imperfect transmissions. Their optimization, instead,

stems primarily from dropping unreferenced B -Frames; the videos in Tab. 6.1 in §6.4.2,

for instance, contain more than 30% P -Frames, which constitute at least 56% of video

data—much more than B -Frames. In challenging network conditions (e.g., cellular net-

works), the inability to drop referenced frames (even if they do not introduce perceivable

issues) hurts their performance. On average, VOXEL dropped frames in 9% of segments.

In 85% of those cases it was not sufficient to only drop b-Frames, but 46% of all refer-

enced frames had to be dropped as well. Unlike VOXEL, BETA does not analyze the

QoE implications of losses of different type and number of frames. Their single virtual

quality level does not allow them to adjust the segment quality at any instant of time,

when conditions deteriorate. If the throughput does not suffice, they either accept a

segment unaware of its visual quality, or, in the worst case, simply discard the data and

fetch the same segment at the lowest quality.

4.2 Insights

Our goal is to systematically identify which frames can be dropped a priori, i.e., in an

offline process, while still delivering a high QoE to end users.

Although such a system would benefit from socket intents, their interface selection is

too coarse-grained to satisfy the specific needs of video streaming.

In the following sections we describe the key insights (highlighting similarities and dif-

ferences with relevant prior work) that underlie our fine grained cross-layer approach for

realizing this goal.

We selected 4 widely used videos from prior work, namely Big Buck Bunny (BBB),

Elephants Dream (ED), Sintel, and Tears of Steel (ToS), for demonstrating the insights;

Tab. 6.1 in §6.4.2 provides a brief characterization of the videos. To test whether they

generalize to other videos, we also used 10 public YouTube videos (P1 - P10 in Tab. 6.3

in §6.4.3) that were retrieved following an approach similar to that of Yeo et al. [115].

43

4. Video Transfer Design

We restrict our focus to only the 4 videos in Tab. 6.1 (in §6.4.2) and 2 randomly selected

videos from Tab. 6.3 (in §6.4.3) to simplify the plots and explanations. We include a

detailed discussion of the analyses of all the YouTube videos in §6.4.3. For each video, we

selected a 5-minute section comprising 75, 4 s long segments. Each video is transcoded

at 13 different bitrates (Tab. 6.2 in §6.4.2) ranging from the lowest quality (Q0) at

0.16 Mbps to the highest quality (Q12) at 10 Mbps. The bitrates in the plots denote the

bandwidths required to stream the concerned segments, since we utilized the segment

sizes and not the video-wide average bitrate typically used in ABR implementations.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

CD
F

Frames dropped (percent)

BBB
ED

Sintel

ToS
P2
P4

(a) Q12, SSIM 0.99

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

CD
F

Frames dropped (percent)

BBB
ED

Sintel

ToS
P2
P4

(b) Q9, SSIM 0.99

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

CD
F

Frames dropped (percent)

BBB
ED

Sintel

ToS
P2
P4

(c) Q9, SSIM 0.95

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.75 0.8 0.85 0.9 0.95 1

CD
F

SSIM

ToS/Q6
ToS/Q9

BBB/Q6
BBB/Q9

(d) Low quality levels and SSIM

Figure 4.1: (a) A significant number of frame-drops (excluding the I-Frame) can be
tolerated while still guaranteeing an SSIM score of 0.99; The frame-drop tolerance (b)
diminishes when switching down from Q12 to Q9, but (c) improves if we also lower the
target SSIM score from 0.99 to 0.95; (d) Low quality (e.g., Q9 & Q6) segments typically
have SSIM scores less than 0.99.

4.2.1 Drop Frames while still Delivering a high QoE

Typical video content can tolerate some dropped frames without a significant impact on

QoE [96, 105, 112]. Fig. 4.1a shows the percentage of frame-drops that we can toler-

ate across different segments of video at quality Q12, while still maintaining a segment

average SSIM score (or SSIM score, in short) of 0.99, i.e., excellent quality with im-

perceptible impairment. In calculating the impact of frame-drops, we assume that the

I -Frame of each segment was delivered reliably, i.e., without loss.

44

4.2. Insights

The number of frames that can be dropped depends to a large extent on the content

of the video. In a scene with almost no action or a title scene, for instance, it might

suffice to drop all but the I -Frame, and the video player could repeatedly show this

frame for the entire segment. Brooks et al. [116] substantiate that a lossy image with

higher encoding rate has a higher visual quality (here, SSIM) than a lossless image at

lower encoding. For each of the six videos, at least half the segments can sustain a

10% to 20% loss in frames while still delivering an SSIM of 0.99. Of these dropped

frames an average of 12.6% for ToS, 22.8% for BBB, 27% for ED, and 30% for Sintel are

referenced frames. We, hence, drop 6%, 15%, 9.5%, and 24.2% of all referenced frames

in ToS, BBB, ED, and Sintel, respectively. This ability to drop referenced frames while

maintaining an SSIM of 0.99, thus, allows VOXEL to efficiently adapt to challenging

network conditions, better than all prior work.

Fig. 4.1b repeats the experiment at the lower quality Q9 at 4.3 Mbps (refer Tab. 6.2),

demonstrating the interaction between encoded bitrate and frame-drop rate. The low

bitrate of Q9 lowers the SSIM even in the absence of any loss: 85% of the BBB segments

and 96% of the ToS segments at Q9 have, per Fig. 4.1d, an SSIM score less than 0.99.

Fig. 4.1c shows, however, that to improve the frame-drop tolerance at Q9, we can target

an SSIM score of 0.95, which still offers good quality [117] with perceptible but not

detrimental impairment.

This idea of tolerating frame losses was explored in [96] and more recently in BETA.

Our approach of identifying “importance” of frames analyzes the dependencies between

frames is more involved (as we later show in §6.1) than relying on the relative positions of

frames (as in [96]) or simply tagging only unreferenced B -Frames as “unimportant” [105].

Unlike VOXEL, prior work either use a complex solution involving RTP/RTSP [96] or

rely on TCP [105].

4.2.2 Reorder “unimportant” Frames to Segment’s Tail

Although we can drop a significant fraction of segments while still guaranteeing a high-

quality video stream (Fig. 4.1a), the frames that may be dropped are typically dis-

tributed throughout the segment. While restricting consecutive frame-drops to the seg-

ment tail increases the number of dropped reference frames to 51.75% in BBB and 46%

in ToS (“*/Tail” lines in Fig. 4.2a), the total number of frames that can be dropped is

much smaller than that with the newly proposed frame-ranking system. This ability to

identify more frames that can be dropped with in minimal visual quality impairment is

crucial for tackling challenging network conditions.

45

4. Video Transfer Design

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

CD
F

Frames dropped (percent)

BBB
BBB/Tail

ToS
ToS/Tail

(a) Q12, SSIM 0.99

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 4 8 12 16 20

CD
F

Segment bitrate (Mbps)

Q12
Q12/0.99
Q12/0.95

Q11
Q10

(b) BBB

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 4 8 12 16 20

CD
F

Segment bitrate (Mbps)

Q12
Q12/0.99
Q12/0.95

Q11
Q10

(c) ToS

Figure 4.2: (a) It is inefficient to only drop frames from the tail part of segments; and
ABR algorithms can adjust video bitrates by also lowering SSIM scores instead of only
switching quality levels, as shown for two videos—(b) BBB, and (c) ToS.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 16 32 48 64 80 96

Se
gm

en
ts

 (
fr

ac
tio

n)

Frame position

BBB/Q12 ToS/Q12

Figure 4.3: Distribution of frames that can be dropped while guaranteeing a specific
SSIM of 0.99 are distributed throughout the segments.

46

4.2. Insights

Fig. 4.3 shows whether a frame at a given position across all 75 segments at Q12 may

be dropped while still delivering an SSIM score of 0.99. A Y-axis value of 0.5 for

some position implies that a frame at that position can be dropped from half the video

segments, without reducing the SSIM by more than 0.01. The first frame in the segment

is generally the I -Frame and cannot be dropped, and a 4 s segment at 24 fps has 96

frames. We only show these distributions exemplary in two the videos BBB and ToS

but we observed unimportant frames to be distributed throughout the segment in all

videos.

The distribution of unimportant frames throughout the segment presents the non-trivial

challenge of designing a frame-drop-tolerant ABR algorithm. The challenge stems from

conveying the “importance” of different frames to the ABR algorithm. Some frames

are more important than others, and ABR algorithms should focus on downloading

the important frames first. Suppose an ABR algorithm terminates the download of a

segment after a particular time, say a deadline determined by when the segment needs

to be rendered on the screen. The sequential download of frames within that segment,

using a reliable transport, then implicitly assigns each frame a priority based on the

order in which they are decoded for the segment. This default order must be altered

and passed to the client in order to prioritize important frames.

BETA uses a similar frame-ordering approach, albeit they significantly differ in two

respects. BETA considers only unreferenced B -Frames as “unimportant”, which offer

little flexibility for adapting the video quality in challenging network conditions (as we

show later in §6.6). To effect the reordering BETA modifies the video files, whereas

VOXEL only changes the manifest (refer §6.1). In a typical scenario where the videos

are streamed via a CDN, small manifest updates are easier to synchronize than the

comparatively large video-file changes between servers (see also §6.8).

4.2.3 Fine-grained Quality Switching via Drame-drops

Optimizing for SSIMs does not alleviate the quantization problem: We have only a

discrete, finite set of quality levels to cope with the continuous variations in network

throughput. Redesigning ABR algorithms to optimize for QoE and exploit frame-drop

tolerance allows us to mitigate the quantization problem. Allowing an ABR algorithm

to specify the number of ordered frames that can be dropped creates fine-grained virtual

quality levels, which may align closely with and quickly to the throughput variations.

Adding more (real) quality levels instead of virtual ones does not address the quantiza-

tion problem in the same fashion. The key difference with virtual quality levels is the

ability to move the decision boundary from segments to frame granularity. Traditional

47

4. Video Transfer Design

ABR algorithms need to deliver a complete segment. If the network conditions do not

permit timely download of a segment, they can only resort to re-downloading that entire

segment at a different quality level. The time spent on the already downloaded partial

segment is wasted, whereas with virtual quality levels, incomplete segments are accept-

able, thereby obviating segment retransmissions. Without the virtual quality levels, we

observe in our experiments, for instance, that the state-of-the-art ABR algorithm BOLA

retransmits near entire segment data for more than 25% of the segments, particularly

in small-playback-buffer, low-latency scenarios.

Romaniak et al. [117] show that perceptual-quality-impairing artifacts caused by packet

loss, or frame-drops, induce structural changes that can be captured by SSIMs. Figs. 4.2b

and 4.2c show such a virtual quality in SSIM Q12/0.99 (i.e., quality level Q12, but with

an SSIM score of 0.99) between qualities Q12 and Q11 for the BBB and ToS videos

respectively. Q12/0.99 maintains an excellent SSIM score of 0.99 while reducing the

bitrate of all segments halfway from Q12 towards Q11. Redesigning ABR algorithms

for optimizing for QoE and accounting for frame-drop tolerance fundamentally alters

the landscape of ABR algorithm design and offers several advantages over virtually all

current ABR algorithms.

BETA also pursues the idea of virtual quality levels, but only drops unreferenced B -

Frames. Besides, BETA only determines one virtual quality threshold per quality level,

whereas we (as we discuss later in §6.1) analyze the losses of all combinations of P - and

B -Frames. We can, therefore, determine the expected quality of a segment at any point

during the download and make fine-level mid-segment quality adjustments. This greater

flexibility allows us to outperform all other streaming solutions (as we show in §6.6).

4.3 Summary of our Contributions

Since video is today’s king of content, we will present our cross-layer approach called

VOXEL with the following video streaming contributions.

⋆ First, in Chapter 5, we describe an offline, server-side algorithm that rank orders

frames, within each segment, based on the impact of their loss on QoE. Our algorithm

reveals that at the highest quality level at least half the segments (of all videos in our

tests) can sustain a 10% to 20% loss, and still offer an excellent video with imperceptible

impairment (i.e., SSIM of 0.99).

⋆ Next, in §6.3, we present a novel ABR algorithm, ABR*, that combines the frame-

drop-tolerance insights and the partially reliable transport to optimize directly the end-

user QoE.

48

4.3. Summary of our Contributions

⋆ These ABR* in combination with QUIC* and our frame ranking are the key com-

ponents of VOXEL, which we evaluate in §6.4. VOXEL outperforms state-of-the-art

(BOLA with QUIC) as well as BETA, suffering little or no rebuffering, and offers ex-

cellent QoE across a wide range of conditions. Even in live-streaming-like settings over

challenging cellular-network conditions, VOXEL suffers at least 25% and at most 97%

less rebuffering, in the 90th-percentile across all video segments, than the state-of-the-

art.

⋆ Lastly, in §6.7, we conducted a survey to confirm the superiority of our, with objective

metrics, evaluated system and gathered the opinions of actual users. We conducted the

real user survey with 54 participants, 84% of whom indicated that they prefer videos

streamed using VOXEL compared to the state-of-the-art.

In the following, in Chapter 5, we will start by explaining our frame importance ranking,

followed by a system description of VOXEL in Chapter 6.

49

Chapter 5

On Frame Importance

Using our insights about video transfer, we, in this chapter focus on how to rank frames

by order of importance. With this ranking, we can reorder frames in such a way that

we can drop the tail end of a segment while avoiding QoE degradation. This process is

nontrivial as video codecs are designed to reduce the amount of video data by referencing

already encoded data, instead of retaining redundant copies of the same information, as

shown in Fig. 5.1. If we allow an imperfect transmission, there is, though, still room

for reducing the amount of data by dropping frames. The process of selecting which

frames can be dropped, without impacting the end-users QoE will be discussed in the

following. Fig. 5.2 shows two examples of frame drops with vastly different impacts on

the resulting QoE.

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

1 2 3 4 5 6 7

a

b

Figure 5.1: Illustration of frame references. (a) Shows a sequence of frames taken
from the Big Buck Bunny video, as full frames, without any data redundancy removed.
(b) shows the same sequence of frames, with redundancy removed, e.g., frame 2 is
identical to frame 1 and, thus, only a reference to frame 1 is saved. In frame 3 we see
a difference resulting in a partial reference and some new content in the form of the
newly appearing character. Lastly, frame 7 in almost entirely different to frame 6 and
practically no reference are possible.

As explained in §4.2, it is preferable to drop frames from the tail-end of a segment. Thus,

we will download frames in order of importance to be able to drop the tail-end which

then contains the least important frames. The importance of a frame depends on the

51

5. On Frame Importance

1 2 3 4 5 6 7

a

b

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

Figure 5.2: Illustration of frame importance and its impact on the perceived quality
of a video segment. (a) Dropping frames 2 and 6 have negligible impact on the QoE as
frames 1 and 2 are identical and a simple continuation of displaying frame 1 conceals the
loss; frame 7 is vastly different to frame 6, making the loss of frame 6 barely noticeable,
i.e., there is next to no error-propagation. (b) In addition to the previous frame-drops,
now frame 3 is dropped as well. Dropping frame 3 has significant implications on the
following frames as it contained pixel data that is referenced by frame 4 and 5, both of
which would experience a large error as there is no data to conceal the loss, showing the
importance of determining which frame can be dropped.

actual content of a video segment, meaning there is no one frame-order that yields the

best QoE results. We narrowed the orders down to a set of four different prioritization

orders, which we will investigate as follows.

1○ Original order , in which we retain the frames in the same order as generated by

the Moving Picture Experts Group (MPEG) encoder.1

2○ Order by grouping unreferenced frames, where we move unreferenced frames,

i.e., frames with no inbound references, to the end of the segment. If a segment download

terminates prematurely, errors or losses in these tail-end frames will not affect other

frames; the visual quality of the segment experiences, hence, no direct degradation

except for a reduced playback fluidity. This order closely resembles BETA’s approach.

3○ Order by summed up inbound references, where we sum up all inbound refer-

ences towards a frame. This first approach ranks frames with more references higher.

Intuitively, the more a frame is references by others, the more frames would be impacted

if said frame is lost.

4○ Order by chained inbound references, in which we rank order frames no longer

only based on direct inbound references but also by transitive references. “Unimportant”

frames in the tail end of the segment will be the ones with fewer inbound references than

1MPEG encoders perform some limited frame re-ordering to ease decoding: They neither analyze the
transitive dependencies between frames nor the number of macroblocks referenced by a frame.

52

5.1. Frame Orders and their Implications

those in the head end. When frame-drops occur at the tail, only a minimal number of

other frames will likely be affected than when frames are retained in the other two orders.

We note that the prioritization effort does not affect I -Frames as they have the highest

importance and are always downloaded first.

Finding the best among the four orderings. For each order, we estimate the implications

of partial segments for QoE as follows. We iterate over the “unimportant” (tail-end)

frames in each segment and calculate the QoEs (e.g., SSIMs) as a function of number of

dropped frames. The process results in a mapping from the number of bytes downloaded,

i.e., calculated from the frame sizes, under each ordering to QoE scores. For each quality

level Qn we use the QoE score of the pristine version of a segment at level Qn−1 as a lower

bound. If frame-drops lower the score below this bound, we simply fetch the segment

at quality Qn−1. We find, therefore, the smallest number of bytes required at Qn to

achieve a QoE score higher than the bound at Qn−1. The number of bytes required to

satisfy a given QoE threshold varies based on the ordering, as for a given percentage

of frame-drops, in the tail-end, the number of affected frames varies across the four

orderings. We pick the ordering with the minimal number of bytes2 that achieves the

required QoE score. The following section individually discusses the implications the

relevant orderings have on the QoE in detail.

5.1 Frame Orders and their Implications

The order in which the frames are dropped has an impact on the QoE score. As men-

tioned, if only consecutive frames are dropped at the tail, the decoder will simply repeat

the last frame it was able to decode. The same behavior can be observed if frames are

dropped at random points in the segment. If the dropped frames are, however, used as

a reference by frames that occur later in the display order, the error propagates to these

later frames since the decoder can not resolve the reference. This case illustrates the

need to carefully evaluate different orders and their impact on the visual quality.

As a first interpretation of SSIM scores, we follow the mapping of Zinner et al . [118]. This

mapping divides the SSIM score, ranging from 0 to 1, into intervals, and then assigns a

mean opinion score (MOS) to each interval. We use this mapping as a guideline because

the SSIM score range is not linear: the lower half of the range is considered “bad,”

and the top three scores are all located in the range from 0.88 to 1. The following plots

contain markers (highlighted in bold font in table Table 5.1) that indicate the boundaries

of the intervals. We omit the second order, “order by grouping unreferenced frames” in

2A client may fetch bytes beyond this threshold, if conditions permit.

53

5. On Frame Importance

MOS SSIM

Excellent x ≥ 0.99
Good 0.99 > x ≥ 0.95
Fair 0.95 > x ≥ 0.88
Poor 0.88 > x ≥ 0.5
Bad 0.5 > x

Table 5.1: Mapping of MOS to SSIM.

this discussion as it is trivial and has no degradation implications in regards to other

frames.

5.1.1 Original Order - Dropping the Tail without Reordering

We first ran computations for the simple scenario described above: Dropping consecutive

frames in reverse playback order, i.e., starting from the end of the segment. Fig. 5.3

shows how the SSIM score degrades as more and more frames are dropped. Note that the

x-axis is in percent of data dropped instead of frames dropped. In order to make a fair

comparison between different frame-dropping orders, we need to compare the amount of

data that is dropped instead of the number of frames that are dropped. Frame sizes can

vary because of the variable bitrate (VBR)-characteristics of the video. For example,

order 1 might achieve an SSIM score of 0.99 by dropping 10 frames with a total size of

1 MB and order 2 achieves the same score by dropping 1 frame with 2 MB. The goal of

our approach is to download less data, so we would prefer order 2.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

SS
IM

 s
co

re

Data dropped (percent)

(a) Segment 11

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 0 20 40 60 80 100

SS
IM

 s
co

re

Data dropped (percent)

(b) Segment 49

Figure 5.3: SSIM scores for segments 11 and 49 of BBB without reordering. Image
quality for segments without scene changes decreases gradually (a), but drops signifi-
cantly if a scene change is present (b).

Looking at Fig. 5.3a, the segment without scene change, we observe that the score

decreases gradually. The gradual quality decrease is expected because although the

time a still image is displayed increases, its contents are still similar to the reference,

which leads to a comparatively low degradation. The segment in Fig. 5.3b contains a

54

5.1. Frame Orders and their Implications

scene change, which is reflected in the SSIM graph. This scene change occurs at frame 44

(Fig. 5.4), which corresponds to 29% of data dropped (i.e., frames 44 to 96 dropped). As

expected, the image quality drastically decreases as soon as the still image is displayed

before the scene change occurs (i.e., frame 43 or earlier; at least 29% data dropped), but

stays almost perfect with less than 29% data dropped.

Another observation is that even if 100% of the data is dropped (i.e., the I-frame is

repeated 95 times), the SSIM score only decreases to a value of 0.66 for segment 11

and 0.79 for segment 49. This is because the SSIM score is not linear and therefore the

“poor” quality category already starts at scores less than 0.88.

In the following we analyze if a dropping frames in a different order enables us to maintain

a higher SSIM score for a longer time. Recall, unimportant frames should be dropped

first so that important frames can be kept. To specify a new order means to assign a

notion of importance (weight) to each frame.

(a) Frame 43 (b) Frame 44

Figure 5.4: Scene change in segment 49 of BBB.

5.1.2 The Summed Reference Order - An Intermediate Step

A first, simple, approach is to use the sum of references pointing to a frame as the

weight. Naturally, if a frame that is referenced by many other frames gets dropped, it

should have a greater impact on video quality than dropping a frame with no references.

The computation results of this new order are shown in Fig. 5.5.

We can see an improvement for segment 49 (Fig. 5.5b), i.e., we can drop more data

before encountering the quality decrease caused by the scene change. However, there is

a problem with segment 11 (Fig. 5.5a): The new order introduces a “cliff” where there

should be none. A closer look at the frame-level scores of the data points before and

after the cliff gives insights into what happened.

Recall that each step in Fig. 5.5a represents an SSIM score for segment 11 with a number

of frames dropped. For example, looking at the “reorder” line, the step starting at 29%

55

5. On Frame Importance

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

SS
IM

 s
co

re

Data dropped (percent)

original reorder

(a) Segment 11

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 0 20 40 60 80 100

SS
IM

 s
co

re

Data dropped (percent)

original reorder

(b) Segment 49

Figure 5.5: Comparison of SSIM scores for summed reference order with no reordering
for segments 11 and 49 of BBB. The summed reference order delays quality degradation
for segments including a scene change (b), but introduces a significant quality decrease
for segments without scene changes (a).

of dropped data has an SSIM score of 0.96. However, this final score of 0.96 is the result

of averaging the 96 individual frame scores of the segment. Fig. 5.6 expands three steps

from Fig. 5.5a by visualizing these individual frame SSIM scores.

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 0 10 20 30 40 50 60 70 80 90

SS
IM

 s
co

re

Frames

original-32 reorder-73 reorder-74

Figure 5.6: Comparison of frame-level SSIM scores for summed reference reordering
and no reordering for segment 11 of BBB. A difference of a single dropped frame can
have a great impact on visual quality.

Although there is only a single frame difference between the two reorder cases, it has a

huge impact on the SSIM score. “reorder-73” (“reorder-74”) expands the step directly

before (after) the cliff in Fig. 5.5a. It corresponds to 73 (74) dropped frames, which

amounts to 29.44% (31.25%) of data dropped. The corresponding segment SSIM score

is 0.96 (0.77). The closest step in terms of data size for the “original” line in Fig. 5.5a

is expanded as “original-32” in Fig. 5.5a and corresponds to 32 dropped frames (33.35%

data dropped) resulting in a segment SSIM score of 0.92. Because the step size granular-

ity of our calculations is limited to entire frames dropped, we can not make a comparison

of the two orders with exactly equal amounts of data being dropped.

From Fig. 5.6 we can observe that the reason for the difference in SSIM scores is that

the frame in question is dropped early in the segment, so the errors introduced by its

56

5.1. Frame Orders and their Implications

absence propagate through the segment. This motivates a need to refine the order in

which the frames are dropped.

5.1.3 The Chained Reference Order

Frame 1 Frame 2 Frame 4

Frame 3

Frame 5

41 4

921

2 6

30

45

8

83 total references

9 references
64 references
19 references

9

Figure 5.7: Example for a reference chain with five frames. Original macroblocks are
visualized by a solid color, whereas macroblocks that are created by reference are striped.

The results of §5.1.2 indicate that there are frames which are not heavily referenced but

still important because they are heavily used indirectly. To capture this, we transitively

increase the importance (weight) of a frame that is at the beginning of a “chain” of

references.

Fig. 5.7 visualizes a small example with five frames. Frame 2 references nine macroblocks

from frame 1 (striped red blocks). Frame 2, in turn, is referenced by three other frames

(3 to 5) with a total of 83 references (striped blue and red blocks). These references,

however, can be divided into two groups. References to macroblocks that occurred in

the reference frame for the first time, like the solid red blocks in frame 1 or the solid blue

blocks in frame 2, are referred to as direct references. A referenced macroblock that was

created by another reference, i.e., to a third frame, is called a transitive reference. An

example for this are the striped red blocks in frame 2, which are referenced by frames 3

to 5.

If frame 1 was dropped in this example, then the quality of frame 2 would decrease

because of the missing direct references. Furthermore, frames 3 to 5 would also be

57

5. On Frame Importance

Algorithm 1 Graph traversal algorithm used to calculate the chained-reference
weight of a node.

1: To calculate the weight of a node x, walk(x,∞) is called.
2: function walk(node, max weight)
3: weight = 0
4: for suc in node.successors do
5: if edgeWeight(node, suc) < max weight then
6: max weight = edgeWeight(node, suc)
7: end if
8: weight = weight + max weight
9: ▷ threshold refers to the minimum weight required to continue traversal

10: if max weight < threshold then
11: continue
12: end if
13: weight = weight + walk(suc, max weight) ▷ Depth-first traversal
14: end for
15: return weight
16: end function

impacted due to the error propagation caused by the transitive references. For this

reason, the weight of frame 1 should not only be measured by the direct references of

frame 2, but also by the transitive references of frames 3 to 5.

The algorithm that is used to calculate this weight is described in Algorithm 1. There

are two changes to the example from above. The first change is that in order to simplify

the algorithm we do not utilize the exact positions of the referenced macroblocks, but

only their amount. The algorithm does, therefore, not determine the precise amount

of transitive references and will use the total number of references as an upper bound

(lines 5 to 7). The references are modeled as a DAG! (DAG!).

1 2

5

4

3
9

30

45

8

Figure 5.8: Graph view of a reference chain.

Fig. 5.8 shows the corresponding DAG! to the example from Fig. 5.7. Frame 1 has an

initial weight (and upper bound) of 9 for the direct references from frame 2. For the

transitive references from frames 3 to 4 an additional weight of 18 (9 per frame) is added.

Note that the real amount of transitive references from frame 4 is only four macroblocks.

But as mentioned above the algorithm does not calculate this exact information. Instead,

58

5.2. Summary

the algorithm calculates that 45 macroblocks of frame 2 are referenced by frame 4 and

thus the upper bound is applied. In contrast, the additional weight gained from frame 5

is only 8 since the weight of the edge from frame 2 to frame 5 is below the upper bound.

Here line 6 is applied and a new upper bound is set, which is valid for the remaining

traversal of this branch. The resulting total weight for frame 1 is 35.

To limit the length of reference chains, we introduce a minimal weight threshold (line

10) that is required for an edge to be traversed. In the current implementation this

threshold is set to 1% of the image size, which amounts to 324 macroblocks for a frame

size of 4K (3840x2160px / 16x16px = 32400). This threshold is only used as a decision

to continue traversal. We still account for small weights in line 8, but do not traverse

deeper into the graph. This is important in order to not lose the distinction between

frames with absolutely no references and frames that have at least some references.

We re-ran the computations with this new order and we take a look at segments 11 and

49 of the Big Buck Bunny video in Fig. 5.9.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

SS
IM

 s
co

re

Data dropped (percent)

original reorder

(a) Segment 11

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 0 20 40 60 80 100

SS
IM

 s
co

re

Data dropped (percent)

original reorder

(b) Segment 49

Figure 5.9: Comparison of SSIM scores for chained reference order with no reordering
for segments 11 and 49 of BBB. The chained reference order manages to prioritize the
scene change correctly (b), but still introduces a significant quality decrease in segments
without scene changes (a).

We can see an improvement for both cases, but we still introduce a cliff in segment

11 (Fig. 5.9a). The steps up to the cliff are better for the “reorder” line, but worse

afterwards. For segment 49 (Fig. 5.9b) the reordering worked perfectly, pushing the cliff

all the way to the right of the graph.

5.2 Summary

There is no one-fits-all approach to prioritizing frames. While the chained reference

order works well for segments containing a scene change, it is not so clear for other

segments. In order to find the most suitable solution, we need to evaluate, for each

59

5. On Frame Importance

segment individually, which order works best. However, asking which order is “the

best” first requires to answer another question: What SSIM score do we want to achieve?

Intuitively speaking, as the lines of the different orders in the previous plots intersect,

the “best” order changes depending on the target SSIM score. Optimizing for a “good”

SSIM (≥ 0.95) in Fig. 5.5a would result in the summed reference order being better

(29% of data dropped compared to 22%), but optimizing for “fair” (≥ 0.88) results in

the opposite (still 29% compared to 44%).

Next, we will look VOXEL, a system we designed to show how to take advantage of our

ranking orders.

60

Chapter 6

VOXEL

To take advantage of our insights from §4.2 and our frame importance ranking from §5,

we created VOXEL, a complete and easily deployable streaming system. Streaming video

using VOXEL is similar to traditional systems, but with several important differences

highlighted as follows.

⋆ We extend the manifest with an order of frames to prioritize “important” frames

(i.e., to download them before the “unimportant” ones) and mark their influence, or

lack thereof, towards the QoE. The frame order is prepared offline by identifying the

“important” frames in each video segment, and saved on disk, i.e., all subsequent streams

of this video reuses the generated order.

⋆ At the transport layer, we build on the QUIC extensions from [110] and offer a

partially reliable transport for exploiting the insight that not all frames require reliable

delivery.

⋆ At the application layer, we present a new class of ABR* algorithms that use QoE met-

rics as the optimization utility and allow the delivery of partial segments. ABR* exploits

virtual quality levels, obtained by dropping “unimportant” frames, to quickly adapt to

varying network conditions. We show VOXEL’s backwards compatibility with existing

clients and means for incremental deployment. The following sections will describe the

highlighted difference to traditional streaming systems and show their advantages.

6.1 Extending the Manifest

Before extending the manifest, we are, similar to most streaming solutions, preparing

video content for streaming with VOXEL starts with a transcoding phase. We transcode

the content into a number of different bitrates and slice them into segments, which

can be presented via the DASH manifest [119]. Referring to Section 5, we add an

61

6. VOXEL

extra step or phase to prioritize frames within each segment. The prioritization helps

a client to download the frames of a segment in an order that, even if the download is

prematurely terminated, likely improves the QoE of the partially downloaded segment.

This reordering does not involve any change to the video files, but only enriches the

manifest by specifying the order in which different byte-ranges of the video-segments are

downloaded.

We, now, update the manifest with frame-level details (see Listing 6.1) based on the

chosen ordering. We clearly demarcate the subset of data that requires reliable delivery

(‘reliable’ and ‘unreliable’ byte-range attributes in Listing 6.1), and a client can fetch

the byte ranges via HTTP range requests. This type of request renders it unnecessary

to alter the video files. Lastly, we add the mapping from bytes-fetched-at-a-quality-level

to the QoE scores, to assist an ABR algorithm in making better decisions. We show,

for instance, in the ‘ssims’ attribute in Listing 6.1 comma-separated tuples, with each

tuple containing a colon-delimited triplet: (a) A QoE score, e.g., SSIM, and the number

of (b) frames and (c) bytes of the given segment that must be downloaded to achieve

that QoE score. For the videos in Tab. 6.1 in §6.4.2, the updates increase the manifest

size to approximately 16% of the size of an average Q12 segment. This size overhead

can, however, be mitigated by using a better encoding scheme for the metadata than

the näıve, unoptimized version we used in our proof-of-concept implementation. We can

also reduce any startup delays introduced by a large manifest simply by incrementally

downloading the manifest using the MPD update feature of DASH [120].

Listing 6.1: A frame-level entry from VOXEL’s manifest.

<SegmentURL mediaRange="367500239-374182132"

ssims="0.988:49:4303546,...,0.999:93:5222995,1.0:95:5310048"

reliable="367500239-367501146,...,374125556-374125570"

unreliable="370076394-370171472,...,369318627-369389193"

reliableSize="1371846"/>

A size vs. compatibility tradeoff. A key benefit of the extended manifest, despite its

size, is that, unlike other prior work (e.g., BETA) we do not require any modification to

the video files on the server. VOXEL-aware clients can exploit the additional metadata

(frame-level ordering) and download the frames in the best order. VOXEL-unaware

clients, in contrast, ignore the frame-level metadata and simply download segments in

the original or decoding order.

62

6.2. QUIC*: Enriching the Transport Layer

6.2 QUIC*: Enriching the Transport Layer

We designed a modified version of QUIC, referred to as QUIC*, that supports not only

(“vanilla”) QUIC’s reliable streams but also unreliable streams with optional retrans-

missions. The unreliable streams of QUIC*, unlike UDP, are subject to the congestion

(CUBIC) and flow-control mechanisms of the QUIC connection. We borrow some design

principles from the QUIC extensions of Palmer et al. [110], albeit our design significantly

departs from theirs. While we also introduce a new unreliable stream, for instance, we

avoid a separate control stream as in [110].

Interfacing transport and application layers. We use HTTP headers to connect the

transport and application layers. A client that wants to open an unreliable stream, for

instance, sends an HTTP GET request and includes the custom x-voxel-unreliable

header. A VOXEL-aware server would open an unreliable stream to the client and

deliver the response over that stream. A VOXEL-unaware client, for instance, will

simply not use the custom header, and it will receive the response via a reliable stream.

A VOXEL-unaware server ignores the header and opens reliable streams only.

Life cycle of a video session. A client begins the session by downloading the manifest,

either in its entirety or incrementally over time. With the details for fetching the next

segment available, a VOXEL client uses two sequential HTTP requests as follows. The

first request fetches the I -Frame and headers of all frames (i.e., ‘reliable’ attribute in

Listing 6.1) over a reliable stream. This second request downloads the video data for

a subset of the remaining frames (i.e., ‘unreliable’ attribute in Listing 6.1) over an

unreliable stream. This subset is determined by the QoE score and the number of frames

required to achieve that score based on the ‘ssims’ attribute. As a result, depending on

network conditions, some packets, i.e., some parts of frames, may be lost in transit. How

to cope with the losses that may introduce some QoE deterioration will be discussed

next.

Enabling selective retransmissions. We follow a two-pronged strategy for retransmis-

sions: Given a target QoE score (e.g., SSIMs), we can determine whether the loss will

lower the QoE score below the target value; we can, hence, avoid needless retransmis-

sions. We also exploit typical video-client behavior to opportunistically retransmit lost

data: Video clients typically do not download new segments when the playback buffer

is full. VOXEL use any such periods to re-request lost data on the unreliable stream via

HTTP range requests. We gather the loss information in the (QUIC) transport layer

and pass it up to the application layer that then generates the corresponding HTTP re-

quest ranges. We stop any selective retransmissions, immediately, if conditions become

unfavorable (e.g., buffer occupancy drops), to avoid introduce rebuffering issues. Yet,

63

6. VOXEL

we recover all losses in small buffer scenario and have a remaining loss of only 0.9%,

1.5%, 1.8% for 2-, 3- and 7-segment long buffers.

Handling partially downloaded segments. Since we always fetch the I -Frames and all

frame headers reliably, when ending up with partially downloaded segments, we have

precise knowledge about the losses, i.e., which frames were affected, and to what extent.

We use this information to mask the “holes” in the frames by simply zero-padding the

losses. The QoE score, e.g. SSIM, calculations are performed on the decoded padded

frames. With frame headers kept intact and at the expected position in the file, decoding

was no issue. The decoder utilizes error-concealment techniques for zero padded frames

and only replaces a frame with the previous one if said frame is missing entirely.

A quality vs. rebuffering tradeoff. Skipped frames indeed have implications for end-

user QoE. We systematically tradeoff the losses, however, to avoid rebuffering, since

the latter significantly degrades user experience. Our experiments in §6.4 show that

VOXEL significantly reduces rebuffering, particularly in scenarios with smaller buffer

sizes. Confirming, as of 2020, rebuffering to be the most frustrating [12, 121], our user

survey shows that an overwhelming majority of participants prefer trading off buffering

for quality.

6.3 ABR*: Enhancing the ABR Algorithm

VOXEL provides a framework for a new class of ABR algorithms with the following key

features.

6.3.1 Optimize for QoE

ABR algorithms such as MPC [41] and BOLA [42] optimize a utility function often

based on bitrate. Both algorithms allow, however, different utility functions. VOXEL

uses a QoE-metric-based utility. While we use SSIM as the QoE metric for most of our

evaluations, VOXEL is metric-agnostic, and we show that our results generalize to other

metrics such as VMAF and PSNR.

6.3.2 Support Partial-segment Downloads

Traditional ABR algorithms choose from a limited set of bitrates. VOXEL allows par-

tial segment downloads while ensuring frame-header integrity (§6.2) and presents the

respective QoE metrics for different download subsets (Listing 6.1), thereby significantly

64

6.3. ABR*: Enhancing the ABR Algorithm

increasing the available decision space. This frame-header integrity enables decoding of

segments with missing referenced-frame data. VOXEL has, thereby, significantly more

freedom in dropping frames than prior work that only allows unreferenced B -Frame

drops [105].

6.3.3 Segment Abandonment Options

State-of-the-art ABR algorithms (e.g., BOLA) support segment abandonment, albeit

in a narrow scope: They simply discard a high-bitrate segment download and restart

a low-bitrate download if a high risk of rebuffering is detected. VOXEL extends this

idea in a key way: We retain the partial segment and move on to the next, even if,

compared to recent work, referenced frames are missing. This extension allows us to

download fewer bytes than other ABR algorithms (such as BOLA and BETA) during

periods with less-than-ideal network conditions. Also, a partial high-bitrate segment

might give better QoE than a complete low-bitrate segment (refer §4).

To complete our VOXEL implementation, we designed ABR*, a novel ABR algorithm

based on BOLA. The decision to bootstrap ABR* using BOLA was manifold. BOLA

already supports low-buffer scenarios [122]. BOLA allows for a custom utility function

by design, and has only two tuning parameters γ and V . Before streaming, VOXEL

automatically tunes γ and V for the video’s bitrate ladder characteristics following a

calculation described in [42]. Further, the complexity of choosing a segment’s quality is

linear in the number of qualities available, which is particularly useful since the partial

download option can significantly increase the number of qualities. Finally, BOLA sees

industry adoption and is already integrated in the dash.js reference player [123].

We developed ABR* by extending BOLA-E, a variant of BOLA, described in [122],

with two updates. First, we changed the utility function to use SSIMs and added the

capability to select partial-segment downloads. We refer to this intermediate step as

BOLA-SSIM. We then extended BOLA’s segment abandonment option to keep a partial

segment and move on to the next download. We refer to this final step as ABR*.

While we based ABR* on BOLA, VOXEL will work with other ABR algorithms, either

novel or updated established algorithms. A few design aspects warrant, however, further

attention. For example, it is relatively simple to update MPC to use a QoE metric as

the utility function. MPC, however, searches the entire decision space within a window,

typically around five segments into the future. Thus, the large decision space provided

by VOXEL would require further modifications to MPC to curb the search space.

65

6. VOXEL

Table 6.1: Overview of evaluation videos from prior work.

Video Genre Std. dev. Range
(Mbps) (Segments)

Big Buck Bunny (BBB) Comedy 3.77 1–75
Elephants Dream (ED) Sci-Fi 5.6 39–113

Sintel Fantasy 7.5 148–222
Tears of Steel (ToS) Sci-Fi 3.52 1–75

6.4 Evaluation Scenario

We now evaluate the efficacy of VOXEL by incrementally deploying the different compo-

nents and measuring the implications of such a rollout for video-streaming performance.

6.4.1 Video Selection

For both demonstrating the key insights and evaluating the design of VOXEL, we chose

14 videos. For the majority of our evaluations, we restrict our attention to the 4 videos

we used earlier in §4. The 4 chosen videos are, in video-streaming research, widely used

(Tab. 6.1) e.g., [124–126]. While VOXEL’s performance varies across different videos,

its relative performance holds across all the videos. From each video, we chose five-

minute long subsections (75 segments) to get different and challenging bitrate variations

(see Fig.6.2). Following the encoding procedure outlined in [127], we produced “2x

capped” VBR videos. We used FFmpeg version 4.1.3, and transcoded 13 quality levels

(Q0 with 0.16 Mbps through Q12 with 10 Mbps), as per Tab. 6.2. Transcoding was done

using 2-pass encoding, preset slow and no custom encoding settings. Unlike [127], we

used 4 s segments, which are a good balance between encoding quality and fast quality

switching [86]. The resulting videos are, in percent of bytes, comprised of ≈15 % I -

Frames, ≈65 % P - and ≈20 % B -Frames. We describe the video files and transcoding

process in detail in §6.4.2.

6.4.2 Widely used Videos from Prior Work

Our 4 widely used videos from Tab. 6.1 are: BBB, ED, Sintel, and ToS. Since the

actual videos are quite long in duration—ranging from ≈10.5 min to ≈15.75 min—we

chose five minutes (75 segments) from each video, to obtain video clips with different,

challenging bitrate variations (shown in Tab. 6.1 and illustrated in Fig. 6.1). Starting

with BBB in Fig. 6.1a, where the selected segment region has a steady standard deviation

throughout. We chose this region to potentially induce osculations in the quality level

selection of ABR algorithms. ToS, in Fig. 6.1b has a large drop in bitrate, starting

66

6.4. Evaluation Scenario

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Th
ro

ug
hp

ut
 (

in
 M

bp
s)

Segments

(a) Big Buck Bunny (BBB)

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

Th
ro

ug
hp

ut
 (

in
 M

bp
s)

Segments

(b) Tears of Steel (ToS)

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

Th
ro

ug
hp

ut
 (

in
 M

bp
s)

Segments

(c) Elephants Dream (ED)

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230

T
h

ro
u

g
h

p
u

t
(i

n
 M

b
p

s)

Segments

(d) Sintel

Figure 6.1: The dark shaded background area depicts the segments selected from the
four widely used videos. The selection was made to cover different and challenging
bitrate variations.

from segment 12 and two large spikes at segment 55. They challenge ABR algorithm’s

reactivity to sudden changes in bitrate. ED, in Fig. 6.1c is similar but contains more and

larger spikes, challenging the algorithms even more. Lastly, Sintel’s selected segments,

in Fig. 6.1d, show a continuous drop in bitrate, until the very low bitrate area around

segment 190, with a huge and sudden increase of bitrate that continues until the end.

We transcoded the videos using FFmpeg version 4.1.3, at 13 quality levels (Q0 with

0.16 Mbps through Q12 with 10 Mbps), as per Tab. 6.2. As ED was not available in 4K,

67

6. VOXEL

 0

 10

 20

 30

 10 20 30 40 50 60 70

Bi
tr

at
e

(M
bp

s)

Segments

Q12
Q11

Q10
Q8

Q6
Q4

(a) Big Buck Bunny (BBB)

 0

 10

 20

 30

 10 20 30 40 50 60 70

Bi
tr

at
e

(M
bp

s)

Segments

Q12
Q11

Q10
Q8

Q6
Q4

(b) Sintel

 0

 10

 20

 30

 10 20 30 40 50 60 70

Bi
tr

at
e

(M
bp

s)

Segments

Q12
Q11

Q10
Q8

Q6
Q4

(c) Elephants Dream (ED)

 0

 10

 20

 30

 10 20 30 40 50 60 70

Bi
tr

at
e

(M
bp

s)

Segments

Q12
Q11

Q10
Q8

Q6
Q4

(d) Tears of Steel (ToS)

Figure 6.2: Variations in segment sizes across a subset of 6 quality levels of the 13
available quality levels for the four widely used videos.

Q11 and Q12 were, thus, encoded as 1080 p. The levels are based on common 16x9 aspect

ratio resolutions, and bitrates from a combination of the “bitrate ladders” of YouTube

obtained via youtube-dl [128], and Netflix [129]. These capped VBR videos have a peak

bitrate of at most 200% the average bitrate (see Fig. 6.2) and 24 fps. The clips exhibit

(in Fig. 6.2), depending on the content, vastly different bitrate variations across the

video segments. This encoding increases the visual quality of the videos, since it uses

more bits (i.e., incurs a high bitrate) in segments where they are most needed.

Table 6.2: Quality levels of encoded videos.

Resolution Quality Level Avg. Bitrate Total Size
(Mbps) (MB)

144 p Q0 0.16 5.8
240 p {Q1, Q2} {0.23, 0.37} {8.5, 14}
360 p {Q3, Q4} {0.56, 0.75} {21, 27}
480 p {Q5, Q6} {1.05, 1.75} {38, 63}
720 p {Q7, Q8} {2.35, 3} {84, 108}

1080 p {Q9, Q10} {4.3, 5.8} {154, 207}
1440 p Q11 7.4 264
2160 p Q12 10 357

68

6.4. Evaluation Scenario

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

CD
F

Frames dropped (percent)

P1
P5
P6

P7
P9

P10

(a) Q12, SSIM 0.99

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

CD
F

Frames dropped (percent)

P1
P5
P6

P7
P9

P10

(b) Q9, SSIM 0.99

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

CD
F

Frames dropped (percent)

P1
P5
P6

P7
P9

P10

(c) Q9, SSIM 0.95

Figure 6.3: The insights from §4 hold true for a diverse video set. (a) A significant
number of frame-drops can be tolerated while guaranteeing an SSIM of 0.99; The frame-
drop tolerance (b) diminishes when reducing the quality, but (c) improves when lowering
the target SSIM from 0.99 to 0.95.

6.4.3 Public YouTube Videos

To confirm whether the insights in §4 hold for a broader spectrum of videos, and not

only for the, although, widely used videos in Tab. 6.1, videos, we analyzed the remaining

set of our video collection.

The remaining set consists of 10, see Tab. 6.3, publicly available videos from Youtube.

In Fig. 6.3, we present the analyses of some of the videos that were not already presented

in §4. For readability, we omit P3 and P8, as the results from these do not offer any

additional insights.

Our observations concerning frame-drop tolerance for most of these videos, were similar

to those drawn from the four videos from prior work (in Tab. 6.1). There were, however,

two exceptions: P9 and P10. For the rest, at quality level Q12 half of the segments can

tolerate at least 10% frame-drops while maintaining an SSIM score of 0.99 or higher. In

case of P10, only 4% segments can tolerate 10% frame-drops or more, while for P9, we

can drop 14% of frames from all segments. At a quality level lower than Q12, it is nearly

impossible to tolerate frame-drops when streaming P10, even when targeting an SSIM

69

6. VOXEL

score <0.99 (Fig. 6.3c). At Q9 with a target SSIM score of 0.95, for instance, only 18%

of the segments of P10 can tolerate a frame-drop. P9, on the other hand, can tolerate

80% frame-drops for at least half of the segments.

The striking difference in frame-drop tolerances between P9 and P10, and also between

these two videos and the rest can partly be explained by looking at the content of these

two video clips. P10 is a Japanese street-dance performance with roughly 50 performers;

the video involves many subjects and a lot of “changes” (or dance movements) captured

across the different frames. In addition, the video clip has no “cuts” or scene changes.

The combination of all these factors implies that regardless of where frame-drops occurs

in a segment, the resulting (decoding) errors propagate to the end of the segment. P9,

in contrast, is an “unboxing” video, which mostly features a presenter standing against

a gray background, or involves a top-down view of his hands against a white table (or

background). From one frame to another, the video shows little movement, i.e., changes,

if any, are constrained to a relatively few macroblocks. As a result, the video can tolerate

a substantially large number of frame-drops without significantly degrading the SSIM

score.

6.4.4 Network Testbed

We ran all in-lab experiments on a testbed consisting of multiple sets of three bare-metal

Linux machines running Linux (Debian 9) with the 4.19 kernel. Each triplet emulates

a one-hop network—a server and client connected via an intermediate host (or router).

We shape the traffic flowing through the router using the tc utility in Linux. Depending

on the experiment, we either fix the available bandwidth to accommodate our video

stream and a certain amount of competing traffic, or change the available bandwidth

on a per-second basis to mimic prerecorded network traces. As the router constitutes

Table 6.3: Overview of public YouTube videos used to generalize our insights to a
diverse set ot Internet videos.

Channel Category Std. dev. Range
(Mbps) (Segments)

Brooklyn and Bailey (P1) Beauty 2.2 1–55
CollegeHumor (P2) Comedy 1.88 56–131
Dude Perfect (P3) Sports 2.52 5–80
FaZe Adapt (P4) Gaming 2.05 2–77

Gordon Ramsay (P5) Cooking 1.76 1–74
Katy Perry (P6) Music 4.35 23–98

Tana Mongeau (P7) Entertainment 2.03 33–108
The Young Turks (P8) Politics 1.6 4–79
Unbox Therapy (P9) Tech 1.7 1–67

CHARI Yosakoi ch (P10) Entertainment 1.94 3–78

70

6.4. Evaluation Scenario

 0

 2500

 5000

 7500

5 6 7

Bi
tr

at
e

(k
bp

s)

Buffer size (segments)

BBB/Q BBB/Q*

(a) MPC - T-Mobile

 0

 2500

 5000

 7500

5 6 7

Bi
tr

at
e

(k
bp

s)

Buffer size (segments)

ED/Q ED/Q*

(b) MPC - Verizon

 0

 2500

 5000

 7500

5 6 7

Bi
tr

at
e

(k
bp

s)

Buffer size (segments)

Sintel/Q Sintel/Q*

(c) BOLA - T-Mobile

 0

 2500

 5000

 7500

5 6 7
Bi

tr
at

e
(k

bp
s)

Buffer size (segments)

ToS/Q ToS/Q*

(d) BOLA - Verizon

Figure 6.4: When testing with unreliable streams “vanilla” MPC trades off average
bitrates for lowering rebuffering ratios in all settings. BOLA, however, is unable to
balance such a tradeoff in all settings.

a bottleneck in the internet, assuming that not every video is cached on-site, we fixed

the network queue size to 1.25× the bandwidth-delay product. To cover a cached-video

scenario, we ran the same experiments with a large, 750 packets long, network queue

in §6.6.2. We configured a 30 ms delay on the router-to-client link, to emulate a typical

“last mile” latency.

6.4.5 Network Traces

Our in-lab experiments utilized 5 different network traces: 3 LTE (4G) traces from [130],

a 3G trace collected in Norway from [131], and a fixed-line broadband network trace

from the Federal Communications Commission (FCC) dataset [132]. We primarily fo-

cus on cellular networks for two reasons: (a) Video traffic constitutes a substantial

portion of IP traffic on mobile networks [133], and, most important, (b) they present

the most challenging conditions for video streaming. We linearly offset the through-

put of the traces to ensure that the average rate matches the 10 Mbps bitrate of the

highest video bitrate (i.e., Q12). We set the network queue to 32 packets accordingly.

The adjustments leave the network throughput variations intact, while ensuring that the

ABR algorithm has, on average, adequate bandwidth to stream at the highest quality.

The T-Mobile and Verizon LTE traces have high throughput variations (with standard

71

6. VOXEL

 0

 2

 4

 6

 0 100 200 300 400 500

Ba
nd

w
id

th
 (

M
bp

s)

Time (s)

(a) 3G

 0

 10

 20

 0 100 200 300 400 500 600 700

Ba
nd

w
id

th
 (

M
bp

s)

Time (s)

(b) AT&T

 0

 4

 8

 12

 16

 0 200 400 600 800 1000 1200

Ba
nd

w
id

th
 (

M
bp

s)

Time (s)

(c) FCC

 0

 15

 30

 45

 60

 0 100 200 300 400

Ba
nd

w
id

th
 (

M
bp

s)

Time (s)

(d) T-Mobile

 0

 10

 20

 30

 40

 50

 0 200 400 600 800 1000 1200

Ba
nd

w
id

th
 (

M
bp

s)

Time (s)

(e) Verizon

Figure 6.5: Network throughput variations.

deviations between ≈9 Mbps and ≈10 Mbps), representing the less-than-ideal network

conditions under which we intend to evaluate VOXEL. The 3G, FCC and AT&T traces

have less variations, with standard deviations of 1.1 Mbps, 2.35 Mbps and 2.88 Mbps,

respectively.

6.4.6 ABR Algorithms

In our evaluations we compare four ABR algorithms against ABR*. They include

BOLA [42] and MPC [41], two state-of-the-art ABR algorithms, and, the more recent,

BETA [105] from the literature. We did not modify the ABR algorithms, with the ex-

ception of providing BOLA and MPC with the exact segment sizes, instead of average

72

6.5. ABR Algorithms with QUIC*

bitrates. 1 The fourth is a näıve throughput-based ABR algorithm (abbreviated as

“Tput”) to identify what—the transport or the ABR algorithm, or both—contributes

the most, in the various experiments, towards improving the streaming performance.

We also varied the playback buffer size across a wide range of values from 4 s through

28 s. A new segment download can start only if the buffer is not full. Most academic

ABR algorithms use buffers larger than 24 s (e.g., [42, 102, 104]), but small buffers are

crucial for supporting low-latency or live-streaming-like applications.

6.4.7 Experiment Considerations

An experiment, in our evaluation, involves streaming a video from a server to a client via

the router, under a fixed configuration. A configuration specifies the ABR algorithm,

buffer size, video, and network trace. Unless otherwise stated, we repeat each exper-

iment 30 times and report the aggregate statistics of the metrics gathered. For each

repetition we linearly shift the network trace by d/30 s, where d is the trace duration in

seconds, to investigate the interactions between throughput variations and variations in

segment sizes of our VBR-encoded videos (see Fig.6.2). To evaluate the performance of

each trial, we instrumented our video streaming software to obtain segment-level timing

information with packet-level precision.

6.5 ABR Algorithms with QUIC*

To evaluate the implications of an incremental deployment and, most importantly, ascer-

tain the need for a cross-layer, coordinated approach for optimizing video streaming, we

first check the performance of an unmodified ABR algorithm with QUIC*. An unmod-

ified ABR algorithm will use QUIC* identically to QUIC—using only reliable streams

for transport. Hence, we added minimal support for exploiting QUIC* by requesting

the I -Frames over reliable streams and all other frames over unreliable streams.

6.5.1 In-lab Trials with Network Traces

In our evaluations with mobile and fixed-line network traces, ABR algorithms encounter

less rebuffering when running atop QUIC* (in plots labeled “Q*”) than QUIC (labeled

“Q”). We define bufRatio as the total stall time divided by the video duration during one

video playback. The playback buffer sizes used in this evaluation—from 24 s through 32 s,

1We implemented BETA from scratch, to the best of our ability, based on the details in their pa-
per [105], since it is not publicly available.

73

6. VOXEL

 0

 3

 6

5 6 7

bu
fR
at
io

 (
pe

rc
en

t)

Buffer size (segments)

BBB/Q BBB/Q*

(a) BOLA; 20 Mbps

 0

 10

 20

5 6 7

bu
fR
at
io

 (
pe

rc
en

t)

Buffer size (segments)

ED/Q ED/Q*

(b) MPC; 20 Mbps

 0

 1000

 2000

 3000

 4000

 5000

5 6 7

Bi
tr

at
e

(k
bp

s)

Buffer size (segments)

Sintel/Q Sintel/Q*

(c) BOLA; 20 Mbps

 0

 1000

 2000

 3000

 4000

 5000

5 6 7

Bi
tr

at
e

(k
bp

s)

Buffer size (segments)

ToS/Q ToS/Q*

(d) MPC; 20 Mbps

Figure 6.6: ABR algorithms with QUIC* in realistic cross-traffic conditions, with
a 20 Mbps cross-traffic, offer substantially lower bufRatios (a) and (b) by trading off
bitrates (c) and (d).

 0

 1000

 2000

 3000

 4000

 5000

5 6 7

Bi
tr

at
e

(k
bp

s)

Buffer size (segments)

ToS/Q ToS/Q*

Figure 6.7: MPC with QUIC* against 20 Mbps cross-traffic experiences slightly lower
bitrates.

or 5 through 7 segments—are a representative lower bound of prior work [38, 42, 104].

Fig. 6.8 shows the 90th-percentile and standard error of bufRatios for 30 trials of each

ABR algorithm over both QUIC and QUIC*, under different network conditions. QUIC*

delivers, per this figure, lower bufRatio than QUIC for all ABR algorithms; we omit the

plots for “Tput” in the interest of space. The results are quite telling for the highly

varying T-Mobile (Fig. 6.8a) and Verizon (Fig. 6.8b) traces. The inferences hold for the

AT&T, 3G, and FCC traces (omitted to conserve space).

74

6.5. ABR Algorithms with QUIC*

 0

 15

 30

 45

5 6 7

bu
fR
at
io

 (
pe

rc
en

t)

Buffer size (segments)

BBB/Q BBB/Q*

(a) MPC - T-Mobile

 0

 15

 30

 45

5 6 7

bu
fR
at
io

 (
pe

rc
en

t)

Buffer size (segments)

ED/Q ED/Q*

(b) MPC - Verizon

 0

 3

 6

5 6 7

bu
fR
at
io

 (
pe

rc
en

t)

Buffer size (segments)

Sintel/Q Sintel/Q*

(c) BOLA - T-Mobile

 0

 3

 6

5 6 7
bu

fR
at
io

 (
pe

rc
en

t)

Buffer size (segments)

ToS/Q ToS/Q*

(d) BOLA - Verizon

Figure 6.8: When testing unreliable streams with “vanilla” (i.e., unmodified) ABR
algorithms, MPC offers substantial improvements in rebuffering ratios across all videos
and buffer sizes. BOLA, in contrast, improves rebuffering ratios in some settings and
degrades in some others.

The 90th-percentile improvements in bufRatios for MPC is on average 71.7% larger than

that for BOLA (9.2%), mainly because MPC’s network-throughput prediction performs

poorly for our traces. To shed light on how QUIC* lowers the bufRatios we estimate the

average bitrates across all trials for each video under different configurations. Unmodified

ABR algorithms seem to trade off bitrates (Fig. 6.4) for bufRatios; the tradeoffs are

particularly conspicuous in case of MPC with −24.7% but also across all configurations.

Although unmodified BOLA also experiences lower average bitrates when running over

QUIC*, the differences are much smaller (−4.1%) than for MPC. Even in scenarios where

BOLA is worse than QUIC* (in Figs. 6.8c & 6.8d), we do not significantly degrade the

bitrate.

The rare occasions where QUIC*’s performance is not on par with QUIC emphasize

the need for a cross-layer optimization, to enable ABR algorithms to fully utilize the

underlying partially reliable transport, instead of opaquely sending frames unreliably

based on type.

75

6. VOXEL

 0

 5

 10

1 2 3 7

bu
fR
at
io

 (
pe

rc
en

t)

Buffer size (segments)

BBB/BOLA
BBB/VOXEL
BBB/BETA

(a) AT&T

 0

 5

 10

1 2 3 7

bu
fR
at
io

 (
pe

rc
en

t)

Buffer size (segments)

ED/BOLA
ED/VOXEL
ED/BETA

(b) 3G

 0

 5

 10

1 2 3 7

bu
fR
at
io

 (
pe

rc
en

t)

Buffer size (segments)

Sintel/BOLA
Sintel/VOXEL
Sintel/BETA

(c) Verizon

 0

 5

 10

1 2 3 7

bu
fR
at
io

 (
pe

rc
en

t)

Buffer size (segments)

ToS/BOLA
ToS/VOXEL
ToS/BETA

(d) T-Mobile; VOXEL less aggressive

Figure 6.9: bufRatio while streaming with BOLA, BETA, and VOXEL over different
networks. VOXEL outperformed BOLA and BETA in practically all scenarios. In T-
Mobile (d), VOXEL was too aggressive overall, and we corrected this behavior by tuning
a single bandwidth-safety parameter to underestimate slightly the estimated throughput.
We show the untuned VOXEL in Fig. 6.19c.

6.5.2 In-lab Trials with Cross Traffic

The trials with network traces cannot capture the dynamic behavior of competing flows

in a real network. To test an ABR’s performance in the presence of reactive flows, we

generate cross-traffic using Harpoon [134] while streaming video. Harpoon is a flow-level

traffic generator that generates traffic based on web workloads. It takes a number of

clients, C, and servers, S, as input and generates traffic by making the clients fetch

files of varying sizes at varying times from the servers. We vary C to generate varying

amounts of cross traffic, averaging to T : 10 Mbps, 15 Mbps, and 20 Mbps. The self-

similar nature of the cross-traffic does not represent a constant load: Rather, it has

many high and low bandwidth regions.

The link capacity in all scenarios was 20 Mbps. We measure, for each value of T , the

90th-percentile of bufRatios and average bitrates across five trials for the three ABRs as

before. ABR algorithms using QUIC* experience much less rebuffering than when using

QUIC (Fig. 6.6). Even though ABR algorithms experience a slight reduction in average

bitrates, the improvements in bufRatios are substantial. MPC, again, shows with 82%

76

6.6. ABR* with QUIC* (or VOXEL)

 0.85 0.9 0.95 1
 0

 0.2

 0.4

 0.6

 0.8

 1

CD
F

BOLA ―
VOXEL ―

SSIM

(a) BBB - Verizon; SSIM - distribution

 0 20 40 60 80 100
 0

 0.2

 0.4

 0.6

 0.8

 1

CD
F

BOLA ―
VOXEL―

VMAF

(b) BBB - Verizon; VMAF - distribution

 0 10 20 30 40 50 60
 0

 0.2

 0.4

 0.6

 0.8

 1

CD
F

BOLA ―
VOXEL ―

PSNR (dB)

(c) BBB - Verizon; PSNR - distribution

Figure 6.10: (a) SSIM, (b) VMAF, and (c) PSNR measurements while streaming
BBB over Verizon show that VOXEL outperforming BOLA independent of the quality
metric is not achieved by trading a lower visual quality. In both metrics VOXEL even
achieves better scores in the upper range of each scale.

more improvements than BOLA (63.6%), but also experiences degradation in average

bitrates when using QUIC*.

The in-lab trials with network traces and against competing flows show that even with

utilizing unreliable streams, a superficial ABR modification, we significantly lower re-

buffering under varying network conditions. Without a meticulous redesign, unsurpris-

ingly, ABR performance might suffer under some network conditions.

6.6 ABR* with QUIC* (or VOXEL)

To fully exploit QUIC* and optimize video streaming without sacrificing end-users’

QoEs, we upgraded BOLA to optimize for visual quality and to exploit frame-drop

tolerance (§4). The redesigned ABR algorithm, ABR*, retains it’s primary goal of

avoiding rebuffering. We evaluate VOXEL (ABR* with QUIC*) against a wide variety of

network conditions and playback buffer configurations. We also included BETA into our

trials, to demonstrate that VOXEL outperforms BETA’s similar, but limited, feature-

set. We do not show MPC in these comparative evaluations due to its poor performance

77

6. VOXEL

 0

 2000

 4000

 6000

 8000

1 2 3 7

Bi
tr

at
e

(k
bp

s)

Buffer size (segments)

BBB/BOLA
BBB/VOXEL

ED/BOLA
ED/VOXEL

(a) T-Mobile

 0

 2000

 4000

 6000

 8000

1 2 3 7

Bi
tr

at
e

(k
bp

s)

Buffer size (segments)

Sintel/BOLA
Sintel/VOXEL

ToS/BOLA
ToS/VOXEL

(b) Verizon

Figure 6.11: VOXEL outperforms BOLA/QUIC even in bitrates when streaming var-
ious videos over the (a) T-Mobile and (b) Verizon network.

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 2 3 7

Bi
tr

at
e

(k
bp

s)

Buffer size (segments)

Sintel/BOLA
Sintel/VOXEL

ToS/BOLA
ToS/VOXEL

Figure 6.12: VOXEL outperforms BOLA in average bitrates in the presence of cross-
traffic with an average throughput of 20 Mbps.

against VOXEL in our highly varying network traces as well as challenging cross-traffic

scenarios.

6.6.1 In-lab Trials with Network Traces

In our evaluations, under all network conditions emulated using the different trace files,

VOXEL experienced either substantially low or virtually zero rebuffering. We mainly fo-

cus, due to space constraints, on the plots for AT&T (Fig. 6.9a), 3G (Fig. 6.9b), Verizon

(Fig. 6.9c) and T-Mobile (Fig. 6.9d). We observe similar results for FCC (Fig. 6.20a).

VOXEL practically eliminates rebuffering against the state-of-the-art, BOLA, and BETA

under all buffer sizes ranging from 5 through 7 segments; we only plot the largest

buffer size in this range, where the 90th improvement is 100%. If we compare the

7-segment buffers with the smaller sizes, we observe an increase in bufRatio. Comparing

the bufRatio with the average bitrates in Fig. 6.11 reveals the reason: With a large

buffer, BOLA aggressively requests higher quality segments but fails to deliver them in

78

6.6. ABR* with QUIC* (or VOXEL)

 0
 1
 2
 3
 4
 5
 6
 7

1 2 3 7
bu

fR
at
io

 (
pe

rc
en

t)

Buffer size (segments)

BOLA
VOXEL/SSIM
VOXEL/VMAF
VOXEL/PSNR

Figure 6.13: The bufRatios while streaming BBB over Verizon show that VOXEL
outperforms BOLA independent of the quality metric, emphasizing its agnostics.

time, resulting in an overall increase in bufRatio. These observations show that choosing

the right quality level is hard and large buffers cannot always prevent rebuffering.

To demonstrate that VOXEL can even perform well in low-latency or live-streaming-like

scenarios, we experimented with very small playback buffers. Per Fig. 6.9, even when the

playback buffer is as small as 1 segment (along with one “in-flight” segment), VOXEL

vastly outperforms today’s state-of-the-art streaming implementations in bufRatio by

74%. The rebuffering experienced when streaming BBB over Verizon, in Fig. 6.13, shows

that VOXEL outperforms BOLA/QUIC regardless of the choice of the QoE metric,

demonstrating that VOXEL is QoE-metric-agnostic.

We show the average bitrates (i.e., mean of average bitrates of 30 trials) of the video

streams under different network conditions in Fig. 6.11. In addition to streaming the

videos with virtually low or no rebuffering VOXEL sustains average bitrates that are

at least on par and in most cases significantly higher than that of the state-of-the-art.

Next, we focus on VOXEL’s performance with respect to the SSIM metric.

First, we refer to the Verizon trace experiment, where VOXEL reduces rebuffering sig-

nificantly by 96.3% (Fig. 6.9c). When comparing the CDFs of all streamed segments’

SSIMs for both BOLA/QUIC and VOXEL (see Fig. 6.10a), we observe that there is

little difference in the median SSIMs (solid lines). The rebuffering reduction was, thus,

no trade-off for a lower SSIM score. The shaded area in the plot indicates the range

between the best and worst SSIMs recorded across all the 30 runs.

To illustrate VOXEL’s QoE-metric agnosticism, we repeated the Verizon experiment,

replacing SSIM with VMAF and PSNR. VOXEL performs on par with BOLA in the

lower VMAF score region, but outperforms BOLA in the upper score region (Fig. 6.10b);

VOXEL even achieves perfect scores for several segments. The same holds for bufRatio,

in Fig. 6.13: We show that VOXEL almost eliminates rebuffering with either SSIM ,

79

6. VOXEL

 0.85 0.9 0.95 1
 0

 0.2

 0.4

 0.6

 0.8

 1

CD
F

BOLA ―
VOXEL ―
BETA --

SSIM

(a) ToS - AT&T; 2-segment buffer

 0.85 0.9 0.95 1
 0

 0.2

 0.4

 0.6

 0.8

 1

CD
F

BOLA ―
VOXEL ―
BETA --

SSIM

(b) Sintel - 3G

 0.85 0.9 0.95 1
 0

 0.2

 0.4

 0.6

 0.8

 1

CD
F

BOLA ―
VOXEL ―
BETA --

SSIM

(c) ED - Verizon

 0.85 0.9 0.95 1
 0

 0.2

 0.4

 0.6

 0.8

 1

CD
F

BOLA ―
VOXEL ―
BETA --

SSIM

(d) BBB - T-Mobile; VOXEL less ag-
gressive

Figure 6.14: SSIMs of selected videos while streaming with BOLA, BETA, and
VOXEL over different networks. VOXEL is superior in SSIM while reducing bufRatio
(see Fig. 6.9). In (a), where neither protocol shows rebuffering, VOXEL better utilizes
the available bandwidth, (b) performed best in SSIM in with on par or better bufRatio,
and traded SSIM only with BOLA in (c) and (d), for a vastly lower bufRatio as both
BETA and BOLA.

VMAF , or PSNR. PSNR, in Fig. 6.10c, shows very similar performance to VMAF and

SSIM.

VOXEL achieves low rebuffering by exploiting the virtual quality levels, obtained by

“skipping”, i.e., not downloading, less important frames. BETA relies, in contrast,

on dropping a percentage of unreferenced B -Frames (or b-Frames) to counter sudden

fluctuations in bandwidth [105]. VOXEL, thus, vastly increases the decision space by

considering P -Frames as well as referenced B -Frames. Our experiments show that we

had to drop frames in 9% of segments on average. In 85% of those cases it was not

sufficient to only drop b-Frames; we also dropped 46% of all referenced frames, still

resulting in minimal SSIM degradation.

Fig. 6.15 shows the percent of data dropped, as a function of buffer size. With an

increasing playback buffer size, the amount of data dropped is reduced as the large buffer

likely absorbs the variations in network conditions and, thus, makes it unnecessary to

drop frames. The differences in the data dropped for the same buffer size for different

videos stems from the differences in the scaling impact on SSIM scores. Said differently,

80

6.6. ABR* with QUIC* (or VOXEL)

 0

 4

 8

 12

 16

1 2 3 7

Da
ta

 s
ki

pp
ed

 (
pe

rc
en

t)

Buffer size (segments)

BBB
ED
Sintel
ToS

(a) Verizon

 0

 4

 8

 12

 16

1 2 3 5 7

Da
ta

 s
ki
pp

ed
 (
pe

rc
en

t)

Buffer size (segments)

BBB
ED
Sintel
ToS

(b) T-Mobile

 0

 4

 8

 12

 16

1 2 3 7

Da
ta

 s
ki
pp

ed
 (
pe

rc
en

t)

Buffer size (segments)

BBB
ED
Sintel
ToS

(c) AT&T

Figure 6.15: The percentage of data dropped or “skipped” by VOXEL when streaming
different videos over (a) Verizon, (b) T-Mobile and (c) AT&T as a function of buffer
size.

if the SSIM difference between two bitrate quality levels is small, we will not insert SSIM

quality steps (or virtual quality levels) in between.

In the AT&T LTE network trace experiment (Fig. 6.14a), VOXEL can even improve

SSIMs. When we experimented with a two-segment-long playback buffer, none of the

three systems experienced any rebuffering (Fig. 6.9a), while VOXEL is still deliver-

ing comparable or higher average bitrates (Fig. 6.19b), even with small buffers. Yet,

VOXEL’s distribution of SSIM scores (Fig. 6.14a) is below (i.e., better than) BOLA

and BETA, indicating that VOXEL used the available bandwidth more efficiently than

others. When streaming over the Verizon network, VOXEL outperforms BETA and

BOLA in bufRatio for all videos (refer Fig. 6.9c for the bufRatio of all four videos for

all playback buffer sizes). BOLA outperforms, however, VOXEL and BETA in terms

of SSIM (refer to ED in Fig. 6.14c). BETA and VOXEL, however, only seemingly lose

against BOLA, since this is part of the trade-off which significantly reduces bufRatio.

For 3G (bufRatio in Fig. 6.9b) and bitrates in Fig. 6.19a, and FCC (Figs. 6.20a, 6.20b)

VOXEL is not able to remove rebuffering entirely, but still delivers comparable or better

performance than the state-of-the-art. Overall, our evaluation shows that in most cases

VOXEL is clearly superior to BOLA as well as BETA.

81

6. VOXEL

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40

CD
F

bufRatio (percent)

BOLA
BOLA-SSIM

VOXEL
 0

 0.2

 0.4

 0.6

 0.8

 1

 0.84 0.86 0.88 0.9 0.92

CD
F

SSIM

BOLA
BOLA-SSIM

VOXEL

Figure 6.16: BOLA, BOLA-SSIM and VOXEL have 7.9%, 8.2% and 5.1% mean
bufRatio, respectively, when streaming BBB over 86 3G traces with a 1-segment buffer.
Pointing out the 90th and 95th, the bufRatio difference mostly lies in the upper per-
centiles.

One exception to the above performance of VOXEL is the T-Mobile result in Fig. 6.9d.

We found, however, that VOXEL was tuned too aggressively in its quest to optimize for

SSIMs. Such aggressive tuning can lead to suboptimal decisions in network scenarios

with large bandwidth fluctuations such as the T-Mobile trace. When we tuned VOXEL

to be less aggressive, i.e., to slightly underestimate the available throughput, we once

again outperform BETA not only in SSIM (Fig. 6.14d) but also in bufRatio (Fig. 6.9d).

This tuning required changing a single parameter, the bandwidth-safety factor, that is

applied to the estimated bandwidth. The results for an untuned VOXEL can be found in

the Appendix in Fig. 6.19d for SSIM and Fig. 6.19c for bufRatio. This ability to balance

the tradeoff between visual quality and rebuffering can easily be leveraged dynamically

by a more advanced ABR algorithm.

Fig. 6.16 isolates the effect of the two updates to BOLA described in §6. We evaluated

BOLA, BOLA-SSIM, and VOXEL by streaming BBB over 86 3G traces collected by

Riiser et al. [131] using a 1-segment buffer. The low average bandwidth of these 3G

traces helps to stress-test the ABR algorithms (Fig. 6.14b). BOLA-SSIM’s average

SSIM score is 0.02 higher than that of BOLA, but this increase comes at the cost of

4% more rebuffering. VOXEL has, however, 35% less rebuffering when compared with

BOLA while also enjoying a 0.02 SSIM-score advantage. BOLA-SSIM obtains its SSIM

advantage by optimizing for SSIM and by using available bandwidth more aggressively,

and with more download options, than BOLA. VOXEL reduces rebuffering through

smart segment abandonment enabled by QUIC*. Smart abandonment is particularly

useful during periods of low bandwidth. We repeated the experiments with a 7-segment

buffer and obtained similar results, with VOXEL obtaining an even lower bufRatio. With

the larger buffer, BOLA, BOLA-SSIM, and VOXEL have mean bufRatios (SSIM scores)

of 7.1% (0.865), 7.1% (0.898), and 2.8% (0.895), respectively.

82

6.6. ABR* with QUIC* (or VOXEL)

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 20 40 60 80 100

Ac
cu

m
ul

at
ed

 a
vg

. S
SI

M

Percent played

BOLA (step)
BOLA (const.)
VOXEL (step)

VOXEL (const.)

(a) BBB; SSIM progression

 0.85 0.9 0.95 1
 0

 0.2

 0.4

 0.6

 0.8

 1

CD
F

BOLA ―
VOXEL ―

SSIM

(b) BBB; SSIM distribution

 0.85 0.9 0.95 1
 0

 0.2

 0.4

 0.6

 0.8

 1

CD
F

BOLA ―
VOXEL ―

SSIM

(c) BBB; SSIM distribution

Figure 6.17: (a) SSIM progression of BOLA and VOXEL while streaming BBB over
a constant 10.5 Mbps trace with the CDF of SSIMs in (b) and a step trace that drops
from 10.75 Mbps to 10.5 Mbps after 70 s with the CDF of SSIMs in (c).

6.6.2 In-lab Trials with Long Network Queues

Video content, cached on premise of LTE providers, will traverse an LTE network path

with typically very long network queues. To acknowledge this LTE queue behavior for

popular on-site-cached content, we ran additional network trace experiments, now with

a 750-packets-long queue (see Fig. 6.18). The 1-segment buffer is, again, the largest

hurdle but VOXEL still has a slight edge over BOLA, even with the more challenging

T-Mobile trace. Larger buffer sizes, and the less challenging Verizon trace widen the gap

between the two. Looking at larger buffers and Verizon in Fig. 6.18b, we do see VOXEL

occasionally performing worse than BOLA. This can be attributed to the QUIC version

of VOXEL, which relies on CUBIC as its congestion control (CC). Large network queues

pose a challenge for loss-based CC, thus, in future work, VOXEL should be evaluated

with a delay based CC.

6.6.3 In-lab Trials without Partial Reliability

To quantify the benefits of partial reliability, we, again, ran trials with network traces,

though, now without unreliable streams, i.e., we enforced fully reliable transfers. We

83

6. VOXEL

 0

 5

 10

 15

1 2 3 7

bu
fR
at
io

 (
pe

rc
en

t)

Buffer size (segments)

BBB/BOLA
BBB/VOXEL

ED/BOLA
ED/VOXEL

(a) T-Mobile

 0

 5

 10

 15

1 2 3 7

bu
fR
at
io

 (
pe

rc
en

t)

Buffer size (segments)

Sintel/BOLA
Sintel/VOXEL

ToS/BOLA
ToS/VOXEL

(b) Verizon

Figure 6.18: bufRatios for a 750-packets-long network queue.

 0

 2000

 4000

1 2 3 7

Bi
tr

at
e

(k
bp

s)

Buffer size (segments)

BBB/BOLA
BBB/VOXEL

ED/BOLA
ED/VOXEL

(a) 3G; Average bitrates

 0

 2000

 4000

 6000

 8000

1 2 3 7

Bi
tr

at
e

(k
bp

s)

Buffer size (segments)

Sintel/BOLA
Sintel/VOXEL

ToS/BOLA
ToS/VOXEL

(b) AT&T; Average bitrates

 0

 5

 10

1 2 3 7

bu
fR
at
io

 (
pe

rc
en

t)

Buffer size (segments)

BBB/BOLA
BBB/VOXEL
BBB/BETA

ED/BOLA
ED/VOXEL
ED/BETA

Sintel/BOLA
Sintel/VOXEL
Sintel/BETA

ToS/BOLA
ToS/VOXEL
ToS/BETA

(c) T-Mobile; VOXEL too aggressive

 0.85 0.9 0.95 1
 0

 0.2

 0.4

 0.6

 0.8

 1

CD
F

BOLA ―
VOXEL ―
BETA --

SSIM

(d) BBB - T-Mobile; VOXEL too aggres-
sive

Figure 6.19: Average bitrates while streaming with VOXEL over (a) 3G and (b)
AT&T. A too aggressively tuned VOXEL losing against BETA in bufRatio in (c) while
outperforming BETA in SSIM (d).

kept all remaining features of VOXEL intact. With the Verizon trace (Fig. 6.21b) the

bufRatio doubled without partial reliability across all buffer sizes. Even when streaming

under the more challenging T-Mobile trace Fig. 6.21a), VOXEL outperforms a reliable

streaming system in all cases, except for ED with a 1-segment buffer. In summary,

enabling partial reliability significantly reduces the bufRatio in all but one cases.

84

6.6. ABR* with QUIC* (or VOXEL)

 0

 1

 2

 3

 4

 5

1 2 3 7

bu
fR
at
io

 (
pe

rc
en

t)

Buffer size (segments)

BBB/BOLA
BBB/VOXEL

ED/BOLA
ED/VOXEL

(a) FCC; bufRatio

 0

 2000

 4000

 6000

 8000

1 2 3 7

Bi
tr

at
e

(k
bp

s)

Buffer size (segments)

Sintel/BOLA
Sintel/VOXEL

ToS/BOLA
ToS/VOXEL

(b) FCC; Average bitrates

Figure 6.20: (a) bufRatio and (b) average bitrates while streaming with VOXEL uti-
lizing the FCC trace.

 0

 5

 10

1 2 3 7

bu
fR
at
io

 (
pe

rc
en

t)

Buffer size (segments)

BBB/VOXEL rel
BBB/VOXEL

ED/VOXEL rel
ED/VOXEL

(a) T-Mobile; optional partial reliability

 0

 1

 2

 3

 4

 5

1 2 3 7

bu
fR
at
io

 (
pe

rc
en

t)

Buffer size (segments)

Sintel/VOXEL rel
Sintel/VOXEL

ToS/VOXEL rel
ToS/VOXEL

(b) Verizon; optional partial reliability

Figure 6.21: A bufRatio comparison between VOXEL without partial reliability en-
abled, denoted as ”VOXEL rel”, and VOXEL itself, over (a) T-Mobile and (b) Verizon.

6.6.4 In-lab Trials with Cross Traffic.

VOXEL outperforms the state-of-the-art implementations even in the presence of a

substantial volume of cross-traffic. Fig. 6.22a shows that VOXEL experiences virtually

no rebuffering even in the presence of an average of 20 Mbps of cross-traffic. As all

streams in VOXEL are congestion-controlled, we have no flow-fairness concerns. We

omit results for fairness and lower cross-traffic volumes due to space constraints.

The average bitrates sustained by VOXEL in Fig. 6.22b reveal that we do not compro-

mise the bitrates even while virtually getting rid of rebuffering. The performance of

VOXEL, particularly when using very small playback buffers, attests to the benefit of

the cross-layer optimization for improving the status-quo in video streaming.

6.6.5 In-lab Trials with Synthetic Network Traces

To dissect VOXEL’s performance improvements, we conducted controlled experiments

utilizing synthetic traces. We compared the SSIM progression of streaming BBB on

85

6. VOXEL

 0

 1

 2

 3

 4

 5

1 2 3 7

bu
fR
at
io

 (
pe

rc
en

t)

Buffer size (segments)

BBB/BOLA
BBB/VOXEL

ED/BOLA
ED/VOXEL

(a) bufRatio; 20 Mbps cross-traffic

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 2 3 7

Bi
tr

at
e

(k
bp

s)

Buffer size (segments)

Sintel/BOLA
Sintel/VOXEL

ToS/BOLA
ToS/VOXEL

(b) Average bitrates; 20 Mbps cross-
traffic

Figure 6.22: VOXEL outperforms BOLA in (a) bufRatio and (b) bitrate in the pres-
ence of 20 Mbps cross-traffic. Even when using a 1-segment playback buffer, VOXEL
offers low or near zero rebuffering rates.

BOLA with VOXEL using (a) a constant throughput of 10.5 Mbps and (b) a step trace

starting at 10.75 Mbps and dropping to 10.5 Mbps after 70 s (see Fig. 6.17a). To avoid

handicapping BOLA, we use a playback buffer of 28 s. In the initial phase, where both

ABR algorithms are filling their buffer, VOXEL’s SSIM never drops below 0.95 giving

it a quality head start compared to BOLA which drops down to 0.90. In steady-state,

VOXEL outperforms BOLA again with overall higher SSIMs throughout the experiment.

Both ABR algorithms run under the same stable conditions, i.e., with constant available

throughput, but VOXEL utilizes the available resources more efficiently. Fig. 6.17b

shows that VOXEL obtains an SSIM score of 1.0 for 65% of the segments. BOLA, in

contrast, does not get any perfect scores.

We conduct a second experiment where we start at a marginally higher 10.75 Mbps and,

after 70 s, drop down to 10.5 Mbps, the same throughput used for the first experiment.

VOXEL has greater freedom in selecting a suitable quality and, unsurprisingly, outper-

forms BOLA again. The finite set of quality levels BOLA can chose from do not capture

the network conditions well, and results in a perfect delivery of only 3% of the segments

(Fig. 6.17c). In contrast, VOXEL copes well with the network conditions, delivering

80% of the segments with a perfect 1.0 SSIM score.

6.6.6 In-the-wild Trials

To complement our in-lab trials, we streamed video, inside of Europe, from a server in

a datacenter in France to a client behind a university WiFi in Germany, for verifying

the real-world performance of VOXEL. The videos were streamend throughout the day,

alternating between BOLA and VOXEL using the four videos from Tab. 6.1 with a small

1-segment and a large 7-segment playback buffer. While BOLA and VOXEL achieve low

86

6.7. Real User Survey

 0.85 0.9 0.95 1
 0

 0.2

 0.4

 0.6

 0.8

 1

CD
F

BOLA ―
VOXEL ―

SSIM

(a) BBB

 0.85 0.9 0.95 1
 0

 0.2

 0.4

 0.6

 0.8

 1

CD
F

BOLA ―
VOXEL ―

SSIM

(b) ToS

Figure 6.23: In-the-wild trials: SSIM score distribution when streaming with a 1-
segment buffer.

 0

 10

 20

1 7

bu
fR
at
io

 (
pe

rc
en

t)

Buffer size (segments)

BBB/B
BBB/V
ED/B
ED/V
Sintel/B
Sintel/V
ToS/B
ToS/V

Figure 6.24: Comparison of bufRatio of BOLA/QUIC, labelled “B”, and VOXEL,
labelled “V” in in-the-wild trials with VOXEL dominating BOLA in small and outper-
forming it in large buffer scenarios.

rebuffering for large buffers, VOXEL outperforms BOLA significantly for small buffers

(Fig. 6.24). When looking at the average bitrates in Fig. 6.25, we can see that VOXEL

streams with equal or marginally lower bitrates compared to BOLA. The slight reduction

in average bitrate is, though, not at the expense of SSIM. When we compare the SSIM

scores in the low-buffer experiment (Fig. 6.23), VOXEL performs comparably and, thus,

does not unnecessarily trade off rebuffering or average bitrate for visual quality. To

ensure similar conditions for both VOXEL and BOLA/QUIC, we measured the clients’

available bandwidths during the experiment, and they varied, on average, by less than

200 Kbps.

6.7 Real User Survey

We conducted a real user study with 54 participants recruited from different universities

showing that VOXEL is superior for both objective and subjective metrics. We used one-

minute-long video clips extracted from our in-lab experiments; we chose videos streamed

87

6. VOXEL

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

1 7

Bi
tr

at
e

(in
 k

bp
s)

Buffer size (in segments)

BBB/BOLA
BBB/ABR*

ED/BOLA
ED/ABR*

Sintel/BOLA
Sintel/ABR*

ToS/BOLA
ToS/ABR*

Figure 6.25: Comparison of the average bitrates of BOLA/QUIC in the in-the-wild
trials with VOXEL streaming with equal or marginally lower bitrates.

 1

 2

 3

 4

 5

clarity glitches fluidity experience

M
O

S

BOLA
VOXEL

Figure 6.26: MOS along 4 dimensions: Clarity (i.e., visual quality), glitches (i.e.,
noticeable artifacts), fluidity (i.e., rebuffering) and overall viewing experience.

in challenging network conditions (e.g., scenarios where network throughput was as low

as 0.3 Mbps). Of the 54 study participants 84% preferred VOXEL to BOLA, i.e., they

would rather watch the videos streamed using the former than the latter. We asked

users if they would have stopped watching the clips: 31% of users indicated that they

would have stopped the BOLA streams, if they were permitted, while only 10% said

they have stopped the VOXEL streams. If the short videos were representative of what

to expect in longer videos, 74% indicated that they would not watch the BOLA streams

compared to 36.7% for VOXEL.

The preference for VOXEL is also reflected in the MOS values given for the questions

along four dimensions (Fig. 6.26). The playback fluidity was important and rated 1.7

points higher for VOXEL. This fluidity is traded for a slightly lower score in terms

visual quality, i.e., noted here as clarity −0.49 and glitches −0.19, though, the overall

experience was preferred with a 0.77 points higher score.

88

6.8. Summary

6.8 Summary

We designed and implemented VOXEL, a cross-layer video streaming optimization,

and showed that in our evaluations it significantly outperforms the state-of-the-art.

VOXEL’s design builds upon the insights that (i) videos can tolerate some drops without

significant impact on QoE—motivating us to use a partially reliable transport protocol,

(ii) we can identify less “important” frames—motivating us to alter the frame sequence

in the manifest, (iii) we can leverage QoE utilities—motivating us to introduce virtual

quality levels through frame-drops. Skipping a non-trivial amount of streaming data

while still delivering high quality video has huge monetary implications for both Con-

tent Delivery Networks (CDNs) and content providers—a novel use case for VOXEL

that we leave to future work.

To make the design and evaluation of VOXEL a “call to arms” for the video-streaming

community to investigate this optimization landscape, we made our implementation

publicly available on GitHub [135].

On being QoE-metric agnostic. VOXEL opens up a new design space that is not yet

fully supported by current quality metrics. Since SSIM may not be the preferred metric

to assess the visual quality of video, we designed VOXEL to be QoE-metric agnostic.

We show, in Fig. 6.13, relatively good rebuffering performance when using VMAF or

PSNR [136, 137]—other widely used QoE metrics in the literature. That being said, we

invite the community to consider evaluating new metrics that can accurately measure

the QoE impact of imperfect segments and

Managing the overheads. Lastly, VOXEL’s frame-prioritization computation introduces

some overheads: In our unoptimized implementation, enriching the manifest incurred

at most 5-times higher cost than that of encoding a video. Beyond simply optimizing

the code, the content provider can also drop a few encoding levels and thereby reduce

the storage costs. The computation only changes the manifest; video files remain as

is. Hence, in a typical video streaming scenario via a distributed platform (e.g., CDN),

this manifest-only update can be deferred (until later when the provider has empirical

observations on streaming conditions) and easily synchronized between servers (owing

to their small size). Still, it is a one-time computation, i.e., once enriched the manifest

can be reused indefinitely.

89

Chapter 7

Summary and Outlook

In this thesis we studied how to share information between the transport and application

layer to improve today’s content delivery systems. We started with Socket Intents in

combination with MPTCP to allow applications an informed decision about how, i.e.,

over which combination of network interfaces, its content shall be delivered. We showed

performance improvements in 50% of the cases, with our event-based web transfer sim-

ulator. Although the Socket Intents approach is rather coarse grained, it is shown to be

also suitable for streaming video content [11].

Our video transfer design analysis showed, though, that an even tighter and more fine

grained coupling between transport and application is beneficial for reducing rebuffering,

the most severe impairment in video streaming. We, thus, created VOXEL, our complete

and easily deployable video streaming system. With VOXEL we can not only determine

how a video segment is transferred but on frame granularity decide which frames to

transfer, given the current network conditions. Our extensive, and with a real user

survey confirmed, evaluation showed significant improvements in avoiding rebuffering.

It follows an outline of how we could apply VOXEL to popular and emerging video

streaming scenarios, i.e., live streaming and 360° video, as well as what benefits could

be gained from integrating a multi-path transport, e.g., MP-QUIC [138], into VOXEL.

Live video streaming is more widespread than ever, e.g., Twitch served, on aver-

age, over 2 million concurrent viewers in 2021 [139], while still suffering from the same

rebuffering issues as VoD streams. Rebuffering makes live streams an ideal target for

VOXEL. VOXEL does, although designed with live-streaming like, low latency streams

in mind, not natively support actual live streams without modifications. Currently, the

frame analysis is done offline, which is not be possible in a live stream. One approach,

to do the analysis in real time, is to train a machine learning model to recognize the con-

nection between the characteristics of a video segment and the resulting visual quality

score. In other words, a model is trained, offline, with a diverse set of video segments

91

7. Summary and Outlook

with known visual qualities, to map the influence of dropped frames to the visual quality.

With smart phones already being equipped with machine learning hardware [140], such

a trained model could be executed, in real time, while a video segment is generated by

the live video encoder. A frame importance order can be generated from the mapping

and be attached to the continuously updated manifest. Equipped with this information

a VOXEL client has all information required to selectively chose which of the frames to

download in which order. When there are enough frames received to provide a high QoE

for the end-user, the client can even catch up a delayed stream by stopping the current

download and moving on.

360° video is an emerging technology to be used with head-mounted-displays head-

mounted displays (HMDs). HMDs place displays in front of a users eyes, mounted on a

head-gear that tracks the users head movements. Such a system allows a user to look

anywhere but it requires the display to present the content equally from all angles the

user is looking at. 360° video satisfies this requirement by morphing, or distorting a

spherical video onto a two dimensional plane which can then be saved as regular video

frames, which can be streamed similar to regular VoD content. As the user can only look

at one viewpoint at a time, it is wasteful to transfer content “behind the users back”

with the same bandwidth as what is in front of the user. Having different priorities for

different regions in the video resulted in the development of tile-based video. A tile-

based video splits the content spatially into a grid of smaller videos [141]. Each video

can then be transferred at a different quality level, depending on the users’ gaze.

Rebuffering, in such a system, is even more detrimental as users will struggle when the

immersion breaks because the video suddenly stops. VOXEL is ideal in such a case,

as we have shown that it can significantly reduce rebuffering. VOXEL can prioritize

the video tiles even more efficient with the knowledge of where the user is looking at

and distribute available throughput accordingly. On top of that, the inherent ability

of VOXEL to selectively stop a segment download at a designated point, i.e., a defined

number of frames is downloaded, is an ideal candidate for 360° video. This designated

point can be chosen low for tiles that are behind the user, i.e., downloading a high

quality segment but requesting as few frames as possible, but changed mid download to

receive more frames if the user is moving their head, making the unimportant tile now

very important.

Beyond looking at specific applications for VOXEL, it is also of interest to incorporate

a Multi-Path capable transport. QUIC itself jump-started the development of VOXEL,

and with MP-QUIC [138] there is a transport candidate with the same advantages.

Introducing a Multi-Path transport could bring VOXEL’s split of important and unim-

portant data to the next level, as now the priority of data could be matched to the

92

quality of a link. For example, the frame header information of a video is crucial to

decode an imperfectly transported video segment, but very small in size. Header infor-

mation could, thus, be transported over a low capacity but low latency link. The large

image information of a video segment could then be transferred in parallel over a high

capacity link where the latency is less critical.

The described applications and the potential to extend VOXEL itself show the versatility

of the system and how it could change many aspects of how we transport content.

VOXEL is designed to prioritize content and separate it into essential and optional

parts. Wherever such a distinction of importance is possible, while needing to conserve

bandwidth, VOXEL would be a prime candidate to be integrated.

93

Glossary

ABR Adaptive Bitrate . 1

API Application Programming Interface . 35

BBB Big Buck Bunny . 43

BETA bandwidth-efficient temporal adaptation 40

BOLA Buffer Occupancy based Lyapunov Algorithm 13

CC congestion control . 83

CDN Content Delivery Network . 1

DASH Dynamic Adaptive Streaming over HTTP 41

DNS Domain Name System . 9

DOM Document Object Model . 24

DSL Digital subscriber line . 4

EAF Earliest Arrival First . 18

EAF-MPTCP Earliest Arrival First with MPTCP 18

ED Elephants Dream . 43

FCC Federal Communications Commission . 71

HAR HTTP Archive . 28

HLS HTTP live streaming . 12

HMD head-mounted display . 92

95

Glossary

IPC inter-process communication . 19

LTE Long-Term Evolution . 4

MAM Multi-Access Management . 19

MOS mean opinion score . 53

MPC Model predictive control . 13

MPEG Moving Picture Experts Group . 52

MPTCP Multi-path TCP . 7

PR-SCTP Partial Reliability Stream Control Transmission Protocol 42

PSNR Peak signal-to-noise ratio . 14

QoE Quality of Experience . 2

QUIC Quick UDP Internet Connections . 4

RTT round-trip time . 10

SCTP Stream Control Transmission Protocol 37

SRTT smoothed round-trip times . 21

SSIM structural similarity . 14

ToS Tears of Steel . 43

TLS Transport Layer Security . 10

VBR variable bitrate . 54

VMAF Video Multi-Method Assessment Fusion 14

VoD Video on Demand . 43

VOXEL Video-streaming Optimization Across Enriched Layers 14

VQ visual quality . 42

96

Bibliography

[1] Mirko Palmer, Malte Appel, Kevin Spiteri, Balakrishnan Chandrasekaran, Anja

Feldmann, and Ramesh K. Sitaraman. Voxel: Cross-layer optimization for video

streaming with imperfect transmission. CoNEXT ’21, page 359–374, New York,

NY, USA, 2021. Association for Computing Machinery. ISBN 9781450390989. doi:

10.1145/3485983.3494864. URL https://doi.org/10.1145/3485983.3494864.

[2] Bill Gates. Content is king. https://web.archive.org/web/20010126005200/www.

microsoft.com/billgates/columns/1996essay/essay960103.asp, March 1996.

[3] DataReportal. Digital 2022: April global statshot report. https://www.statista.

com/statistics/617136/digital-population-worldwide/, April 2022.

[4] Cisco. Visual Networking Index: Forecast and Trends, 2017-2022 White Pa-

per. https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/

annual-internet-report/white-paper-c11-741490.pdf, February 2019.

[5] Sandvine. The Global Internet Phenomena Report. https://www.sandvine.com/

press-releases/sandvine-releases-2019-global-internet-phenomena-report, Septem-

ber 2019.

[6] Saksena, Rachit and Lu, Dave and Celik, Ilyas. Ericsson Mobility Re-

port. https://www.ericsson.com/4ad7e9/assets/local/reports-papers/mobility-

report/documents/2021/ericsson-mobility-report-november-2021.pdf, November

2021.

[7] Presse- und Informationsamt der Bundesregierung. So will die Bun-

desregierung Funklöcher schließen. https://www.bundesregierung.de/breg-de/

aktuelles/funkloecher-und-5g-1841896, January 2021.

[8] Bob O’Donnell. Real-World 5G Speeds Are Slower Than Expected. https://

www.forbes.com/sites/bobodonnell/2019/11/22/real-world-5g-speeds/, Novem-

ber 2019.

[9] Morris, Sam. Are Your Country’s Cellphone Plans a Rip-off? https://themarkup.

org/2020/09/03/cost-speed-of-mobile-data-by-country, September 2020.

[10] Philipp S. Schmidt, Theresa Enghardt, Ramin Khalili, and Anja Feldmann.

Socket intents: Leveraging application awareness for multi-access connectivity.

97

https://doi.org/10.1145/3485983.3494864
https://web.archive.org/web/20010126005200/www.microsoft.com/billgates/columns/1996essay/essay960103.asp
https://web.archive.org/web/20010126005200/www.microsoft.com/billgates/columns/1996essay/essay960103.asp
https://www.statista.com/statistics/617136/digital-population-worldwide/
https://www.statista.com/statistics/617136/digital-population-worldwide/
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://www.sandvine.com/press-releases/sandvine-releases-2019-global-internet-phenomena-report
https://www.sandvine.com/press-releases/sandvine-releases-2019-global-internet-phenomena-report
https://www.ericsson.com/4ad7e9/assets/local/reports-papers/mobility-report/documents/2021/ericsson-mobility-report-november-2021.pdf
https://www.ericsson.com/4ad7e9/assets/local/reports-papers/mobility-report/documents/2021/ericsson-mobility-report-november-2021.pdf
https://www.bundesregierung.de/breg-de/aktuelles/funkloecher-und-5g-1841896
https://www.bundesregierung.de/breg-de/aktuelles/funkloecher-und-5g-1841896
https://www.forbes.com/sites/bobodonnell/2019/11/22/real-world-5g-speeds/
https://www.forbes.com/sites/bobodonnell/2019/11/22/real-world-5g-speeds/
https://themarkup.org/2020/09/03/cost-speed-of-mobile-data-by-country
https://themarkup.org/2020/09/03/cost-speed-of-mobile-data-by-country

Bibliography

CoNEXT ’13, page 295–300, New York, NY, USA, 2013. Association for Com-

puting Machinery. ISBN 9781450321013. doi: 10.1145/2535372.2535405. URL

https://doi.org/10.1145/2535372.2535405.

[11] Theresa Enghardt, Thomas Zinner, and Anja Feldmann. Using informed access

network selection to improve http adaptive streaming performance. MMSys ’20,

page 126–140, New York, NY, USA, 2020. Association for Computing Machinery.

ISBN 9781450368452. doi: 10.1145/3339825.3391865. URL https://doi.org/10.

1145/3339825.3391865.

[12] Ross Benes. Buffering Is the Streaming Snafu that Won’t Go Away. https://www.

emarketer.com/content/buffering-is-the-streaming-snafu-that-won-t-go-away,

March 2018.

[13] Deepti Ghadiyaram, Alan C Bovik, Hojatollah Yeganeh, Roman Kordasiewicz, and

Michael Gallant. Study of the effects of stalling events on the quality of experience

of mobile streaming videos. In Signal and Information Processing (GlobalSIP),

2014 IEEE Global Conference on. IEEE, 2014.

[14] T. De Pessemier, K. De Moor, W. Joseph, L. De Marez, and L. Martens. Quantify-

ing the Influence of Rebuffering Interruptions on the User’s Quality of Experience

During Mobile Video Watching. IEEE Transactions on Broadcasting, 59(1), March

2013. ISSN 0018-9316. doi: 10.1109/TBC.2012.2220231.

[15] T. Hossfeld, S. Egger, R. Schatz, M. Fiedler, K. Masuch, and C. Lorentzen. Initial

delay vs. interruptions: Between the devil and the deep blue sea. In 2012 Fourth

International Workshop on Quality of Multimedia Experience, 2012.

[16] Akamai Technologies Inc. Bit Rate and Business Model - The science behind how

our bodies react to video quality. https://www.akamai.com/us/en/multimedia/

documents/white-paper/bit-rate-and-business-model.pdf, 2017.

[17] D. Ghadiyaram, A. C. Bovik, H. Yeganeh, R. Kordasiewicz, and M. Gallant. Study

of the effects of stalling events on the quality of experience of mobile streaming

videos. In 2014 IEEE Global Conference on Signal and Information Processing

(GlobalSIP), 2014.

[18] Sandvine. The Mobile Internet Phenomena Report. https://www.sandvine.com/

hubfs/Sandvine Redesign 2019/Downloads/2021/Phenomena/MIPR%20Q1%

202021%2020210510.pdf, 2021.

[19] Sunghwan Ihm and Vivek S Pai. Towards understanding modern web traffic. In

ACM IMC, pages 295–312. ACM, 2011.

98

https://doi.org/10.1145/2535372.2535405
https://doi.org/10.1145/3339825.3391865
https://doi.org/10.1145/3339825.3391865
https://www.emarketer.com/content/buffering-is-the-streaming-snafu-that-won-t-go-away
https://www.emarketer.com/content/buffering-is-the-streaming-snafu-that-won-t-go-away
https://www.akamai.com/us/en/multimedia/documents/white-paper/bit-rate-and-business-model.pdf
https://www.akamai.com/us/en/multimedia/documents/white-paper/bit-rate-and-business-model.pdf
https://www.sandvine.com/hubfs/Sandvine_Redesign_2019/Downloads/2021/Phenomena/MIPR%20Q1%202021%2020210510.pdf
https://www.sandvine.com/hubfs/Sandvine_Redesign_2019/Downloads/2021/Phenomena/MIPR%20Q1%202021%2020210510.pdf
https://www.sandvine.com/hubfs/Sandvine_Redesign_2019/Downloads/2021/Phenomena/MIPR%20Q1%202021%2020210510.pdf

[20] Michael Butkiewicz, Harsha V Madhyastha, and Vyas Sekar. Understanding web-

site complexity: measurements, metrics, and implications. In ACM IMC, pages

313–328. ACM, 11 2011. doi: 10.1145/2068816.2068846.

[21] Derek J. de Solla Price. Little science, big science. Columbia Univ. Press, New

York, 1963. ISBN 9780231085625.

[22] Philipp S. Tiesel, Theresa Enghardt, Mirko Palmer, and Anja Feldmann. Socket

intents: Os support for using multiple access networks and its benefits for web

browsing, 2018. URL https://arxiv.org/abs/1804.08484.

[23] Philipp S. Schmidt, Theresa Enghardt, Ramin Khalili, and Anja Feldmann. Socket

intents: Leveraging application awareness for multi-access connectivity. In ACM

CoNEXT, pages 295–300. ACM, 2013. ISBN 978-1-4503-2101-3. doi: 10.1145/

2535372.2535405. URL http://doi.acm.org/10.1145/2535372.2535405.

[24] Philipp Tiesel, Theresa Enghardt, and Anja Feldmann. Socket intents. Internet-

Draft draft-tiesel-taps-socketintents-01, IETF Secretariat, 10 2017. URL https:

//www.ietf.org/archive/id/draft-tiesel-taps-socketintents-01.txt.

[25] Philipp S. Tiesel, Bernd May, and Anja Feldmann. Multi-homed on a single

link: Using multiple ipv6 access networks. In Proceedings of the 2016 Applied

Networking Research Workshop, ANRW ’16, pages 16–18. ACM, 2016. ISBN 978-

1-4503-4443-2. doi: 10.1145/2959424.2959434. URL http://doi.acm.org/10.1145/

2959424.2959434.

[26] Lucian Popa, Ali Ghodsi, and Ion Stoica. Http as the narrow waist of the future

internet. In SIGCOMM HotNets, pages 6:1–6:6. ACM, 2010. doi: 10.1145/1868447.

1868453.

[27] Philipp Richter, Nikolaos Chatzis, Georgios Smaragdakis, Anja Feldmann, and

Walter Willinger. Distilling the internet’s application mix from packet-sampled

traffic. In Jelena Mirkovic and Yong Liu, editors, Passive and Active Measure-

ment, volume 8995 of Lecture Notes in Computer Science, pages 179–192. Springer

International Publishing, 2015. doi: 10.1007/978-3-319-15509-8 14.

[28] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. TCP Extensions for Mul-

tipath Operation with Multiple Addresses. RFC 6824 (Experimental), Jan 2013.

URL http://www.ietf.org/rfc/rfc6824.txt.

[29] Costin Raiciu, Christoph Paasch, Sébastien Barré, Alan Ford, Michio Honda, Fa-

bien Duchene, Olivier Bonaventure, and Mark Handley. How Hard Can It Be?

99

https://arxiv.org/abs/1804.08484
http://doi.acm.org/10.1145/2535372.2535405
https://www.ietf.org/archive/id/draft-tiesel-taps-socketintents-01.txt
https://www.ietf.org/archive/id/draft-tiesel-taps-socketintents-01.txt
http://doi.acm.org/10.1145/2959424.2959434
http://doi.acm.org/10.1145/2959424.2959434
http://www.ietf.org/rfc/rfc6824.txt

Bibliography

Designing and Implementing a Deployable Multipath TCP. In USENIX Sym-

posium of Networked Systems Design and Implementation (NSDI’12), San Jose

(CA), 2012.

[30] Luca Boccassi, Marwan M. Fayed, and Mahesh K. Marina. Binder: A System to

Aggregate Multiple Internet Gateways in Community Networks. In Proceedings

of the 2013 ACM MobiCom Workshop on Lowest Cost Denominator Networking

for Universal Access, LCDNet ’13, pages 3–8, New York, NY, USA, 2013. ACM.

ISBN 978-1-4503-2365-9. doi: 10.1145/2502880.2502894. URL http://doi.acm.

org/10.1145/2502880.2502894.

[31] Linux Foundation. Netlink(7) Linux Programmer’s Manual. URL http://man7.

org/linux/man-pages/man7/netlink.7.html.

[32] Mirko Palmer. Implementation and evaluation of multi-access policies for MPTCP

path management in user-space. Master’s thesis, TU Berlin, 2015.

[33] Iraj Sodagar. The MPEG-DASH Standard for Multimedia Streaming Over the

Internet. IEEE MultiMedia, 18(4), October 2011.

[34] Roger Pantos and William May. HTTP Live Streaming. RFC 8216, August 2017.

[35] Bitmovin. Bitmovin Video Developer Report 2019. https://bitmovin.com/

bitmovin-2019-video-developer-report-av1-codec-ai-machine-learning-low-

latency/, 2019.

[36] encoding.com. Global Media Format Report 2018. https://www.encoding.com/

files/2018-Global-Media-Formats-Report.pdf, 2018.

[37] Ben Juurlink, Mauricio Alvarez-Mesa, Chi Ching Chi, Arnaldo Azevedo, Cor

Meenderinck, and Alex Ramirez. Understanding the Application: An Overview

of the H.264 Standard. SpringerBriefs in Computer Science, 2012.

[38] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen, and D. Oran. Probe and

Adapt: Rate Adaptation for HTTP Video Streaming At Scale. IEEE Journal on

Selected Areas in Communications, 32(4), April 2014.

[39] A. Beben, P. Wísniewski, J. Mongay Batalla, and P. Krawiec. Abma+:

Lightweight and efficient algorithm for http adaptive streaming. In Proceedings of

the 7th International Conference on Multimedia Systems, MMSys ’16, 2016.

[40] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark

Watson. A Buffer-based Approach to Rate Adaptation: Evidence from a Large

Video Streaming Service. In Proceedings of ACM SICOMM ’14, 2014.

100

http://doi.acm.org/10.1145/2502880.2502894
http://doi.acm.org/10.1145/2502880.2502894
http://man7.org/linux/man-pages/man7/netlink.7.html
http://man7.org/linux/man-pages/man7/netlink.7.html
https://bitmovin.com/bitmovin-2019-video-developer-report-av1-codec-ai-machine-learning-low-latency/
https://bitmovin.com/bitmovin-2019-video-developer-report-av1-codec-ai-machine-learning-low-latency/
https://bitmovin.com/bitmovin-2019-video-developer-report-av1-codec-ai-machine-learning-low-latency/
https://www.encoding.com/files/2018-Global-Media-Formats-Report.pdf
https://www.encoding.com/files/2018-Global-Media-Formats-Report.pdf

[41] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. A Control-Theoretic

Approach for Dynamic Adaptive Video Streaming over HTTP. In Proceedings of

ACM SIGCOMM ’15, 2015.

[42] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K. Sitaraman. BOLA: near-optimal

bitrate adaptation for online videos. IEEE/ACM Transactions on Networking, 28

(4), 2020.

[43] Yanjiao Chen, Kaishun Wu, and Qian Zhang. From qos to qoe: A tutorial on

video quality assessment. IEEE Communications Surveys Tutorials, 17(2):1126–

1165, 2015. doi: 10.1109/COMST.2014.2363139.

[44] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image Quality

Assessment: From Error Visibility to Structural Similarity. Trans. Img. Proc., 13

(4), April 2004.

[45] ITU. P.1203 : Parametric bitstream-based quality assessment of progressive

download and adaptive audiovisual streaming services over reliable transport.

https://www.itu.int/rec/T-REC-P.1203, October 2017.

[46] Netflix. Toward A Practical Perceptual Video Quality Metric. https:

//netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-

653f208b9652, June 2016.

[47] ITU. per-second audiovisual quality scores always 5.0 even with corrupted video

file. https://github.com/itu-p1203/itu-p1203/issues/5, May 2018.

[48] IHS Markit. How to delight consumers in a connected world? https:

//gpc.ifa-berlin.com/media/ifagpc/ifagpc dl en/ifagpc dl en powerbriefings/

power briefing 2019/IHSM IFA GPC.pdf, April 2019.

[49] YouTube. The best experience on YouTube Signature Devices. https://

devicereport.youtube.com, April 2018.

[50] YouTube. Video resolution & aspect ratios. https://support.google.com/youtube/

answer/6375112, August 2017.

[51] Linux Foundation. Netlink. http://www.linuxfoundation.org/collaborate/

workgroups/networking/netlink, November 2009. Accessed: 10. Jan. 2015.

[52] S. Egger, T. Hossfeld, R. Schatz, and M. Fiedler. Waiting times in quality of

experience for web based services. In Quality of Multimedia Experience (QoMEX),

2012 Fourth International Workshop on, pages 86–96. IEEE, July 2012. doi: 10.

1109/QoMEX.2012.6263888.

101

https://www.itu.int/rec/T-REC-P.1203
https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652
https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652
https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652
https://github.com/itu-p1203/itu-p1203/issues/5
https://gpc.ifa-berlin.com/media/ifagpc/ifagpc_dl_en/ifagpc_dl_en_powerbriefings/power_briefing_2019/IHSM_IFA_GPC.pdf
https://gpc.ifa-berlin.com/media/ifagpc/ifagpc_dl_en/ifagpc_dl_en_powerbriefings/power_briefing_2019/IHSM_IFA_GPC.pdf
https://gpc.ifa-berlin.com/media/ifagpc/ifagpc_dl_en/ifagpc_dl_en_powerbriefings/power_briefing_2019/IHSM_IFA_GPC.pdf
https://devicereport.youtube.com
https://devicereport.youtube.com
https://support.google.com/youtube/answer/6375112
https://support.google.com/youtube/answer/6375112
http://www.linuxfoundation.org/collaborate/workgroups/networking/netlink
http://www.linuxfoundation.org/collaborate/workgroups/networking/netlink

Bibliography

[53] Conor Kelton, Jihoon Ryoo, Aruna Balasubramanian, and Samir R Das. Improv-

ing user perceived page load times using gaze. In USENIX NSDI, volume 17, pages

545–559. Usenix, 2017.

[54] J. Chu, N. Dukkipati, Y. Cheng, and M. Mathis. Increasing TCP’s Initial Window.

RFC 6928 (Experimental), Apr 2013. URL http://www.ietf.org/rfc/rfc6928.txt.

[55] Jörg Wallerich, Holger Dreger, Anja Feldmann, Balachander Krishnamurthy, and

Walter Willinger. A methodology for studying persistency aspects of internet

flows. ACM CCR, pages 23–36, 2005. doi: 10.1145/1064413.1064417.

[56] Ravi Netravali, Ameesh Goyal, James Mickens, and Hari Balakrishnan. Polaris:

Faster page loads using fine-grained dependency tracking. In USENIX NSDI.

Usenix, Mar 2016.

[57] Srikanth Sundaresan, Walter De Donato, Nick Feamster, Renata Teixeira, Sam

Crawford, and Antonio Pescapè. Broadband internet performance: a view from

the gateway. In ACM CCR, volume 41, pages 134–145. ACM, 2011.

[58] Enric Pujol, Philipp Richter, Balakrishnan Chandrasekaran, Georgios Smarag-

dakis, Anja Feldmann, Bruce MacDowell Maggs, and Keung-Chi Ng. Back-office

web traffic on the internet. In ACM IMC, pages 257–270. ACM, 2014.

[59] Junaid Qadir, Anwaar Ali, Kok-Lim Alvin Yau, Arjuna Sathiaseelan, and Jon

Crowcroft. Exploiting the power of multiplicity: a holistic survey of network-layer

multipath. CoRR, abs/1502.02111, 2015. URL http://arxiv.org/abs/1502.02111.

[60] M. Wasserman and P. Seite. Current Practices for Multiple-Interface Hosts. RFC

6419 (Informational), Nov 2011. URL http://www.ietf.org/rfc/rfc6419.txt.

[61] E. Nordmark, S. Chakrabarti, and J. Laganier. IPv6 Socket API for Source Ad-

dress Selection. RFC 5014 (Informational), Sep 2007. URL http://www.ietf.org/

rfc/rfc5014.txt.

[62] D. Thaler, R. Draves, A. Matsumoto, and T. Chown. Default Address Selection

for Internet Protocol Version 6 (IPv6). RFC 6724 (Proposed Standard), Sep 2012.

URL http://www.ietf.org/rfc/rfc6724.txt.

[63] Robert Kiefer, Erik Nordström, and Michael J Freedman. From feast to famine:

managing mobile network resources across environments and preferences. In Pro-

ceedings of the 2014 International Conference on Timely Results in Operating

Systems, pages 7–7. Usenix, 2014.

[64] H. Abbasi, C. Poellabauer, K. Schwan, G. Losik, and Richard. A quality-of-service

enhanced socket api in gnu/linux. In Real-Time Linux Workshop, 2002.

102

http://www.ietf.org/rfc/rfc6928.txt
http://arxiv.org/abs/1502.02111
http://www.ietf.org/rfc/rfc6419.txt
http://www.ietf.org/rfc/rfc5014.txt
http://www.ietf.org/rfc/rfc5014.txt
http://www.ietf.org/rfc/rfc6724.txt

[65] B. D. Higgins, A. Reda, T. Alperovich, J. Flinn, T. J. Gi uli, B. Noble, and

D. Watson. Intentional networking: opportunistic exploitation of mobile network

diversity. In ACM MobiCom, pages 73–84. ACM, 2010.

[66] Shuo Deng, Anirudh Sivaraman, and Hari Balakrishnan. All your network are

belong to us: A transport framework for mobile network selection. In ACM Hot-

Mobile, pages 19:1–19:6. ACM, 2014. doi: 10.1145/2565585.2565588.

[67] M. Welzl, S. Jorer, and S. Gjessing. Towards a protocol-independent internet

transport api. In ICC, pages 1 –6, 2011.

[68] Brian Trammell, Colin Perkins, and Mirja Kühlewind. Post sockets: Towards an

evolvable network transport interface. In Workshop on Future of Internet Trans-

port (FIT 2017), 2017.

[69] Adnan Aijaz, Hamid Aghvami, and Mojdeh Amani. A survey on mobile data

offloading: technical and business perspectives. Wireless Communications, IEEE

Transactions on, 20(2):104–112, 2013.

[70] Kyunghan Lee, Joohyun Lee, Yung Yi, Injong Rhee, and Song Chong. Mobile

data offloading: how much can wifi deliver? In ACM CoNEXT, 2010.

[71] Aruna Balasubramanian, Ratul Mahajan, and Arun Venkataramani. Augmenting

mobile 3g using wifi. In ACM MobiSys, pages 209–222, 2010.

[72] Narseo Vallina-Rodriguez, Vijay Erramilli, Yan Grunenberger, Laszlo Gyarmati,

Nikolaos Laoutaris, Rade Stanojevic, and Konstantina Papagiannaki. When david

helps goliath: the case for 3g onloading. In SIGCOMM HotNets, pages 85–90.

ACM, 2012.

[73] Joohyun Lee, Yung Yi, Song Chong, and Youngmi Jin. Economics of wifi of-

floading: Trading delay for cellular capacity. Wireless Communications, IEEE

Transactions on, 13(3):1540–1554, 2014.

[74] Cisco Systems, Inc. Architecture for mobile data offload over wi-fi access networks

(whitepaper), 2012. URL http://www.cisco.com/en/US/solutions/collateral/

ns341/ns524/ns673/white paper c11-701018.html.

[75] Philipp S. Schmidt, Ruben Merz, and Anja Feldmann. A first look at multi-access

connectivity for mobile networking. In ACM workshop on Capacity sharing, pages

9–14. ACM, 2012. doi: 10.1145/2413219.2413224.

[76] Yung-Chih Chen, Yeon-sup Lim, Richard J Gibbens, Erich M Nahum, Ramin

Khalili, and Don Towsley. A measurement-based study of multipath tcp perfor-

mance over wireless networks. In ACM IMC, pages 455–468. ACM, 2013.

103

http://www.cisco.com/en/US/solutions/collateral/ns341/ns524/ns673/white_paper_c11-701018.html
http://www.cisco.com/en/US/solutions/collateral/ns341/ns524/ns673/white_paper_c11-701018.html

Bibliography

[77] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford, Michio Honda, Fa-

bien Duchene, Olivier Bonaventure, and Mark Handley. How hard can it be?

Designing and implementing a deployable multipath TCP. In USENIX NSDI,

pages 29–29. Usenix, 2012.

[78] Shuo Deng, Ravi Netravali, Anirudh Sivaraman, and Hari Balakrishnan. Wifi, lte,

or both?: measuring multi-homed wireless internet performance. In ACM IMC,

pages 181–194. ACM, 2014.

[79] Bo Han, Feng Qian, Shuai Hao, Lusheng Ji, and NJ Bedminster. An anatomy of

mobile web performance over multipath tcp. In ACM CoNEXT, 2015.

[80] Ashkan Nikravesh, Yihua Guo, Feng Qian, Z. Morley Mao, and Subhabrata Sen.

An in-depth understanding of multipath tcp on mobile devices: Measurement and

system design. In ACM MobiCom. ACM, 2016.

[81] Lance Hartung and M Milind. Policy driven multi-band spectrum aggregation

for ultra-broadband wireless networks. In Dynamic Spectrum Access Networks

(DySPAN), pages 82–93. IEEE, 2015.

[82] Thomas Dreibholz, Robin Seggelmann, Michael Tüxen, and Erwin Paul Rathgeb.

Transmission scheduling optimizations for concurrent multipath transfer. In Pro-

ceedings of the 8th International Workshop on Protocols for Future, Large-Scale

and Diverse Network Transports (PFLDNeT), volume 8, 2010.

[83] Akamai Technologies. Hotstar And Akamai Set Global Streaming Record During

VIVO IPL 2018. https://www.akamai.com/uk/en/about/news/press/2018-press/

hotstar-and-akamai-set-global-streaming-record-during-vivo-ipl-2018.jsp, April

2018.

[84] YouTube. Mission complete: Red Bull Stratos lands safely back

on Earth. https://youtube.googleblog.com/2012/10/mission-complete-red-bull-

stratos-lands.html, October 2012.

[85] Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica, Dilip Joseph, Aditya Ganjam,

Jibin Zhan, and Hui Zhang. Understanding the Impact of Video Quality on User

Engagement. In Proceedings of ACM SIGCOMM ’11, 2011.

[86] Stefan Lederer. Optimal Adaptive Streaming Formats MPEG-DASH & HLS Seg-

ment Length. https://bitmovin.com/mpeg-dash-hls-segment-length/, April 2015.

[87] Sam Liang and David Cheriton. TCP-RTM: Using RTP for Real Time Multimedia

Applications. ”http://gregorio.stanford.edu/sliang/rtm.pdf”, 2002.

104

https://www.akamai.com/uk/en/about/news/press/2018-press/hotstar-and-akamai-set-global-streaming-record-during-vivo-ipl-2018.jsp
https://www.akamai.com/uk/en/about/news/press/2018-press/hotstar-and-akamai-set-global-streaming-record-during-vivo-ipl-2018.jsp
https://youtube.googleblog.com/2012/10/mission-complete-red-bull-stratos-lands.html
https://youtube.googleblog.com/2012/10/mission-complete-red-bull-stratos-lands.html
https://bitmovin.com/mpeg-dash-hls-segment-length/
http://gregorio.stanford.edu/sliang/rtm.pdf

[88] Ashvin Goel, Charles Krasic, and Jonathan Walpole. Low-latency Adaptive

Streaming over TCP. ACM Trans. Multimedia Comput. Commun. Appl., Septem-

ber 2008.

[89] Eli Brosh, Salman Abdul Baset, Dan Rubenstein, and Henning Schulzrinne. The

Delay-friendliness of TCP. In Proceedings of SIGMETRICS ’08, 2008.

[90] David X. Wei, Cheng Jin, Steven H. Low, and Sanjay Hegde. FAST TCP: Moti-

vation, Architecture, Algorithms, Performance. IEEE/ACM Trans. Netw., 14(6),

December 2006.

[91] B. Mukherjee and T. Brecht. Time-lined TCP for the TCP-friendly delivery of

streaming media. In Proceedings 2000 International Conference on Network Pro-

tocols, 2000.

[92] M. Claeys, N. Bouten, D. De Vleeschauwer, K. De Schepper, W. Van Leekwijck,

S. Latré, and F. De Turck. Deadline-aware TCP congestion control for video

streaming services. In 2016 12th International Conference on Network and Service

Management (CNSM), Oct 2016.

[93] Stephen McQuistin, Colin Perkins, and Marwan Fayed. TCP Goes to Hollywood.

In Proceedings of NOSSDAV ’16, 2016.

[94] M. Kim, J. Cloud, A. ParandehGheibi, L. Urbina, K. Fouli, D. Leith, and

M. Medard. Network Coded TCP (CTCP). ArXiv e-prints, December 2012.

[95] Huahui Wu, Mark Claypool, and Robert Kinicki. Adjusting Forward Error Cor-

rection with Temporal Scaling for TCP-friendly Streaming MPEG. ACM Trans.

Multimedia Comput. Commun. Appl., 1(4), November 2005.

[96] Nick Feamster and Hari Balakrishnan. Packet Loss Recovery for Streaming Video.

In 12th International Packet Video Workshop, April 2002.

[97] Jana Iyengar and Martin Thomson. QUIC: A UDP-Based Multiplexed and Secure

Transport. Internet-draft, IETF, May 2018.

[98] Igor Lubashev. Partially Reliable Message Streams for QUIC. Internet-Draft draft-

lubashev-quic-partial-reliability-03, Internet Engineering Task Force, May 2018.

[99] Tommy Pauly, Eric Kinnear, and David Schinazi. An Unreliable Datagram Ex-

tension to QUIC. Internet-Draft draft-ietf-quic-datagram-06, Internet Engineering

Task Force, October 2021.

[100] Philipp S. Tiesel, Mirko Palmer, Balakrishnan Chandrasekaran, Anja Feldmann,

and Joerg Ott. Considerations for Unreliable Streams in QUIC. Internet-draft,

105

Bibliography

IETF, October 2017. URL https://datatracker.ietf.org/doc/html/draft-tiesel-

quic-unreliable-streams-01.

[101] Te-Yuan Huang, Nikhil Handigol, Brandon Heller, Nick McKeown, and Ramesh

Johari. Confused, Timid, and Unstable: Picking a Video Streaming Rate is Hard.

In Proceedings of the 2012 Internet Measurement Conference, IMC ’12, 2012.

[102] Junchen Jiang, Vyas Sekar, and Hui Zhang. Improving Fairness, Efficiency, and

Stability in HTTP-based Adaptive Video Streaming with FESTIVE. In Proceed-

ings of CoNEXT ’12, 2012.

[103] Yi Sun, Xiaoqi Yin, Junchen Jiang, Vyas Sekar, Fuyuan Lin, Nanshu Wang, Tao

Liu, and Bruno Sinopoli. CS2P: Improving Video Bitrate Selection and Adaptation

with Data-Driven Throughput Prediction. In Proceedings of ACM SIGCOMM ’16,

2016.

[104] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. Neural Adaptive Video

Streaming with Pensieve. In Proceedings of ACM SIGCOMM ’17, 2017.

[105] Cyriac James, Mea Wang, and Emir Halepovic. Beta: Bandwidth-efficient tempo-

ral adaptation for video streaming over reliable transports. In Proceedings of the

10th ACM Multimedia Systems Conference, MMSys ’19, 2019.

[106] Cloudflare. The QUICening. https://blog.cloudflare.com/the-quicening/, Septem-

ber 2018.

[107] Akamai Technologies. Community Blog, FAQ: QUIC Native Platform Support for

Media Delivery Products. https://community.akamai.com/customers/s/article/

FAQ-QUIC-Native-Platform-Support-for-Media-Delivery-Products?language=

en US, March 2018.

[108] Cloudflare. HTTP/3: the past, the present, and the future. https://blog.

cloudflare.com/http3-the-past-present-and-future/, September 2019.

[109] LiteSpeed Technologies. What is HTTP/3 Check? https://http3check.net/about,

2020.

[110] Mirko Palmer, Thorben Krüger, Balakrishnan Chandrasekaran, and Anja Feld-

mann. The QUIC Fix for Optimal Video Streaming. In Proceedings of the Work-

shop on the Evolution, Performance, and Interoperability of QUIC, EPIQ’18, 2018.

[111] Divyashri Bhat, Amr Rizk, and Michael Zink. Not So QUIC: A Performance Study

of DASH over QUIC. In Proceedings of NOSSDAV ’17, 2017.

106

https://datatracker.ietf.org/doc/html/draft-tiesel-quic-unreliable-streams-01
https://datatracker.ietf.org/doc/html/draft-tiesel-quic-unreliable-streams-01
https://blog.cloudflare.com/the-quicening/
https://community.akamai.com/customers/s/article/FAQ-QUIC-Native-Platform-Support-for-Media-Delivery-Products?language=en_US
https://community.akamai.com/customers/s/article/FAQ-QUIC-Native-Platform-Support-for-Media-Delivery-Products?language=en_US
https://community.akamai.com/customers/s/article/FAQ-QUIC-Native-Platform-Support-for-Media-Delivery-Products?language=en_US
https://blog.cloudflare.com/http3-the-past-present-and-future/
https://blog.cloudflare.com/http3-the-past-present-and-future/
https://http3check.net/about

[112] Mariem Ben Yahia, Yannick Le Louedec, Gwendal Simon, Loutfi Nuaymi, and

Xavier Corbillon. HTTP/2-based Frame Discarding for Low-Latency Adaptive

Video Streaming. ACM Trans. Multimedia Comput. Commun. Appl., 15(1), Febru-

ary 2019.

[113] R. Stewart, M. Ramalho, Q. Xie, M. Tuexen, and P. Conrad. Stream Control

Transmission Protocol (SCTP) Partial Reliability Extension. RFC 3758 (Proposed

Standard), May 2004. URL http://www.ietf.org/rfc/rfc3758.txt.

[114] Sadjad Fouladi, John Emmons, Emre Orbay, Catherine Wu, Riad S. Wahby, and

Keith Winstein. Salsify: Low-Latency Network Video through Tighter Integration

between a Video Codec and a Transport Protocol. In Proceedings of USENIX

NSDI ’18, 2018.

[115] Hyunho Yeo, Youngmok Jung, Jaehong Kim, Jinwoo Shin, and Dongsu Han. Neu-

ral Adaptive Content-Aware Internet Video Delivery. In Proceedings of the 13th

USENIX Conference on Operating Systems Design and Implementation, OSDI’18,

2018.

[116] A. C. Brooks, Xiaonan Zhao, and T. N. Pappas. Structural similarity quality

metrics in a coding context: Exploring the space of realistic distortions. Trans.

Img. Proc., August 2008.

[117] Piotr Romaniak and Lucjan Janowski. How to build an objective model for packet

loss effect on high definition content based on ssim and subjective experiments.

In Sherali Zeadally, Eduardo Cerqueira, Maŕılia Curado, and Miko laj Leszczuk,

editors, Future Multimedia Networking. Springer Berlin Heidelberg, 2010.

[118] T. Zinner, O. Hohlfeld, O. Abboud, and T. Hossfeld. Impact of frame rate and

resolution on objective qoe metrics. In Proc. Second Int. Workshop Quality of

Multimedia Experience (QoMEX), pages 29–34, June 2010. doi: 10.1109/QOMEX.

2010.5518277.

[119] MPEG. Media presentation description and segment formats. https:

//mpeg.chiariglione.org/standards/mpeg-dash/media-presentation-description-

and-segment-formats, March 2011.

[120] Akamai Technologies Inc. Guidelines for Implementation: DASH-IF Interoperabil-

ity Points. https://dashif.org/docs/DASH-IF-IOP-v4.2-clean.htm, 04 2018.

[121] Limelight Networks. The State of Online Video 2020. https://www.limelight.com/

resources/market-research/state-of-online-video-2020, August 2020.

107

http://www.ietf.org/rfc/rfc3758.txt
https://mpeg.chiariglione.org/standards/mpeg-dash/media-presentation-description-and-segment-formats
https://mpeg.chiariglione.org/standards/mpeg-dash/media-presentation-description-and-segment-formats
https://mpeg.chiariglione.org/standards/mpeg-dash/media-presentation-description-and-segment-formats
https://dashif.org/docs/DASH-IF-IOP-v4.2-clean.htm
https://www.limelight.com/resources/market-research/state-of-online-video-2020
https://www.limelight.com/resources/market-research/state-of-online-video-2020

Bibliography

[122] Kevin Spiteri, Ramesh Sitaraman, and Daniel Sparacio. From theory to prac-

tice: Improving bitrate adaptation in the DASH reference player. ACM Trans.

Multimedia Comput. Commun. Appl., 15(2s), July 2019.

[123] Dash Industry Forum. A reference client implementation for the playback of

MPEG DASH. https://github.com/Dash-Industry-Forum/dash.js, June 2021.

[124] Christian Kreuzberger, Daniel Posch, and Hermann Hellwagner. A Scalable Video

Coding Dataset and Toolchain for Dynamic Adaptive Streaming over HTTP. In

Proceedings of the 6th ACM Multimedia Systems Conference, MMSys ’15, 2015.

[125] T. Hoßfeld, M. Seufert, C. Sieber, and T. Zinner. Assessing effect sizes of influence

factors towards a QoE model for HTTP adaptive streaming. In Sixth International

Workshop on Quality of Multimedia Experience (QoMEX), Sept 2014.

[126] Stefan Lederer, Christopher Müller, and Christian Timmerer. Dynamic Adaptive

Streaming over HTTP Dataset. In Proceedings of the 3rd Multimedia Systems

Conference, MMSys ’12. ACM, 2012.

[127] Yanyuan Qin, Shuai Hao, K. R. Pattipati, Feng Qian, Subhabrata Sen, Bing Wang,

and Chaoqun Yue. ABR Streaming of VBR-encoded Videos: Characterization,

Challenges, and Solutions. In Proceedings of the 14th International Conference on

Emerging Networking EXperiments and Technologies, CoNEXT ’18, 2018.

[128] youtube-dl. Download videos from YouTube. https://ytdl-org.github.io/youtube-

dl/about.html, 2020.

[129] Netflix. Per-Title Encode Optimization. https://medium.com/netflix-techblog/

per-title-encode-optimization-7e99442b62a2, December 2015.

[130] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. Stochastic Forecasts

Achieve High Throughput and Low Delay over Cellular Networks. In Presented

as part of the 10th USENIX Symposium on Networked Systems Design and Im-

plementation (NSDI 13). USENIX, 2013.

[131] Haakon Riiser, Paul Vigmostad, Carsten Griwodz, and P̊al Halvorsen. Commute

path bandwidth traces from 3g networks: Analysis and applications. In Proceedings

of the 4th ACM Multimedia Systems Conference, MMSys ’13, 2013.

[132] Federal Communications Commission. Raw Data - Measuring Broadband

America. https://www.fcc.gov/reports-research/reports/measuring-broadband-

america/raw-data-measuring-broadband-america-2016, December 2016.

108

https://github.com/Dash-Industry-Forum/dash.js
https://ytdl-org.github.io/youtube-dl/about.html
https://ytdl-org.github.io/youtube-dl/about.html
https://medium.com/netflix-techblog/per-title-encode-optimization-7e99442b62a2
https://medium.com/netflix-techblog/per-title-encode-optimization-7e99442b62a2
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/raw-data-measuring-broadband-america-2016
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/raw-data-measuring-broadband-america-2016

[133] Cisco. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast

Update, 2017-2022 White Paper. https://www.cisco.com/c/en/us/solutions/

collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.

html, February 2019.

[134] Joel Sommers, Hyungsuk Kim, and Paul Barford. Harpoon: A Flow-level Traf-

fic Generator for Router and Network Tests. In Proceedings of SIGMETRICS

’04/Performance ’04, 2004.

[135] Mirko Palmer, Malte Appel, Kevin Spiteri, Balakrishnan Chandrasekaran, Anja

Feldmann, and Ramesh K. Sitaraman. VOXEL-enabled server and client imple-

mentation. https://github.com/derbroti/VOXEL, 2021.

[136] Quan Huynh-Thu and Mohammed Ghanbari. The accuracy of psnr in predict-

ing video quality for different video scenes and frame rates. Telecommunication

Systems, 06 2012.

[137] Q. Huynh-Thu and M. Ghanbari. Scope of validity of psnr in image/video quality

assessment. Electronics Letters, 44(13), 2008.

[138] Quentin De Coninck and Olivier Bonaventure. Multipath quic: Design and evalu-

ation. In Proceedings of the 13th International Conference on Emerging Network-

ing EXperiments and Technologies, CoNEXT ’17, page 160–166, New York, NY,

USA, 2017. Association for Computing Machinery. ISBN 9781450354226. doi:

10.1145/3143361.3143370. URL https://doi.org/10.1145/3143361.3143370.

[139] Iqbal, Mansoor. Twitch Revenue and Usage Statistics (2022). https://www.

businessofapps.com/data/twitch-statistics/, May 2022.

[140] Apple Inc. Machine Learning. https://developer.apple.com/machine-learning/,

2022.

[141] Jeroen Van der Hooft, Maria Torres Vega, Stefano Petrangeli, Tim Wauters, and

Filip De Turck. Tile-based adaptive streaming for virtual reality video. ACM

Trans. Multimedia Comput. Commun. Appl., 15(4), December 2019. ISSN 1551-

6857. doi: 10.1145/3362101. URL https://doi.org/10.1145/3362101.

109

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
https://github.com/derbroti/VOXEL
https://doi.org/10.1145/3143361.3143370
https://www.businessofapps.com/data/twitch-statistics/
https://www.businessofapps.com/data/twitch-statistics/
https://developer.apple.com/machine-learning/
https://doi.org/10.1145/3362101

List of Figures

Figure 2.1 Structured overview of an MPTCP connection. 10

Figure 3.1 Simplified network scenario. 26

Figure 3.2 Simulated load-time comparison in testbed with synthetic workloads. 29

Figure 3.3 Simulator validation. 30

Figure 3.4 CDF of Speedups vs. Interface 1 for the Alexa Top 100 workload. 32

Figure 3.5 CDF of Speedups vs. Interface 1 for the Alexa Top 1000 workload. 32

Figure 3.6 CDF of Speedups vs. MPTCP if1 for the Alexa Top 100 workload. 33

Figure 3.7 Alexa Top 100 speedup factors. 34

Figure 4.1 Frame-drop tolerance with guaranteed high SSIMs. 44

Figure 4.2 Inefficiency segment-tail drops and SSIM vs bitrate switching. . . . 46

Figure 4.3 Frame-drop distribution for guaranteed SSIMs. 46

Figure 5.1 Frame reference illustration. 51

Figure 5.2 Frame importance illustration. 52

Figure 5.3 SSIM scores for segments 11 and 49 of BBB without reordering. . 54

Figure 5.4 Scene change in segment 49 of BBB. 55

Figure 5.5 Comparison of SSIM scores for summed reference order. 56

Figure 5.6 Comparison of frame-level SSIM scores for summed reference order. 56

Figure 5.7 Example for a reference chain with five frames. 57

Figure 5.8 Graph view of a reference chain. 58

Figure 5.9 Comparison of SSIM scores for chained reference order. 59

Figure 6.1 Selected segments of widely used videos. 67

Figure 6.2 Variations in segment sizes. 68

Figure 6.3 The insights from §4 hold true for a diverse video set. 69

Figure 6.4 Trading avg. bitrate for lower rebuffering with MPC against BOLA. 71

Figure 6.5 Network throughput variations. 72

Figure 6.6 ABR algorithms with QUIC* in realistic cross-traffic conditions . . 74

Figure 6.7 MPC with QUIC* against cross-traffic has slightly lower bitrates. . 74

Figure 6.8 MPC vs. BOLA with unreliable streams with “vanilla” ABRs. . . 75

Figure 6.9 bufRatio of BOLA, BETA, and VOXEL over different networks. . 76

110

List of Figures

Figure 6.10 SSIMs & VMAFs & PSNRs while streaming BBB over Verizon. . . 77

Figure 6.11 VOXEL outperforms BOLA/QUIC in bitrates. 78

Figure 6.12 Average bitrates of VOXEL and BOLA with 20 Mbps cross-traffic. 78

Figure 6.13 bufRatios of diff. QoE metrics while streaming BBB over Verizon. 79

Figure 6.14 SSIMs while streaming with BOLA, BETA, and VOXEL. 80

Figure 6.15 Percentage of segment data dropped. 81

Figure 6.16 bufRatio of BOLA, BOLA-SSIM and VOXEL when streaming BBB. 82

Figure 6.17 SSIM progression of BOLA and VOXEL while streaming BBB. . . 83

Figure 6.18 bufRatios for a 750-packets-long network queue. 84

Figure 6.19 Average bitrates while streaming with VOXEL over 3G and AT&T. 84

Figure 6.20 bufRatio and avg. bitrates streaming with VOXEL on the FCC net. 85

Figure 6.22 VOXEL wins over BOLA in bufRatio and bitrate with cross-traffic. 86

Figure 6.23 In-the-wild trials: SSIM distribution for a 1-segment buffer. 87

Figure 6.24 bufRatio of in-the-wild trials. 87

Figure 6.25 Average bitrate of in-the-wild trials. 88

Figure 6.26 MOS along 4 dimensions: Clarity, glitches, fluidity and experience. 88

111

List of Tables

Table 2.1 Socket Intents Types . 12

Table 3.1 Levels of the Factorial Experimental Design. 27

Table 4.1 List of features of different protocols and systems. 42

Table 5.1 Mapping of MOS to SSIM. 54

Table 6.1 Overview of evaluation videos from prior work. 66

Table 6.2 Quality levels of encoded videos. 68

Table 6.3 Overview of used public YouTube videos. 70

112

List of Listings

6.1 A frame-level entry from VOXEL’s manifest. 62

113

	1 Introduction
	1.1 Problem Definition
	1.2 Approach
	1.3 Contributions
	1.4 Pre-published Work and Collaborations
	1.5 Structure of this Thesis

	2 Background
	2.1 Sockets
	2.2 Socket Intents Concept
	2.3 Challenges Imposed by BSD Sockets
	2.3.1 Multi-Path TCP
	2.3.2 Socket Intents with Multi-Path TCP

	2.4 Video Streaming
	2.5 Codecs
	2.6 Adaptive Bitrate Algorithms
	2.7 QoE Metrics

	3 Socket Intents
	3.1 Combining Multi-Path TCP with Socket Intents
	3.2 Policy Design
	3.2.1 Implementation Considerations
	3.2.2 MPTCP-aware Policies

	3.3 Data Transfer Simulator
	3.3.1 Design
	3.3.2 Implementation
	3.3.3 Web Object Dependencies
	3.3.4 Policy Realization

	3.4 Evaluation Scenario
	3.4.1 Network Scenario
	3.4.2 Experimental Design for Simulator Evaluation
	3.4.3 Web Workload

	3.5 Evaluation
	3.5.1 Validation of our Simulator with the Proxy
	3.5.2 Simulator vs. Actual Page Load Time
	3.5.3 Benefits of Combining Multiple Access Networks
	3.5.4 Benefits of Using MPTCP
	3.5.5 Explaining Page Load Time Speedups

	3.6 Related Work
	3.7 Summary

	4 Video Transfer Design
	4.1 Related Work
	4.2 Insights
	4.2.1 Drop Frames while still Delivering a high QoE
	4.2.2 Reorder ``unimportant'' Frames to Segment's Tail
	4.2.3 Fine-grained Quality Switching via Drame-drops

	4.3 Summary of our Contributions

	5 On Frame Importance
	5.1 Frame Orders and their Implications
	5.1.1 Original Order - Dropping the Tail without Reordering
	5.1.2 The Summed Reference Order - An Intermediate Step
	5.1.3 The Chained Reference Order

	5.2 Summary

	6 VOXEL
	6.1 Extending the Manifest
	6.2 QUIC*: Enriching the Transport Layer
	6.3 ABR*: Enhancing the ABR Algorithm
	6.3.1 Optimize for QoE
	6.3.2 Support Partial-segment Downloads
	6.3.3 Segment Abandonment Options

	6.4 Evaluation Scenario
	6.4.1 Video Selection
	6.4.2 Widely used Videos from Prior Work
	6.4.3 Public YouTube Videos
	6.4.4 Network Testbed
	6.4.5 Network Traces
	6.4.6 ABR Algorithms
	6.4.7 Experiment Considerations

	6.5 ABR Algorithms with QUIC*
	6.5.1 In-lab Trials with Network Traces
	6.5.2 In-lab Trials with Cross Traffic

	6.6 ABR* with QUIC* (or VOXEL)
	6.6.1 In-lab Trials with Network Traces
	6.6.2 In-lab Trials with Long Network Queues
	6.6.3 In-lab Trials without Partial Reliability
	6.6.4 In-lab Trials with Cross Traffic.
	6.6.5 In-lab Trials with Synthetic Network Traces
	6.6.6 In-the-wild Trials

	6.7 Real User Survey
	6.8 Summary

	7 Summary and Outlook
	Glossary
	Bibliography
	List of Figures
	List of Tables
	List of Listings

