163 research outputs found

    Integral Backstepping Control for a PMLSM Using Adaptive RNNUO

    Get PDF
    Due to uncertainties exist in the applications of the a permanent magnet linear synchronous motor (PMLSM) servo drive which seriously influence the control performance, thus, an integral backstepping control system using adaptive recurrent neural network uncertainty observer (RNNUO) is proposed to increase the robustness of the PMLSM drive. First, the field-oriented mechanism is applied to formulate the dynamic equation of the PMLSM servo drive. Then, an integral backstepping approach is proposed to control the motion of PMLSM drive system. With proposed integral backstepping control system, the mover position of the PMLSM drive possesses the advantages of good transient control performance and robustness to uncertainties for the tracking of periodic reference trajectories. Moreover, to further increase the robustness of the PMLSM drive, an adaptive RNN uncertainty observer is proposed to estimate the required lumped uncertainty. The effectiveness of the proposed control scheme is verified by experimental results

    Design and Control of Electrical Motor Drives

    Get PDF
    Dear Colleagues, I am very happy to have this Special Issue of the journal Energies on the topic of Design and Control of Electrical Motor Drives published. Electrical motor drives are widely used in the industry, automation, transportation, and home appliances. Indeed, rolling mills, machine tools, high-speed trains, subway systems, elevators, electric vehicles, air conditioners, all depend on electrical motor drives.However, the production of effective and practical motors and drives requires flexibility in the regulation of current, torque, flux, acceleration, position, and speed. Without proper modeling, drive, and control, these motor drive systems cannot function effectively.To address these issues, we need to focus on the design, modeling, drive, and control of different types of motors, such as induction motors, permanent magnet synchronous motors, brushless DC motors, DC motors, synchronous reluctance motors, switched reluctance motors, flux-switching motors, linear motors, and step motors.Therefore, relevant research topics in this field of study include modeling electrical motor drives, both in transient and in steady-state, and designing control methods based on novel control strategies (e.g., PI controllers, fuzzy logic controllers, neural network controllers, predictive controllers, adaptive controllers, nonlinear controllers, etc.), with particular attention to transient responses, load disturbances, fault tolerance, and multi-motor drive techniques. This Special Issue include original contributions regarding recent developments and ideas in motor design, motor drive, and motor control. The topics include motor design, field-oriented control, torque control, reliability improvement, advanced controllers for motor drive systems, DSP-based sensorless motor drive systems, high-performance motor drive systems, high-efficiency motor drive systems, and practical applications of motor drive systems. I want to sincerely thank authors, reviewers, and staff members for their time and efforts. Prof. Dr. Tian-Hua Liu Guest Edito

    Artificial Neural Network-Based Gain-Scheduled State Feedback Speed Controller for Synchronous Reluctance Motor

    Get PDF
    This paper focuses on designing a gain-scheduled (G-S) state feedback controller (SFC) for synchronous reluctance motor (SynRM) speed control with non-linear inductance characteristics. The augmented model of the drive with additional state variables is introduced to assure precise control of selected state variables (i.e. angular speed and d-axis current). Optimal, non-constant coefficients of the controller are calculated using a linear-quadratic optimisation method. Non-constant coefficients are approximated using an artificial neural network (ANN) to assure superior accuracy and relatively low usage of resources during implementation. To the best of our knowledge, this is the first time when ANN-based gain-scheduled state feedback controller (G-S SFC) is applied for speed control of SynRM. Based on numerous simulation tests, including a comparison with a signum-based SFC, it is shown that the proposed solution assures good dynamical behaviour of SynRM drive and robustness against q-axis inductance, the moment of inertia and viscous friction fluctuations

    Optimizirano povratnokoračno upravljanje momentom indukcijskog motora korištenjem genetičkog algoritma

    Get PDF
    This paper proposes a novel hybrid control of induction motor, based on the combination of the direct torque control DTC and the backstepping one, optimized by Genetic Algorithm (GA). First the basic evolution of DTC is explained, where the torque and stator flux are controlled by non linear hysteresis controllers which cause large ripple in motor torque at steady state operation. A Backstepping control is applied to overcome these problems, however the used parameters are often chosen arbitrarily, which may affect the controller quality. To find the best parameters, an optimization technique based on genetic algorithm is used. Also, in order to obtain accurate information about stator flux, torque and load torque, open loops estimators are used for this Backstepping control. At last, experimental results are presented in order to prove the efficiency of the above mentioned control technique.U ovom radu predstavljena je nova metoda hibridnog upravljanja indukcijskim motorom, bazirana na kombinaciji direktnog upravljanja momentom (DCT) i povratnokoračnog upravljanja, te optimizirana korištenjem genetičkog algoritma (GA). Prvo je objašnjena osnova razvoja DCT-a, gdje se momentom i tokom statora upravlja nelinearnim histereznim regulatorima što uzrokuje velike propade u momentu motora tijekom ravnotežnog rada. Povratnokoračno upravljanje se primijenjuje kako bi se uklonio ovaj problem, međutim korišteni parametri su najčešće proizvoljno odabrani što može utjecati na kvalitetu upravljanja. Kako bi se našli najbolji parametri koristi se tehnika optimizacije zasnovana na genetičkom algoritmu. Također kako bi se dobili točni podaci o toku statora, momentu i momentu opterećenja potrebni za povratnokoračno upravljanje koriste se estimatori u otvorenoj petlji. Na kraju su prikazani eksperimentalni rezultati kako bi se dokazala efikasnost navedene metode upravljanja

    Optimized Adaptive Sliding-mode Position Control System for Linear Induction Motor Drive

    Get PDF
    [[abstract]]This paper proposes an optimized adaptive position control system applied for a linear induction motor (LIM) drive taking into account the longitudinal end effects and uncertainties including the friction force. The dynamic mathematical model of an indirect field-oriented LIM drive is firstly derived for controlling the LIM. On the basis of a backstepping control law, a sliding mode controller (SMC) with embedded fuzzy boundary layer is designed to compensate the lumped uncertainties during the tracking control of periodic reference trajectories. Since it is difficult to obtain the bound of lumped uncertainties in advance in practical applications, an adaptive tuner based on the sense of Lyapunov stability theorem is derived to adjust the fuzzy boundary parameters in real-time. It is a quite complicated process of parameter tuning, especially for the proposed controller, due to the difficulty arisen from lacking of the accurate mathematical model of a system accompanied with unknown disturbance. Therefore, the soft-computing technique is adopted for off-line optimizing the controller parameters. The effectiveness of the proposed control scheme is validated through simulations and experiments for several scenarios. Finally, the advantages of performance improvement and robustness are illustrated at the end of the optimization procedure.[[conferencetype]]國際[[conferencedate]]20130410~20130412[[booktype]]電子版[[iscallforpapers]]Y[[conferencelocation]]Paris, Franc

    Improving Power Delivery of Grid-Connected Induction Machine Based Wind Generators under Dynamic Conditions Using Feedforward Linear Neural Networks

    Get PDF
    In the conventional grid-connected Wind Energy Conversion System (WECS), the generator side inverter is typically controlled via Field Oriented Control (FOC), while Voltage Oriented Control (VOC) controls the grid side inverter. However, robust operation cannot be guaranteed during sudden changes in wind speeds and weak grid connections. This paper presents a novel method to improve the overall dynamic performance of on-grid induction machine-based wind generators. An online mechanical parameter estimation technique is devised using Recursive Least Squares (RLS) to compute the machine inertia and friction coefficient iteratively. An adaptive feedforward neural (AFN) controller is also proposed in the synchronous reference frame, which is constructed using the estimated parameters and the system's inverse. The output of the neural controller is added to the output of the speed PI controller in the outer loop of the FOC to enhance the speed response of the wind generator. A similar approach is taken to improve the classical VOC structure for the grid-side inverter. In this case, the RLS estimates the equivalent Thevenin's grid impedance in real-time. As for the adaptive action, two identical neural networks are integrated with the inner loop direct and quadrature axis current PI controllers. Under nominal operating conditions, it is observed that the PI+AFN provides a faster settling time for the generator's speed and torque response. Upon being subjected to variations in the wind speed, the PI+AFN outperforms the classical PI controller and attains a lower integral-time error. In addition, the proposed PI+AFN controller has a better ability to maintain the grid-side inverter stability during stochastic variations in grid impedance. One significant advantage of the proposed control approach is that no data for training or validation is required since the neural network weights are directly the output of the RLS estimator. Hardware verification for the improved FOC for wind generators using the adaptive controller is also made using the DSPACE 1007 AUTOBOX platform

    Adaptivno slijedno upravljanje u kliznom režimu rada s valićnom neuronskom mrežom za sustav s PMSM elektromotornim pogonom

    Get PDF
    This paper presents a wavelet neural network backstepping sliding mode controller (WNNBSSM) for permanent-magnet synchronous motor (PMSM) position servo control system. Backstepping sliding mode (BSSM) is utilized to guarantee favorable tracking performance and stability of the whole system, meanwhile, wavelet neural network (WNN) is used for approximating nonlinear uncertainties. The designed controller combined the merits of the backstepping sliding mode control with robust characteristics and the WNN owning the capability of artificial neural networks for online learning and the capability of wavelet decomposition for identification. An observed error compensator is developed to compensate the estimated error of the WNN and the adaptive law is derived according to Lyapunov theorem. The effectiveness of the proposed controller is investigated in simulation under different operating conditions. The simulation results demonstrate the proposed WNNBSSM controller can provide precise tracking performance and robust characteristics despite unknown parameter uncertainties and load disturbance. Moreover, an implemental wavemaker system is established to verify the effectiveness of the proposed control algorithm.U radu je predstavljen bacsktepping regulator u kliznom režimu rada za sustav upravljanja servo pozicioniranja motoromom s permanentnim magnetima (PMSM) zasnovan na valićnim neuronskim mrežama (WNNBSSM). Backstepping klizni režim rada (BSSM) korišten je za jamčenje željenih performansi slijeđenja i stabilnost cijelog sustava, dok je valićna neuronska mreža (WNN) korištena za aproksimaciju nelinearnih nesigurnosti. Sintetizirani regulator povezuje prednosti i robusne karakteristike backstepping kliznog režima upravljanja te WNN sa sposobnostima umjetnih neuronskih mreža za online učenje i mogućnost valićne dekompozicije za identifikaciju. Razvijen je kompenzator pogreške estimacije WNN i adaptivni upravljački zakon prema Ljapunovljevom teoremu. Djelotvornost predloženog regulatora istražena je kroz simulacije u različitim uvjetima rada. Rezultati simulacija pokazuju da predloženi WNNBSSM može osigurati precizna svojstva slijeđenja i robusne karakteristike unatoč nepoznatim nesigurnostima parametara i poremećaja tereta. Uz to, razvijen je izvedbeni sustav generatora valova za provjeru djelotvornosti predloženog upravljačkog algoritma

    Adaptive Backstepping-based H∞ Robust controller for Photovoltaic Grid-connected Inverter

    Get PDF
    To improve the robustness and stability of the photovoltaic grid-connected inverter system, a nonlinear backstepping-based H∞ controller is proposed. A generic dynamical model of grid-connected inverters is built with the consideration of uncertain parameters and external disturbances that cannot be accurately measured. According to this, the backstepping H∞ controller is designed by combining techniques of adaptive backstepping control and L2-gain robust control. The Lyapunov function is used to design the backstepping controller, and the dissipative inequality is recursively designed. The storage functions of the DC capacitor voltage and grid current are constructed, respectively, and the nonlinear H∞ controller and the parameter update law are obtained. Experimental results show that the proposed controller has the advantage of strong robustness to parameter variations and external disturbances. The proposed controller can also accurately track the references to meet the requirements of high-performance control of grid-connected inverters
    corecore