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ABSTRACT In the conventional grid-connected Wind Energy Conversion System (WECS), the generator
side inverter is typically controlled via Field Oriented Control (FOC), while Voltage Oriented Control (VOC)
controls the grid side inverter. However, robust operation cannot be guaranteed during sudden changes
in wind speeds and weak grid connections. This paper presents a novel method to improve the overall
dynamic performance of on-grid induction machine-based wind generators. An online mechanical parameter
estimation technique is devised using Recursive Least Squares (RLS) to compute the machine inertia and
friction coefficient iteratively. An adaptive feedforward neural (AFN) controller is also proposed in the
synchronous reference frame, which is constructed using the estimated parameters and the system’s inverse.
The output of the neural controller is added to the output of the speed PI controller in the outer loop of
the FOC to enhance the speed response of the wind generator. A similar approach is taken to improve the
classical VOC structure for the grid-side inverter. In this case, the RLS estimates the equivalent Thevenin’s
grid impedance in real-time. As for the adaptive action, two identical neural networks are integrated with
the inner loop direct and quadrature axis current PI controllers. Under nominal operating conditions, it is
observed that the PI+AFN provides a faster settling time for the generator’s speed and torque response.
Upon being subjected to variations in the wind speed, the PI+AFN outperforms the classical PI controller
and attains a lower integral-time error. In addition, the proposed PI+AFN controller has a better ability
to maintain the grid-side inverter stability during stochastic variations in grid impedance. One significant
advantage of the proposed control approach is that no data for training or validation is required since the
neural network weights are directly the output of the RLS estimator. Hardware verification for the improved
FOC for wind generators using the adaptive controller is also made using the DSPACE 1007 AUTOBOX
platform.

INDEX TERMS Wind energy conversion, induction generator, grid-connectedwind turbine, machine inertia,
friction coefficient, grid impedance, feedforward controller, adaptive neural networks, recursive least squares
estimator.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zheng Chen .

I. INTRODUCTION
The focus of the power and energy sector worldwide is
transitioning from fossil fuel-based generation to renewable
power. Significant investments in solar, hydro and hydrogen
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fuel cells are being made because of promising sustainability
and low environmental impacts. Wind Energy Conversion
Systems (WECS) is also attracting global attention in indus-
try and research due to advancements in power conversion
topologies and profitable manufacturing techniques of wind
turbines. However, due to the stochastic nature of wind
resources, engineers often encounter difficulties in effectively
integrating it with the electricity grid. The power-producing
capacity of wind turbines has dramatically increased over the
past few decades to multi-megawatt levels. As such, robust
and advanced control solutions have to be developed to guar-
antee power converters’ stability during mass integration of
power into the network from WECS [1].

Wind Turbine Generators (WTG) can operate at fixed
or variable speeds. The Squirrel Cage Induction Genera-
tors (SCIG) has the capability of operating in both fixed
speed and variable speed mode, while the Doubly-Fed
Induction Generators (DFIG) and Permanent Magnet Syn-
chronous Generators (PMSG) usually are operated at variable
speeds [1], [2]. Generally, the back-to-back converter topol-
ogy shown in Figure 1 is widely used for grid-connected
WTGs as it provides complete controllability. The three main
control subsystems for SCIG include aerodynamic torque
control, energy capture maximization and grid active and
reactive power regulation. Field Oriented Control (FOC) or
Direct Torque Control (DTC) are the most commonly used
strategies for the machine side converter (MSC), while Volt-
age Oriented Control (VOC) is employed for the grid side
converter (GSC) [3], [4], [5].

FIGURE 1. Back-to-back converter configuration for WECS.

For the control of the SCIG, FOC primarily uses classical
Proportional-Integral (PI) controllers to achieve the desired
speed and torque response. However, SCIGs are a typical
nonlinear multi-variable robust coupling system whose per-
formance is generally affected by uncertainties such as rapid
changes in wind speed and unpredictable parameter varia-
tions. As a result, the conventional PI controller encounters
difficulties in meeting high-performance requirements [6].

Moreover, to capture maximum power fromWTGs, a vari-
able adaptive fuzzy PI control based on stator flux-oriented
vector control can be implemented to govern the stator’s
active and reactive power [7], [8]. For variable-speed wind
generators, a nonlinear Integral Backstepping Strategy (IBS)
combined with adaptive power control can also assist in
optimizing power extraction. The IBS-based tip speed ratio
power control method provides improved efficiency and

rapid system response compared to the conventional PI
approach [9]. Similarly, [10] presents an adaptive back-
stepping nonlinear control method for variable-speed wind
turbines with a PMSG for ensuring maximum power extrac-
tion. Using a Lyapunov function, this approach also ensures
robustness against uncertainties in stator resistance and rotor
flux linkage. Nevertheless, these methods fail to account for
variations in the mechanical parameters, such as the gener-
ator’s inertia and friction coefficient, which can affect the
speed response and torque ripples.

The speed control characteristics strongly depend on the
appropriate selection of the speed control gains. Therefore,
it is necessary to know the varying inertia of the whole system
so that the speed controller gains can be adapted [11]. Self-
tuned PI controllers are also widely used for grid-interfaced
wind turbine systems. Improved Multiband-Structured Sub-
band Adaptive Filter (IMSAF) algorithm can update multiple
PI controller gains in the cascaded control loop for the Volt-
age Source Inverters (VSI). Other optimization algorithms,
such as water cycle and genetic algorithms, can substi-
tute the IMSAF depending on the available computational
power [12].

On the other hand, for the control of the grid side inverter,
linear current controllers such as deadbeat, repetitive, pro-
portional resonant, proportional integral, model predictive
and sliding mode controllers are often implemented in the
synchronous rotating reference frame [13]. These control
approaches can maintain fixed switching frequency and have
a relatively simple implementation, but the modulator is slug-
gish, resulting in a slow transient and dynamic response. The
deadbeat and proportional resonant controllers also have a
smaller transient region and low Total Harmonic Distortion
(THD) in the currents at the Point of Common Coupling
(PCC). However, they are not compliant with parameter devi-
ations, noise variation, or model uncertainties [14]. These
control techniques also require minimal sampling time and
higher inverter switching frequency, which tends to cause loss
of power.

There are inconsistencies in PCC impedance caused due
to the increasing infiltration of renewable energy into the
electricity network. This variation significantly influences
the voltage and current of the power converter, as in most
cases, a static grid impedance is hardcoded in the control
structure. Power injection fromRES often faces stability chal-
lenges induced by the Thevenin equivalent grid impedance
seen by the inverters. To govern the active and reactive
power more effectively, [15] and [16] proposed a method to
continuously approximate the grid impedance ratio by inject-
ing harmonic currents and computing the Discrete Fourier
Transform (DFT) of the voltage response at grid frequency.
Similarly, a single frequency voltage can be injected with
the inverter voltage at PCC, and the sliding DFT of the
corresponding grid voltage and currents can be obtained.
An adaptive grid observer can permit real-time grid induc-
tance and resistance estimation [17]. However, the injection
of harmonics and additional signals with the inverter currents
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deteriorates the grid voltage and current quality at PCC,
causing power quality issues and inaccuracies in estimating
grid impedances.

Recently, significant advancements have been made in
Approximate Dynamic Programming (ADP) algorithms that
use incremental optimization procedures to control power
converters. Optimal vector control has been developed
in [18] using a Recurrent Artificial Neural Network (ANN)
trained using Levenberg-Marquardt plus forward accumula-
tion through time algorithm and applied to a single-phase
inverter with an LCL filter. Correspondingly, [14] presented
a control method based on Model Predictive Control (MPC)
with a feedforward ANN to reduce THD and alleviate the
steady-state and dynamic performance during loading for
the two-level inverter. The decoupling circuit’s direct and
quadrature control voltages can also be generated through a
trained neural network replacing the current controllers [19].
Nevertheless, a substantial drawback of these control algo-
rithms is the appropriate training of the ANN, which needs to
be carried out before implementation because the network’s
weights are determined offline. The ANN’s reliability and
performance accuracy depends on the type and amount of
data used in the training process. Insufficient training can
affect the overall system stability and response to changing
operating conditions. The use of ANN also increases the
computational requirements of processors or control boards
during hardware realization.

Thus, a more reliable and robust control technique for
back-to-back converter topology for SCIG that accounts for
changes in operating conditions is necessary for interfacing
wind turbines with the network. This paper proposed an
adaptive control theory to enhance the performance of the
speed PI controller in the FOC and current PI controllers
in the VOC via a feedforward ADALINE neural network.
The weights of these networks are dependent on induction
generator mechanical parameters (inertia and friction coeffi-
cient) and grid impedance which are estimated online using
the Recursive Least Squares (RLS) algorithm. This eliminates
the necessity for any prior training and validation and testing.
The proposed control approach is thoroughly verified under
various dynamic conditions such abrupt changes in wind
speed and grid impedance deviation. The PI+AFN controller
is implemented in the synchronous rotating reference frame
and provides better reference tracking capability, minimized
overshoots and lower steady state error of the speed, torque
and direct/quadrature axis grid currents. The scheme is also
verified experimentally on a suitably developed wind turbine
emulator using induction machines.

II. MECHANICAL SYSTEM DESCRIPTION
The mechanical subsystem is responsible for extracting the
kinetic energy from the wind through turbines and avails it
on the rotating shaft of the turbine. In general, the mechanical
system is composed of the turbine, gearbox, and the generator
connected via high speed and low speed rotor as shown in
Figure 2. The low-speed rotor consists of blades that capture

the kinetic energy of the wind and convert it into rotational
motion. The gearbox is used to increase the rotational speed
of the rotor to match the speed required by the generator. The
generator is responsible for converting the rotational motion
of the rotor into electrical energy. This mechanical power
conversion system of a wind turbine can employ various
combinations to convert the kinetic energy of wind into elec-
trical energy such as direct drive systems, which eliminate
the need for a gearbox, have been gaining popularity due to
their simplicity and high reliability. However, they require
a larger and heavier generator to handle the rotor’s higher
torque and lower rotational speed. On the other hand, gearbox
drives, which use a gearbox to match the speed required by
the generator, can be more efficient for larger turbines, but
they can introduce additional mechanical components and
potential points of failure. Hybrid drives, which combine
elements of direct drive and gearbox drive systems, offer a
balance between the efficiency of a gearbox drive and the
simplicity of a direct drive. A hybrid drive may use a gearbox
to increase the rotational speed of the rotor and then connect
directly to the generator. Finally, belt drive systems can use
a belt or other flexible coupling to connect the rotor to the
generator, reducing the impact of vibration and misalignment
on the system. However, belt drives may introduce additional
losses and require more frequent maintenance. Therefore,
the selection of a mechanical power conversion system for
a wind turbine depends on several factors, including the size
of the turbine, the wind conditions, and the desired level of
reliability and efficiency.

FIGURE 2. Mechanical power conversion system.

The rotation of the low-speed shaft is driven by the energy
harvested using the turbines which depends on the speed of
the wind. The shaft is connected to a gearbox which enables
it to multiply the rotational speed by a suitable ratio across
the high-speed shaft connected to the generator. The power
captured by the turbine blade is expressed as

Pm = Cp (λ, β)
ρA
2
v3 (1)

wherePm is the mechanical power of the turbine,Cp is perfor-
mance coefficient, A is the area swept by the turbine, ρ is the
air density, v is the wind velocity, βis blade pitch angle, and
λ is the Tip Speed Ratio (TSR). TSR is a measure of how fast
the tips of the blades of a wind turbine are moving compared
to the wind speed. It is calculated by dividing the speed of
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the tip of the blade by the speed of the wind. Cp of a wind
turbine is a measure of how efficiently the turbine converts
the kinetic energy of the wind into mechanical energy. It is
defined as the ratio of the power generated by the turbine to
the power that would be extracted from the wind if the turbine
were 100% efficient. The performance coefficient and the tip
speed ratio are expressed as

λ =
ωTR
v

(2)

Cp = C1

(
C2

λ
− C3β − C4

)
e

−C5
λ + C5λ (3)

R is the radius of the turbine, and in equation 3, the C1 =

0.5, C2 = 116.0, C3 = 0.4, C4 = 5.0 and C5 = 21.0.
There is a relationship between the TSR and the performance
coefficient of a wind turbine. In general, as the TSR increases,
the performance coefficient of the turbine also increases.
However, the relationship is not linear, and there is an optimal
TSR at which the performance coefficient is maximized. This
optimal TSR depends on the turbine’s specific design and
the wind’s properties. It is worth noting that the performance
coefficient is not the only factor that determines the overall
efficiency of a wind turbine. Factors such as the generator’s
efficiency, bearing losses, and transmission losses also play a
role in determining the turbine’s overall efficiency [20], [21].
The relationship between the selected turbine TSR and Cp is
plotted in Figure 3.

FIGURE 3. Relationship between the tip speed ratio and performance
coefficient.

The relation between the mechanical power concerning the
rotational speed and the outline parameters is as per Figure 4.
The torque produced by the wind turbine is given as

TT =
Pm
ωT

= CT
ρπR3

2
v2 (4)

The graph of mechanical power (Pm) vs. angular velocity
(ωm) for a wind turbine is essential while analyzing the per-
formance of the turbine. This graph displays the relationship
between Pm and ωm, which is commonly referred to as the
power curve of the turbine. It demonstrates the amount of
power that the turbine can produce at different wind speeds.
As the wind speed increases, the power output of the turbine
also increases, up to a certain point called the rated power of
the turbine. This rated power represents the maximum power
output that the turbine is designed to produce.

FIGURE 4. Correlation between angular velocity and mechanical power
output at different rotor speeds.

The power curve typically has a characteristic shape, which
includes a low power output at low wind speeds, a rapid
increase in power output as the wind speed increases, and
a plateau at the rated power. Beyond the rated power, the
turbine’s power output begins to decrease, as the turbine is
not designed to operate at higher wind speeds. The induction
generator and turbine parameters are stated in Table 1.

TABLE 1. Wind generator parameters.

An induction generator has been deployed at the wind
energy side with the Field Oriented Control (FOC) tech-
nique being adopted for the control of the machine. The
implemented FOC consists of a double cascaded PI loop, the
direct axis also known as the flux loop controls the direct
axis current and on the quadrature axis, the speed loop con-
trols the quadrature axis current. In addition, all controllers
employ traditional Proportional Integral controllers. Space
Vector Modulation (SVM) with a switching frequency of
15kHz has been employed to control the switching of the
respective inverters. The use of such a control scheme per-
mits the machine to follow the speed references supplied by
any MPPT method with high performance. Since the torque
produced by the wind turbine is highly dependent on the
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wind speed, a high-performance control technique is always
adopted to control the IG. The grid-side inverter provides the
DC link voltage control.

On the direct axis, a flux control loop commands the
current loop, and a voltage control loop can also command
the flux loop to permit the drive to work automatically in the
field weakening region by maintaining constant the product
of the rotor-flux amplitude and the absolute value of the rotor
speed [22]. The voltage reference is compared with the actual
voltage, computed as the product of the estimated value of the
rotor flux amplitude and the absolute value of the measured
rotor speed. An integrator processes the tracking error, and
the output of the integrator is the rotor reference flux (ψref ).
The machine’s flux is directly proportional to the torque
capability of the generator [23].

III. ELECTRICAL SYSTEM DESCRIPTION
The electrical system converts mechanical energy into electri-
cal energy suitable for the grid. It mainly consists of AC-DC
and DC-AC inverters, filters, transformers, transmission lines
and the grid. The power conversion components and other
electrical parameters used in the model are stated in Table 2.

TABLE 2. Electrical parameters.

The Voltage Oriented Control (VOC) technique regu-
lates the grid-side converter. This technique instantaneously
decouples the direct and quadrature components of the
injected current concerning the grid voltage vector reference
frame. Cross-coupling terms are added to the inverter control
voltages in the inner loop to regulate the active and reactive
powers at PCC independently. The inverter control voltages
for the two axes are generated using equation 5.

vdref =

(
Kp +

Ki
s

) (
idref − igd

)
+ ωgLigq + vgd

vqref =

(
Kp +

Ki
s

) (
iqref − igq

)
− ωgLigd + vgq (5)

idref /iqref and igd /igq are reference and measured direct
and quadrature currents, respectively. Vgd and Vgq are the
grid voltages in the synchronous reference frame and ωg is
the angular grid frequency [24]. Consequently, the real and

imaginary powers on the AC side in the dq reference frame
can be evaluated using

P =
3
2
(vgd id + vgqiq)

Q =
3
2
(vgqid − vgd iq) (6)

A PI controller in the outer loop generates the reference
direct axis current via regulating the DC link voltage. Two PI
controllers are also employed in the inner loop to control the
direct and quadrature currents injected into the grid. Using the
combined output of the current PI controllers and the decou-
pling circuit, Sinusoidal Pulse Width Modulation (SPWM)
technique is employed to generate gate pulses for the IGBT
switches. The interconnecting filter is a simple inductor with
parasitic resistor in series. Initial grid impedance is kept low
to minimize AC voltage harmonics and distortions. The reac-
tive power reference (Qref ) is zero under all test conditions.

IV. PROPOSED ADAPTIVE CONTROL TECHNIQUE
A. ADAPTIVE FIELD ORIENTED CONTROL (AFOC)
When a system, such as the induction generator, is under
operation and required to track a rapid reference frame,
it requires high bandwidth, making the system less robust
and more noise sensitive. As identified earlier, the mechan-
ical parameter of the IG is very sensitive and continuously
changes when the machine is in operation. In such cases,
to achieve a better performance in reference tracking while
keeping noise rejection capacity, one idea is to use a feedfor-
ward controller to enhance the required tracking capability
of the speed PI controller while leaving the feedback action
to stabilize the system and suppress higher frequency dis-
turbance. The scheme proposed and depicted in Figure 5
can be used to increase the reference tracking accuracy
and simultaneously be adaptive to the variations of the sys-
tem parameters. Considering the equation of motion for an
electro-mechanical drive,

Jm
dω
dt

+ Bmωmr = τel − τL = 1τ (7)

where τel is electromagnetic torque, τL is load torque, Jm is
inertia,Bm is the viscous friction coefficient,1τ is the change
in torque andωmr is themeasured output speed. Using Euler’s
discretization with Ts as the sample time, the involved time
derivatives is replaced with equation (8)

dωmr
dt

=
ωmr (k) − ωmr (k − 1)

Ts
(8)

This leads to the following differential equation:

1τ = Jm
ωmr (k) − ωmr (k − 1)

Ts
+ Bmωmr (k − 1) (9)

Solving equation (9) and expressing it in the form to attain
the desired speed (ωmr (k)) yields

ωmr (k) =

(
Jm − TsBm

Jm

)
ωmr (k − 1) +

Ts
Jm
1τ (k − 1)

(10)
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FIGURE 5. General control structure of neural network-based adaptive
speed controller.

Defining the coefficients,

α1 =
Jm − TsBm

Jm
and α2 =

Ts
Jm

(11)

Equation (10) can be rewritten as

ωmr (k) = α1ωmr (k − 1) + α21τ (k − 1) (12)

Given a time window of length N , a linear regressor in the
form Ax ≈ b can be obtained from equation (12) as

ωmr (k − 1) 1τ (k − 1)
ωmr (k − 2) 1τk − 2)

· ·

· ·

ωmr (k − N ) 1τ (k − N )


[
α1
α2

]
≈


ω̂mr (k)

·

·

·

ω̂mr (k − N )


(13)

with b being the actual (measured) speed, x the unknown
regressor value to be estimated and A the vector of measure
speed over the N sample time window. The full parameter
estimation model is shown in Figure 6.
Given this information, a Recursive Least Square (RLS)

based estimator is employed to calculate the unknown values
for α1 and α2. Once α1 and α2 are known, equations (11) can
then be rearranged, and the varying values for Jm and Bm can
be estimated in time using

Jm =
Ts
α2

and Bm =
1 − α1

α2
(14)

Once the machine is under operation and experiences a
change in Jm and/or Bm, the weights can be calculated and
be used to construct the inverse of the system. The feedfor-
ward controller is created by multiplying the system for the

FIGURE 6. Estimation model for generator inertia and friction coefficient.

corresponding reference value,

1τff =
1
α2
ωmr (k) −

α1

α2
ωmr (k − 1) (15)

Equation (15) is an ADALINE neural network with α1
and α2 as its weights. When the output of the linear neural
network (computed feedforward torque) is added in the speed
loop, it will aid the PI controller in improving the machine’s
performance under dynamic conditions such as abrupt wind
speed variation and changes in system inertia and/or friction
coefficient. The controller parameters for the adaptive FOC
are stated in Table 3.

TABLE 3. Adaptive FOC parameters.

B. ADAPTIVE VOLTAGE ORIENTED CONTROL (AVOC)
A similar control approach to the one presented in
section IV-A can be adopted to enhance the grid-side
inverter’s stability under varying grid impedance and chang-
ing injected currents from the wind turbine. In the scenario of
an inverter connected to the grid, the equivalent Thevenin’s
impedance, as seen at the PCC, can be identified as follows.
Primarily, the interconnection between the voltage of the
inverter (vαβ ) and the grid (eαβ ) in the stationary reference
frame can be portrayed as in Figure 7.

FIGURE 7. Inverter and grid voltage at the equivalent Thevenin’s
impedance.

Then the inverter voltages can be obtained by taking
Clarke’s transformation of the three-phase voltages at PCC.
As such, vαβ and eαβ can be expressed as

vαβ = vα + jvβ
eαβ = eα + jeβ (16)
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Considering the input current from the inverter side as iαβ ,
the voltage drop on the grid impedance can be expressed as

vαβ − eαβ = Lg
diαβ
dt

+ Rgiαβ (17)

Denoting the voltage drop at the impedance as

uαβ (k) = vαβ (k) − eαβ (k) (18)

With Ts as the sample time, using the forward differ-
ence Euler’s discretization, equation (17) in discrete form
becomes,

uαβ (k − 1) = Lg
iαβ (k) − iαβ (k − 1)

Ts
+ Rgiαβ (k − 1) (19)

Solving equation (19) for the desired current responseiαβ (k)
at an instance of time k yields

iαβ (k) =
Lg − TsRg

Lg
iαβ (k − 1) +

Ts
Lg
uαβ (k − 1) (20)

Assuming,

β1 =
Lg − TsRg

Lg
andβ2 =

Ts
Lg

(21)

Equation (20) can be rewritten as

iαβ (k) = β1iαβ (k − 1) + β2uαβ (k − 1) (22)

This allows the formation of an expression in the form of
Ax ≈ b based on a moving time window of N samples.

iαβ (k − 1) uαβ (k − 1)
iαβ (k − 2) uαβ (k − 2)

· ·

· ·

iαβ (k − N ) uαβ (k − N )


[
β1
β2

]
≈


iαβ (k)

·

·

·

iαβ (k − N )

 (23)

where A is the matrix of measured line currents and the differ-
ence between the inverter and grid voltages over N samples,
x is the vector of unknown β1 and β2 (estimated), and b is
the vector of the measured currents. From (23), an online
impedance estimation model, as portrayed in Figure 8, can
be devised using RLS algorithm.

If uαβ is the computed difference between the inverter and
grid voltage and b is a vector of measured values of the axis
current, then β1 and β2 can be estimated in a window of N
samples. Note that from equation (21),

Lg =
Ts
β2

and Rg =
1 − β1

β2
(24)

FIGURE 8. Estimation model for grid resistance and inductance.

Therefore, a change in the values of the impedance will
result in the update of β1 and β2 allowing estimation in
variations of the inductances and resistances at PCC. For the
estimation of grid parameters, either the α or β components
of the grid currents and voltages can be utilized. Furthermore,
the scheme presented in Figure 9 is suggested to improve the
reference tracking accuracy of the grid-connected system and
simultaneously be resilient to possible fluctuations of grid
parameters.

FIGURE 9. General control structure of neural network-based adaptive
current controller.

This is made possible by adding a feedforward voltage
to the output of the PI controller in the synchronous rotat-
ing reference frame. The simple feedforward linear neural
network can be formulated to construct the inverse of the
system with β1 and β2 as the weights of the ADALINE. From
equation (22), it can be deduced that the inverse of the system
can be expressed as

uαβ (k − 1) =
1
β2
iαβ (k) −

β1

β2
iαβ (k − 1) (25)

The system inverse is independent of the reference frame it
is implemented in. As such, by integrating the neural network
with the PI controller, equation (25) is transformed onto the
synchronous rotating reference frame as

udq(k − 1) =
1
β2
idq(k) −

β1

β2
idq(k − 1) (26)

As equation (26), shows, there are no poles allowing the
system to be stable. Substituting the grid currents for the
corresponding direct and quadrature reference and measured
values (idqref (k) and igdq(k − 1)) creates the feedforward
neural controller. Adding the inverse of the plant to the con-
trol signal should improve the grid side inverter’s transient
behavior, settling time and be resilient to stochastic changes
in grid impedance as the weights are determined online.
Subsequently, denoting the output of the ADALINE neural
network as vdqff , the final equation for the neural controller
is given as

vdqff =
1
β2
idqref (k) −

β1

β2
igdq(k − 1) (27)

Intrinsically, the decoupled control with PI regulators can
be utilized to enhance the stability of the grid-connected VSI
and the closed-loop inverter currents by adding the output of
the adaptive controller with the cross-coupling for generation
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of the reference direct and quadrature axis voltages (vdref and
vqref ) as expressed in equation (28). The introduced feedfor-
ward terms (vdff and vqff ) are the output of the feedforward
neural controller used to enhance the control of the direct and
quadrature currents and they eventually improve the injection
of the active and reactive power components of the inverter
independently.

vdref =

(
Kp +

Ki
s

) (
idref − igd

)
+ ωLigq + vgd + vdff

vqref =

(
Kp +

Ki
s

) (
iqref − igq

)
− ωLigd + vgq + vqff

(28)

The control parameters for the grid side inverter are stated
in Table 4.

TABLE 4. Adaptive VOC parameters.

C. RECURSIVE LEAST SQUARES ESTIMATOR
Recursive Least Squares (RLS) estimator finds the coeffi-
cients that minimize a weighted linear cost function related
to a set of deterministic input signals. For a linear system that
can be stated as Ax ≈ b, and given as a vector of estimated
parameters with L(k) as the update gain, the standard recur-
sive form can be described as

x(k) = x(k − 1) + L(k)[b(k) − AT (k)x(k − 1)] (29)

The Forgetting Factor (λ), practically between 0 and 1,
strongly influences the estimation of parameters by the RLS.
It acts as a weight that exponentially reduces for more remote.
A small λ makes the algorithm more sensitive to parameter
changes and noise, while a very high value may be insen-
sitive to rapidly changing parameters [25]. The concept of
forgetting is more effective for systems where parameters
vary continuously but slowly, such as grid impedance. This
gives recently observed data more emphasis while estimating
parameters in real time. This leads to the following expression
for the covariance matrix.

P(k) = [1 − L(k)AT (k)]P(k − 1)
1
λ

(30)

The covariance matrix is divided by the forgetting factor
(λ < 1) at each successive update which decelerates the
vanishing of the matrix [25]. Therefore, a reasonable value
of λ = 1 and λ = 0.99 with a covariance matrix of
[1× 10−4 1× 10−4] and [5× 10−3 5× 10−3] can be chosen

to allow estimation of the inertia/friction coefficient of the
induction generator and varying grid impedance respectively.
The chosen forgetting factor and covariance matrix values
should also concurrently be resilient to noise in the system
originating from switching of the inverter, oscillations in
speed and torque or distortions in the grid voltage at high
impedance [26]. For this research, a sampling frequency of
10kHz produced the best estimation accuracy with an error
of less than 5% under the rated operating conditions of the
induction generator. The overall proposed adaptive control
scheme for back-to-back connected inverters in WECS is
shown in Figure 10.

V. SIMULATION RESULTS
The designed control technique is implemented on a
grid-interfaced wind turbine generator emulated using the
parameters of a 2.2kW induction motor connected to a
415V/50Hz grid. All the modelling and control parameters
are specified in Tables 1-4. To validate the performance of the
proposed adaptive controllers, the PI+AFNneural controllers
for both the AFOC and AVOC were tested under nominal
operating conditions, suddenwind speed variation and chang-
ing grid impedance at PCC.

A. NOMINAL OPERATING CONDITIONS
In the first case the grid impedance is kept constant with an
inductance of 1mH and a resistance of 0.15�. The Double
Second Order Generalized Integrator (DSOGI) Phase Locked
Loop (PLL) is utilized to synchronize the grid-side inverter
with the electricity network as it has superior performance.
At t=0s the turbine is given a reference speed of 157rads/s.
At this point in time, power is drawn from the grid to start the
WEC generator. At t=0.5s the turbine is subjected to constant
wind speed of 3.9 m/s which translates to about -14 Nm of
load torque subjected to the generator shaft. Figure 11 and
Figure 12 show the estimated mechanical inertia and friction
coefficient of the induction generator while Figure 13 and
Figure 14 portray the estimated grid inductance and resis-
tance respectively under normal operating condition. Using
the information of the estimated parameters of the machine,
the weights of the AFN controller (α1 and α2) is created
for the speed PI controller. Similarly, the value of the grid
impedance is utilized to produce the weights of the AFN
controller (β1 and β2) for the direct and quadrature PI current
controllers.

Analyzing the generator’s speed response (Figure 15) in
the transient region, it can be noted that PI+AFN has a
faster dynamical response with lower overshoots and reduced
settling time.

Due to the enhanced speed response with the PI+AFN,
the electromagnetic torque response of the turbine machine is
also faster at the transient stage, as shown in Figure 16. It can
be visualized that the proposed AFN technique eliminates the
overshoot of the torque when the machine starts and when a
constant wind speed is applied to produce a torque at the shaft
at t=0.5s.
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FIGURE 10. Proposed AFOC and AVOC control scheme for WECS.

FIGURE 11. Estimation model for grid resistance and inductance.

The inclusion of the proposed adaptive technique for
the grid side converter controlled using VOC improves
the response of the injected direct and quadrature currents

FIGURE 12. Estimation of generator friction coefficient.

leading to more robust control of active and reactive power
control at PCC, as shown in Figure 17 and Figure 18. Initially,
power is drawn from the grid to start the turbine, and then
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FIGURE 13. Estimation of grid inductance.

FIGURE 14. Estimation of grid resistance.

FIGURE 15. Turbine shaft speed.

FIGURE 16. Electromagnetic torque of the machine.

at t=0.5, the turbine is subjected to a wind speed of 3.9 m/s
translating to -14Nmof negative torque on the shaft. Negative
torque makes the rotor speed higher than the synchronous
speed, thus enabling approximately 1.75kW of active power
to be injected from the machine to the grid, which can be
visualized after 0.5s.

Notably, PI+AFN has a better response regarding over-
shoot minimization and faster settling time of the active and
reactive powers at the PCC. Additionally, to ensure the opti-
mum power factor, the quadrature axis of the VOC is given
a reference of zero. PI+AFN exhibits superior reference
tracking ability and maintains the reactive power to zero with
minimum fluctuations.

B. WIND SPEED VARIATION
The wind has a stochastically varying nature, i.e., it never has
a constant value or profile because wind speed at any location

FIGURE 17. Active power at PCC.

FIGURE 18. Reactive power at PCC.

FIGURE 19. Wind speed profile.

on earth changes abruptly throughout the day. This can have
consequences for the power delivery of WECS if appropri-
ate adaptive actions are not taken. For simulation purposes,
the system is subjected to a varying wind speed profile as
shown in Fig. 19. A 3.8m/s step wind speed is given at 0.5s,
followed by 3.5m/s at 1s and 2.8m/s at 1.5s. At the instance
of these variations, the speed of the generator encounters
high overshoots and disturbances when the classical speed
PI controller is used in the FOC structure. However, when
the proposed PI+AFN controller is used, these overshoots
are eliminated as seen Fig. 20. As a result of the smooth
transition and faster transient during wind speed variation, the
torque response also has a faster and more robust behavior
as seen in Fig. 21. The direct translation of wind speed to
electromagnetic torque portrays that the PI+AFN controller
has a faster and smoother response when compared to the
classical PI controller.

One of the key objectives of using the enhanced technique
on the grid side converter is to improve the quality of power
delivered to the grid under dynamically changing power refer-
ence. At varying wind speeds, varied torque is applied to the
turbine shaft, which has a linear correlation with the power
injected into the grid. In this case, for wind speeds of 3.8 m/s,
2.8 m/s and 3.5 m/s, a total of 1.75kW, 1kW and 1.5kW
of power is injected into the grid. As seen in Figure 22,
the active power injection to the grid is improved by using
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FIGURE 20. Wind turbine speed.

FIGURE 21. Variation in the electromagnetic torque on the machine.

the PI+AFN, allowing a better transition from one operating
point to another with a faster settling time.

FIGURE 22. Changes in active power at PCC.

The reactive power at PCC undergoes fluctuations when
the wind speed changes. As seen in Figure 23, the PI+AFN
controller has superior performance in minimizing oscilla-
tions in the reactive power.

An important factor that affects power quality at PCC is
the presence of current harmonics. The Total Harmonic Dis-
tortion (THD) is the sum of all the harmonic components of
the sinusoidal waveform compared to the fundamental com-
ponent [27]. High harmonics cause power losses, increased
flow of eddy currents, overheating of power electronic equip-
ment, stress on the inverter, and tripping of circuit breakers.
According to the IEEE Standard 519-2014 (Recommended
Practice and Requirements for Harmonic Control in Electric
Power Systems), the current total harmonic distortion at PCC
for 120V to 69kV systems should be below 5% [28]. The
three-phase currents at PCC have been analyzed for harmonic
content, and the results are stated in Table 5 at different wind
speeds or power levels.

THD increases with decreasing power injection or at low
wind speeds. The PI+AFN controller can reduce current
harmonics under all conditions of wind speed variation much
better than the PI controller.

FIGURE 23. Reactive power at PCC.

TABLE 5. Current THD analysis at different wind speeds.

C. GRID IMPEDANCE VARIATION
Considering the system as a weak grid, the impedance is
subjected to vary when there are abrupt loading conditions
or penetration of RES into the network. Therefore, in this
case, a test has been performed to understand the viability of
the proposed technique under the influence of varying grid
impedance. Figure 24 and Figure 25 show the speed and
torque of the machine, which is subjected to a nominal wind
speed of 3.8 m/s at t= 0.5s for a maximum torque of -14Nm.

FIGURE 24. Wind turbine speed.

It is noteworthy that the speed and electromagnetic toque
of the turbine is not affected by the variation of the grid
impedance because of the independent decoupled nature of
the FOC from the VOC. The grid inductance is varied at
t=0.5s, 1s and 1.5s to 1mH, 8mH and 4mH respectively
as seen in Figure 26. Figure 27 shows the active power
of 1.75kW injected into the grid. PI+AFN is effective in
minimizing fluctuations and oscillation in the active and reac-
tive power when the system is subjected to change in grid
impedance compared to the conventional PI controller.

D. INTEGRAL TIME ERROR
To justly validate the performance of any controller, it is
essential to compute the Integral Squared Error (ISE) or the
Integral Time Absolute Error (ITAE). ISE is the squared of
the error over time, whereas ITAE multiplies the absolute
error with time, allowing it to weigh errors more heavily in a
system after a long time than those existing at the beginning.
A low error-index is desired in control systems applications.
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FIGURE 25. Electromagnetic torque on the machine.

FIGURE 26. Estimation of varying grid inductance.

FIGURE 27. Active power during grid impedance variation

FIGURE 28. Reactive power during grid impedance variation.

The errors have been evaluated using equations (31) - (33).

ISE =

∞∫
0

e2(t)dt (31)

IAE =

∞∫
0

|e(t)|dt (32)

ITAE =

∞∫
0

t|e2(t)|dt (33)

Table 6 summarizes the performance index of the speed PI
and PI+AFN controller in the FOC at various wind speeds
while Table 7 shows the performance index of the current
PI controllers and the PI+AFN controller in the VOC with
varying grid impedance. In both cases, the error-index is
maintained at a minimumwith the developed adaptive control

TABLE 6. Speed controller performance index at different wind speeds.

TABLE 7. Current controller performance index at different grid
impedance.

FIGURE 29. Experimental test rig.

strategy, thus improving the performance of the speed and
current controllers under various dynamical conditions.

VI. EXPERIMENTAL VALIDATION
For testing the proposed adaptive control technique in hard-
ware, a wind turbine emulator was developed using a 2.2kW
induction motor coupled to another motor commanded in
torque. A picture of the test rig is provided in Figure 29.

The overall schematic is shown in Figure 30. Other com-
ponents in the circuit include:

• Semikron IGBT 20kVA inverter.
• 10A NHP MOD6 circuit breakers for protection.
• 5V BNC cables for carrying the PWM signals.
• Incremental speed encoder (DFS60B-S4PK1000)
mounted on the rotor shaft.

• Driver circuit comprising of the open collector (LS7406)
and hex inverter trigger (LS7414) chips.

The control platform DSPACE Auto Box 1007 generates
control signals for the machine and acquires data via its
analogue input channels. Inverter pulses are produced at the
digital I/O pins at 10kHz.

To show the performance of the adaptive control tech-
nique, the generator was first operated at nominal conditions.
An estimation of the inertia and friction coefficient as
acquired using the speed and electrical torque of the machine
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FIGURE 30. Wind turbine emulator schematic.

FIGURE 31. Estimated generator inertia.

FIGURE 32. Estimated generator friction coefficient.

FIGURE 33. Speed response under nominal operation.

is portrayed in Figure 31 and Figure 32, respectively. The
estimation convergence highly depends on the values of the
forgetting factor and covariance matrix of the RLS. As such,
these parameters must be appropriately tuned to give reason-
able accuracy with fast convergence.

FIGURE 34. Machine torque under nominal operating.

FIGURE 35. Generator speed response with applied torque.

FIGURE 36. Three-phase machine currents.

As for the speed response (Figure 33), using the feedfor-
ward controller proved to significantly improve the transient
stage of the generator speed with faster settling time and
reduced overshoots. With the PI controller, the speed reaches
steady state at approximately 1s; however, with the PI+AFN
controller, the time is reduced to 0.34s. The torque response
(Figure 34) also experiences a similar trend. Although a
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high overshoot is seen initially with the PI+AFN controller,
a steady state is reached in a shorter time to ensure the
machine’s stability than the PI controller, which displays
slower dynamics.

In the second test case, a step torque of 5Nm is applied
on the machine shaft at 1.5s. As expected, the feedfor-
ward approach is better at handling sudden variations in
operating conditions, as shown in Figure 35. This demon-
strates the ability of the controller to maintain the generator
speed during variations in wind speed. The three-phase
currents produced at the machine terminal are shown in
Figure 36.

VII. CONCLUSION
This paper outlined adaptive control strategies for improving
the power delivery of grid-connected wind turbine induction
generators during abrupt changes in wind speed and grid
impedance variation. Adaptive feedforward linear neural net-
work controllers are proposed in the synchronous reference
frame, which is constructed via the real-time estimation of
mechanical parameters of the induction generator and grid
impedance using the RLS algorithm.

The PI+AFN controller is superior in controlling the
power injection into the grid under the rapidly changing
power output of the wind generator and fluctuations in grid
impedance. Not only does the adaptive strategy reduce the
settling time and overshoots of the speed response but also
decrease the THD of the current injected at PCC. Due to
the enhanced stability of the back-to-back inverters, the over-
all dynamics of the injected active and reactive powers at
PCC are significantly improved. It is also noted that the
integral-time errors of the speed and current PI controllers in
the AFOC and AVOC are much lower than when only the PI
controller is used, thus guaranteeing superior reference track-
ing. The control scheme has also been verified in hardware
using a 2.2kW inductionmotor to emulate the wind generator.
Notably, the proposed control architecture does not have high
computational requirements and can be implemented with
FPGA or DSP boards.

The proposed control approach will likely be further
improved for future works by incorporating discretization
time delays in the estimation and feedforward neural net-
work model. This is expected to increase the estimation
accuracy and further enhance system performance. The
scheme can also be applied to other distributed generation
units and microgrids to maintain stability and resilience
under weak grid conditions. This will allow greater penetra-
tion of renewable energy into the electricity network while
preserving power quality under high-impedance electricity
networks.
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