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Abstract

This paper proposes a modified dynamic surface control (DSC) for speed track-

ing and torsional vibration suppression for two-inertia systems with nonlinear

friction. The proposed controller contains two parts: tracking controller and

friction compensator. The tracking controller is designed by modifying dy-

namic surface control, which replaces the traditional first-order filter with a

high-gain tracking differentiator (HGTD). Meanwhile, an improved prescribed

performance function with error constraint is also presented and incorporated

into DSC design. As for the friction compensator, the nonlinear nonsmooth fric-

tion is parameterized and then compensated using echo state neural networks

(ESNs). The state observer with friction compensation is used to estimate

unmeasurable load speed and torsional torque. The effectiveness of proposed

control scheme is verified by simulation and experiment results.
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1. Introduction

Electric actuators are widely used for the drive systems in various industrial

applications, such as servo drive, robot-arm, crane system and automotive in-

dustry. The drive system is composed of a motor connected to a load through

a stiffness shaft and flexible coupling, which can be modeled as a two-inertia

system. This configuration may cause the torsional vibration and lead to the

failure of the drive system in some cases. In order to achieve stable opera-

tion and reduce the speed vibration, it is necessary to eliminate the torsional

vibration.

In order to achieve stable operation and reduce the speed vibration, many

control algorithms have been proposed to damp the torsional vibration. Among

them, a Proportional-Integral-Derivative (PID) control [1, 2] is used for the

speed control of a two-inertia system. Although this PID algorithm designed by

using motor speed feedback is widely used in industry applications, it may cause

decreased dynamic performance of drive system and may not be able to effec-

tively suppress oscillations. To achieve highly precise control performance for a

drive system, advanced control structures based on state feedbacks from state

variables, such as motor speed, shaft torque, load speed and disturbance torque,

are proposed in [3]. However, the state variables may not be used directly be-

cause these variables are difficult to measure in reality. Thus, the estimation

and observation are needed to estimate these variables [4, 5, 6, 7, 8, 9]. In many

papers, Luenberger observers are applied to observe the unmeasured state vari-

ables for the linear system with small measurement noise and nonchangeable

parameter [10]. However, the performance of Luenberger observer may be un-

satisfactory due to the nonlinearity, measurement noise and uncertainty. In [7],

the Kalman filter is proposed for a two-inertia system. It is utilized to esti-

mate the shaft torque, load speed and load torque of the two-inertia system. A

sliding-mode and optimized PID controller with a grey estimator is proposed,

where the gray estimator is used to estimate torsional torque and load speed

[11].
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Furthermore, artificial intelligent techniques are also utilized to suppress tor-

sional vibration of the two-inertia system [12, 13, 14, 15, 16, 17]. A torsional

vibration control approach is presented in [12], which is based on the addition-

al feedback from the torsional torque and the load-side speed estimated by a

neural network estimator. To estimate the motor-side speed for suppressing

the torsional vibration, the neuro-fuzzy system is employed [13]. In [14], an

adaptive sliding-mode neuro-fuzzy speed controller based on model reference

adaptive structure is used to suppress torsional vibration. The modified fuzzy

Luenberger observer based on the difference between the electromagnetic and

estimated shaft torque [15] is reported.

The nonlinear nonsmooth friction should also be taken into account in the

two-inertia system. To handle unknown nonlinearities, Recurrent Neural Net-

works (RNNs) and Fuzzy Logic systems (FLS) have been applied to approximate

unknown nonlinearities owing to their nonlinear approximation and learning a-

bilities [18, 19, 20, 21, 22, 23]. Recently, an echo state networks (ESNs) is

reported as a simplified RNNs in [24, 25, 26]. ESNs has the function approxi-

mation capability of RNNs, but requires simpler training than RNNs. Compared

with RNNs, the ESNs can easily be trained without adjusting the weights be-

tween the input layer and the hidden layer, and the connection weights of the

reservoir network are not altered during the training phase. However, it is not-

ed that the transient convergence of aforementioned classical adaptive control

schemes cannot be guaranteed (e.g., the overshoot, convergence rate cannot be

quantitatively studied).

Recently, a new prescribed performance control (PPC) approach is proposed

[27, 28, 29, 30], to guarantee the convergence of output error to a predefined

arbitrarily small region, where the convergence rate should be no less than a

prespecified value. In [31], an improved prescribed performance function is pro-

posed and incorporated into the controller design for the turntable servo system.

An adaptive control with prescribed performance function is proposed for sus-

pension systems to guarantee the error convergence rate, maximum overshoot

and steady-state error within a predefined region [32]. However, to our best
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knowledge, the prescribed performance control has not yet been applied for the

nonlinear two-inertia system.

In this paper, we propose a recursive feedback controller for the nonlinear

two-inertia system with PPC. Inspired by [30], an improved prescribed per-

formance function with error constraint is proposed and incorporated into the

controller design. A recursive feedback controller is designed by modifying DSC

technique from all state variables. In particular, the nonlinear friction of the

two-inertia system is difficult to observe and compensate. A nonsmooth friction

physics-model proposed in [33] is re-parameterized, which can capture the var-

ious friction dynamic effects such as Coulomb friction, Viscous friction, Static

friction and Stribeck effect. Then, the unknown nonlinear nonsmooth friction

force is approximated by ESNs, and compensated online. In order to obtain

the state variables, the state observer with the estimated friction is employed

to estimate the unmeasured load speed and torsional torque. Simulations and

experiments based on a realistic test rig are utilized to validate the proposed

control scheme. The main contributions of this paper can be summarized as

follows.

1. An improved prescribed performance function is developed and incorpo-

rated into the control design of DSC for the nonlinear two-inertia system, and

the tracking error is ensured within a prescribed region.

2. A new dynamic surface controller is designed by using the high-gain track-

ing differentiator (HGTD) to replace the first-order filter in virtual intermediate

control signal. The use of HGTD can lead to better transient performance than

first-order filter in the classical DSC.

3. The nonlinear nonsmooth friction model has been further parameterized,

and then ESNs are used to successfully online approximate and compensate for

these nonlinear nonsmooth dynamics.

4. The state observer with estimation of friction is designed to observe

unmeasured load speed and torsional torque.

The rest of this paper is organized as follows. Section 2 provides a description

of the nonlinear two-inertia system, the structure of ESNs, and an improved
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prescribed performance function. Section 3 designs a speed control by using the

modified DSC and friction compensation. The stability of closed-loop system is

given in Section 4. Section 5 presents simulation results. Section 6 is devoted

to validate the proposed control scheme by experiments. Some conclusions are

given in Section 7.

2. Problem Formulation

2.1. Mathematical Model of Nonlinear Two-Inertia System

A typical two-inertia system is composed of a servo motor connected to a

load through a stiffness shaft and flexible coupling (Figure 1). The considered

system could be described by the following state equation:

d

dt


ωl

ms

ωm

 =


−bf
Jl

1

Jl

bf
Jm

−kf 0 kf
bf
Jm

1

Jm

−bf
Jm




ωl

ms

ωm

+


0

0

1
Jm

u

−


fl
Jl

0

fm
Jm

−


τl
Jl

0

τm
Jm

−


∆̃1(ωm,ωl)

Jl

0

∆̃1(ωm,ωl)
Jm


(1)

where ωm and ωl are the motor speed and load speed, Jm and Jl are the inertia

of the motor and the load, fm and fl represent the nonlinear friction forces at the

motor side and the load side, respectively. u is the motor electromagnetic torque,

ms is the shaft torque, kf is the torsional stiffness coefficient, bf is damping

coefficient. τm and τl are the external disturbances of the motor side and the

load side, ∆̃1(ωm, ωl) and ∆̃2(ωm, ωl) denote the parameters uncertainties.

Assumption 1: The reference input xd, ẋd, and ẍd, are continuous and

bounded, that is, there exists a known compact set Ω0 = {xd, ẋd, ẍd : x2d + ẋ2d +

ẍ2d ≤ δ}, where δ is a positive constant.

Assumption 2: The disturbances τm, τl and parameters uncertainties ∆̃1(ωm, ωl)

and ∆̃2(ωm, ωl) are bounded.
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Figure 1: Two-inertia system model ( θm and θl are the motor position and the load position)

.

The control objective is to design a feedback control strategy which ensures:

(i) the tracking error S converges to the prescribed performance boundary; (ii)

vibration in the elastic shaft is damped; (iii) the friction is compensated; (iv)

all signals in the closed-loop system are bounded.

2.2. Friction Model Structure

From Figure 1, the two-inertia system mainly includes two friction forces:

the motor side friction fm and the load side friction fl. Note that, the motor

side friction force fm is a function of the motor side velocity ωm, while the load

side friction fl is a function of the load side velocity ωl.

The combination of two-inertia system model (1) gives

Jmω̇m + Jlω̇l = u− f − d (2)

where f = fm + fl defines the friction force of the two-inertia system, and

d = τl + τm + ∆̃1(ωm, ωl) + ∆̃2(ωm, ωl) denotes the external disturbance and

uncertainties. Thus, they can be lumped as F = −Jlω̇l+f+d and then referred

to the uncertain dynamics to be compensated on the motor side [34].

Equation (2) is used to show that the friction of two-inertia system can be

lumped as an entire friction force. There are two reasons to model the entire

friction force f as reflected on the motor side. First, it is not straightforward to

compensate the friction separately on the load side. However, it is possible to

compensate the effects of frictions entirely on the motor side. Second, from the
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point view of the torque compensation, the friction force is usually compensated

by operating the driving motor. In this paper, we will propose a compensation

strategy to compensate the friction as an entire friction imposed on the motor

side.

In order to define the characteristics of the friction f , a physics-based model

named LuGre model (LG) was reported in [33], which is able to capture dynamic

friction effects, such as the Stribeck effect, Hysteresis, Stick-lop limit cycling,

and Rising static friction (Figure 2). The LG model is described by an internal

friction state ζ governed by

f = σ0ζ + σ1ζ̇ + σ2υ̇

ζ̇ = υ − |υ|ζ/h(υ)

h(υ) = fc + (fs − fc)e
−(υ2/υ2

s)

(3)

where υ is the relative velocity between the two contacting surface at the motor

side, that is, υ = ωm, σ0 is an equivalent stiffness, σ1 is the microdamping

coefficient of the internal state ζ, and σ2 denotes the viscous friction coefficients,

respectively. The function h(υ) is chosen to capture the Stribeck effect, where

fc and fs are the levels of Coulomb friction and Static friction, respectively. vs

is the Stribeck velocity, which is the velocity for the sliding friction attains its

minimal value. Notice that the LG model has the following property.

Property 1[33]: It follows from (3) that fc ≤ h(υ) ≤ fs, if |ζ(0)| ≤ fs/σ0,

then |ζ(t)| ≤ fs/σ0 for all t ≥ 0.

2.3. Function Approximation Using ESNs

Recently, the ESNs have been successfully used to model nonlinear dynami-

cal systems [26] and also used as a state observer to estimate nonlinear function

[35]. It divides the weights of the recurrent neural network into two parts: 1) a

hidden layer (dynamical reservoir) with sparsely and randomly interconnected

neurons, and 2) a memoryless output layer (readout). The structure of ESNs

is shown in Figure 3, where the ESNs have K inputs, N neurons in the hidden

layer, and L neurons in the output layer. The continuous-time dynamics of a
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Figure 2: Basic friction of a mechanical system

leaky-integrator ESNs is given by

Ẋ = C
(
−aX + ψ(Θinu+ΘX +Θouty)

)
y = G(ΘT

0X)
(4)

where X is N -dimensional activation state, C > 0 is a time constant, a is the

leaking decay rate, ψ(·) is the internal unit’s activation function (sigmoids, etc.),

G(·) is the output activation function. Θin ∈ RN×K , Θ ∈ RN×N , Θout ∈ RN×L

and Θ0 ∈ RL×(K+N+L) are the input weight matrix, internal weight matrix,

feedback connection weights and output weight matrix, respectively.

The ESNs system performs universal approximation in the sense that for

any given real continuous function f(·): RL×(K+N+L) −→ R on a sufficiently

large compact set Ω ⊂ R and arbitrary εm, ESNs system y(x) exists in the form

of (4) such that

sup
x∈Ω

|f(x)− y(x)| ≤ εm (5)

The function f(x) can be expressed as

f(x) = Θ∗T
0 X(x) + ε∗ ∀x ∈ Ω ⊂ Rn (6)

where ε∗ is the error of the ESNs and |ε∗| ≤ εm, the Θ∗
0 is the value of Θ0 that

minimizes the approximation error ε∗. Therefore

Θ∗
0 = arg min

Θ0∈RL×(K+N+L)

{
sup
x∈Ω

|f(x)−ΘT
0X(x)|

}
(7)
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Figure 3: The basic network architecture of ESNs

Because Θ∗
0 is unknown, it is replaced by the estimation value Θ̂0 of Θ∗

0. Adap-

tive laws are required to update the parameter Θ̂0 online to minimize the ref-

erence tracking error. Thus, the optimal ESNs weight can be written as

Θ̂0 = Θ∗
0 + Θ̃0 (8)

where Θ̃0 = Θ̂0 −Θ∗
0. By setting C = 1, a = 1, G = 1, it can be obtained from

(5) that

X = ψ
(
Θinu+ΘX +Θouty

)
(9)

when Ẋ = 0.

In this paper, we choose X(Z) = [φ1(Z), φ2(Z), ..., φl(Z)]
T as Gaussian

functions with l being the node number of ESNs output layer. That is

φk(Z) = exp

{
− (Z − ς)T (Z − ς)

η2

}
(10)

with Z = [z1, ..., zi]
T , i = 1, ..., n being the number of input variables, ς and η

are the center and radius of the Gaussian function.

2.4. Performance Function and Error Transformation

To study the transient and steady-state performances of tracking error e(t) =

[e1(t), e2(t), ...ei(t)], a smooth decreasing function λi(t) : ℜ+ → ℜ+ with lim
t→∞

λi(t) =

λi∞ will be used as prescribed performance function. In this paper, the λi(t) is

given as

λi(t) = (λi0 − λi∞)e−cit + λi∞ (11)
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Figure 4: Basic concept of prescribed performance

where λi0 > λi∞ and ci are design parameters.

According to [27], the prescribed performance is given as

−δiλi(t) < ei(t) < δiλi(t),∀t > 0 (12)

where −δi and δi are design parameters.

From (11) and (12), one can see that −δiλi0 defines the lower bound of the

undershoot and δiλi0 defines the upper bound of the maximum overshoot. The

decreasing rate ci denotes the required speed of convergence of the tracking er-

rors [31]. Hence, the transient and steady-state performance can be designed a

priori via tuning the parameters −δi, δi, ci, λi0, and λi∞. To introduce pre-

scribed performance, an error transformation is used to transform the original

nonlinear system, with the constrained tracking error behavior (12), into an

equivalent “unconstrained” one. With this purpose, we define a smooth strictly

increasing function Ti(zi) of transformed error zi, which possesses the following

properties:

1) −δi < Ti(zi) < δ̄i, ∀zi ∈ L∞.

2) lim
zi→+∞

Ti(zi) = δi, and lim
zi→−∞

Ti(zi) = −δi.

From these properties of Ti(zi), (12) is equal to

ei(t) = λi(t)Ti(zi). (13)

10



Then, zi can be written as

zi = T−1
i

(
ei(t)

λi(t)

)
. (14)

For any initial condition ei(0), if parameters λi(0), δi, and δi are selected

that −δiλi(0) < ei(0) < δiλi(0) and zi can be controlled to be bounded, then

−δi < Ti(zi) < δi holds. Then, the condition −δiλi(t) < ei(t) < δiλi(t) is guar-

anteed. In this paper, we propose a new prescribed transformation function

combined with the virtual control of the modified DSC. A candidate transfor-

mation function is chosen as

Ti(zi) =
δie

zi − δie
−zi

ezi + e−zi
. (15)

Then, from (15), the transformed error zi is derived as

zi = T−1
i

(
ei(t)

λi(t)

)
= Ri

(
ei(t)

λi(t)

)
=

1

2
ln

(
ei(t)

λi(t)
+ δi

)
− 1

2
ln

(
δi−

ei(t)

λi(t)

)
. (16)

where Ri(·) is the inverse function of Ti(·). The transformed error will be utilized

to ensure the prescribed output performance of the modified DSC scheme.

2.5. Luenberger State Observer

As mentioned previously, the two-inertia system is composed of a motor

connected to a load machine through a shaft, which is difficult to measure

all state variables. Consequently, the Luenberger state observer is designed

to estimate torsional torque and the load speed. In this paper, the damping

coefficient bf is not considered because kf ≫ bf .

Choose state vector x = [ ωl ms ωm ]T , u = me, z = −F . Then equation

(1) can be written as follows:

ẋ = Ax+Bu+Bz

y = Cx
(17)

where A=


0

1

Jl
0

−kf 0 kf

0
1

Jm
0

, B =


0

0
1

Jm

, C =


0

0

1

. To estimate
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states x, the observer equation is

˙̂x = Ax̂+Bu+Bẑ + L(y − ŷ)

ŷ = Cx̂
(18)

where x̂, and ŷ represent estimations of x, and y, respectively. L = [l1, l2, l3]
T is

the design matrix which must be designed so that the observer is stable. ẑ = −F̂

with F̂ being the estimated lumped dynamics including frictions, which will be

given by ESNs in the following Section.

Defining x̃ = x− x̂ estimation error dynamics are then given by

˙̃x = ẋ− ˙̂x = (A− LC)x̃+Bz̃ (19)

where z̃ = z − ẑ. The important question in observer synthesis is that choosing

appropriate matrix A − LC to ensure the stability of error dynamics (19). A

stability condition of the matrix A− LC is presented in [36].

3. Controller Design

The proposed controller is composed of a modified error constraint dynamic

surface controller (ECDSC) and the friction compensator (FC). Choose state

variable x = [ x1 x2 x3 ]T = [ ωl ms ωm ]T . The system (1) can be

written as

d

dt


x1

x2

x3

 =


0

1

Jl
0

−kf 0 kf

0
1

Jm
0




x1

x2

x3

+


0

0
1

Jm

 (u− F ) (20)

Then the overall control u consists of a feedback control to retain tracking and

an adaptive friction compensator, which will be designed in follow section.

3.1. Nonlinear High-Gain Tracking Differentiator

In [37], Guo proposed the nonlinear high-gain tracking differentiator (HGT-

D) to improve the performance of closed-loop control system. In this section,

HGTD will be incorporated into the traditional DSC design procedure to obtain
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Figure 5: Closed-loop control diagram composed by two-inertia system, the ECDSC and FC.

the precise original intermediate control signals and the derivative signals. The

form of HGTD is given as ϑ̇1i(t) = ϑ2i(t)

ϑ̇2i(t) = H2
(
−ρ1i[ϑ1(t)− χ̄i]

α − ρ2i[ϑ2i(t)/H]β
) (21)

where ρi, α, β and H are positive design parameters. χ̄i represents the input

signal of the HGTD, which is replaced by virtual intermediate control signal in

the ECDSC design procedure.

Lemma 1 [37]: If the signal χ̄i satisfies, supt∈[0,∞)|χ̄
(j)
i | < ∞ for j = 1, 2,

then the first differentiator (22) is convergent for any initial value of (22) and

T > 0, there exists H > H0 > 0 and t > T , the following inequalities hold

∥ϑ1i(t)− χ̄i∥ ≤ L1(1/H)a/b, |ϑ2i(t)− ˙̄χi| ≤ L2 (22)

where L1, L2, a and b are constants.

The fast finite-time convergence makes it superior to linear filters in the

control design and synthesis. When incorporated into the ECDSC design pro-

cedure, (21) can solve the explosion of complexity caused by differentiation of

the intermediate control signals in conventional backstepping method.
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3.2. Design ECDSC

In this section, a modified ECDSC with HGTD is developed for the nonlinear

two-inertia system. The ECDSC is designed in the following steps.

Step 1: Define the first error surface as

S1 = x̂1 − xd. (23)

from (16), we can obtain

z1 = R1

(
S1

λ1

)
(24)

The time derivative of z1 is

ż1 = r1
(
Ṡ1 −

λ̇1
λ1
S1

)
= r1

(
x̂2 − ẋd −

λ̇1
λ1
S1

)
(25)

where r1 = (1/2λ1)[1/(ρ1 + δ1)− 1/(ρ1 − δ̄1)], and ρ1 = S1/λ1.

To avoid the problem of “explosion of complexity” in traditional backstep-

ping design methods [38], we let xd go through a high-gain tracking differentiator

as  ϑ̇1,1 = ϑ2,1

ϑ̇2,1 = H2
(
− ρ1,1[ϑ1,1 − xd]

α − ρ2,1[ϑ2,1/H]β
) (26)

where H, ρ1,1, ρ2,1, α, and β are the positive constants, ϑ1,1 is the filter signal

of the desired trajectory of xd. The time derivative of z1 is

ż1 = r1
(
x̂2 − ϑ2,1 −

λ̇1
λ1
S1

)
(27)

By defining S2 = x̂2 − χ̄1 as the second error surface, one obtains

x̂2 = S2 + χ̄1. (28)

The error transformation can be expressed as S2 = λ2R
−1
2 (z2), Substituting

(27) into (28) yields

ż1 = r1
(
λ2R

−1
2 (z2) + χ̄1 − ϑ2,1 − S1

λ̇1
λ1

)
. (29)

In order to make (29) negative, a virtual control χ̄1 is defined as

χ̄1 = −k1z1 − δ̄1
r1z1λ

2
2

|r1z1λ2|+ µ1
+ S1

λ̇1
λ1

+ ϑ2,1. (30)
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where k1 > 0, δ̄1 > 0 and µ1 > 0 are the design parameters.

Step 2: In order to eliminate the explosion of complexity problem, we intro-

duce a new state vector ϑ2 = [ϑ1,2, ϑ2,2]
T , and let χ̄1 pass through a high-gain

tracking differentiator as ϑ̇1,2 = ϑ2,2

ϑ̇2,2 = H2
(
− ρ1,2[ϑ1,2 − χ̄1]

α − ρ2,2[ϑ2,2/H]β
) (31)

where ρ1,2 and ρ2,2 are the design parameters. The derivative of z2 is given as

ż2 = r2
(
Ṡ2 −

λ̇2
λ2
S2

)
= r2

(
˙̂x2 − ˙̄χ1 −

λ̇2
λ2
S2

)
(32)

where r2 = (1/2λ2)[1/(ρ2 + δ2)− 1/(ρ2 − δ̄2)], and ρ2 = S2/λ2.

The derivative of (32) is

ż2 = r2
[
kf (x3 − x̂1)− ϑ2,2 −

λ̇2
λ2
S2

]
(33)

By defining S3 = x3 − χ̄2 as the third error surface, one obtains

x3 = S3 + χ̄2. (34)

Substituting (34) into (33) yields

ż2 = r2
[
kf (λ3R

−1
3 (z3) + χ̄2 − x̂1)− ϑ2,2 −

λ̇2
λ2
S2

]
(35)

Choose the virtual control χ̄2 as

χ̄2 =
1

kf

(
− k2z2 + ϑ2,2 +

λ̇2
λ2
S2

)
+ x̂1 − δ̄2

r2z2λ
2
3

|r2z2λ3|+ µ2
. (36)

where k2 > 0, δ̄2 > 0 and µ2 > 0 are the design parameters.

Step 3: In the final design step, the controller u will be obtained. The last

error surface is defined as

S3 = x3 − χ̄2. (37)

The time derivative of z3 is

ż3 = r3
(
Ṡ3 −

λ̇3
λ3
S3

)
= r3

(
x3 − ˙̄χ2 −

λ̇3
λ3
S3

)
= r3

(
− 1

Jm
x̂2 +

1

Jm
u− 1

Jm
F − ˙̄χ2 −

λ̇3
λ3
S3

) (38)
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where r3 = (1/2λ3)[1/(ρ3 + δ3)− 1/(ρ3 − δ̄3)], and ρ3 = S3/λ3.

Again, a new state vector ϑ3 = [ϑ1,3, ϑ2,3]
T is introduced, and let χ̄2 pass

through a high-gain tracking differentiator as ϑ̇1,3 = ϑ2,3

ϑ̇2,3 = H2
(
− ρ1,3[ϑ1,3 − χ̄2]

α − ρ2,3[ϑ2,3/H]β
) (39)

where ρ1,3 and ρ2,3 are the design parameters.

Then, the variable ż3 can be rewritten as

ż3 = r3
[ 1

Jm
u− 1

Jm
x̂2 −

1

Jm
F − ϑ2,3 −

λ̇3
λ3
S3

]
(40)

Finally, the control signal u is chosen to be

u = Jm
(
− k3z3 + ϑ2,3 +

λ̇3
λ3
S3

)
+ x̂2 + F̂ (41)

where k3 > 0 is the design parameter, and F̂ is the estimated of unknown

friction F , which will be given in the following subsection.

3.3. ESNs Friction Compensation Design

In the above control design, the controller u is obtained, where the F was

merged. To obtain F̂ , the ESNs will be introduced to compensate it in this

paper.

Defined ϵ = ζ − ζ0, the friction expression of the two-inertia system can be

written as follows:

F = σ0ζ + σ1ζ̇ + σ2ωm + d

= σ2θ̇m +
[
fc + (fs − fc)e

−(ωm/υ̇s)
2]
sgn(ωm)

+ σ0ϵ
[
1− 1

fc + (fs − fc)e−(ωm/υ̇s)2
|ωm|

]
+ d.

(42)

The first part σ2ωm + [fc + (fs − fc)e
−(ωm/υ̇s)

2

]sgn(ωm) is a static function

of the velocity. The second part σ2ωm + [fc + (fs − fc)e
−(ωm/υ̇s)

2

]sgn(ωm) +

σ0ϵ
[
1 − 1

fc+(fs−fc)e−(ωm/υs)2
|ωm|

]
is scaled by the error ϵ due to the dynamic

perturbation in friction. Then

F ≤ ∆1|ωm|+∆2 +
[
fc + (fs − fc)e

−(ωm/υ̇s)
2]
sgn(ωm) (43)
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where ϵ is bounded since σ and σ0 are bounded. ∆1 and ∆2 are positive con-

stants. Let f1 = fc + (fs − fc)e
−(ωm/υ̇s)

2

, and f2 = ∆1|ωm| + ∆2. Then (43)

can be rewritten as

F ≤ f1sgn(ωm) + f2. (44)

Since (44) is not a smooth function, it cannot be directly approximated

via ESNs. However, f1 is smooth function, which is compensated by ESNs as

follows:

f̂1 = Θ̂TX(x) (45)

where Θ̂ is the estimation of Θ∗. Then, the updated learning algorithm is given

as

˙̂
Θ = ΓΘ

(
r3z3Xsgn(ωm)− ϱ1Θ̂

)
(46)

where Θ̃ = Θ̂−Θ∗ and ΓΘ, ϱ1 > 0.

Moreover, an adaptive estimator is employed to estimate f2, and one can

obtain

f̂2 = ∆̂1|ωm|+∆2 (47)

where ∆̂1 is the estimate of ∆1. Then, the estimation algorithm is provided by

˙̂
∆1 = Γ∆1(r3z3|ωm| − ϱ2∆̂1) (48)

where Γ∆1 and ϱ2 are positive constants.

From (45)-(48), one can obtain the friction compensation controller as

F̂ = f̂1sgn(ωm) + f̂2. (49)

Then, the controller u is given by

u = Jm
(
− k3z3 + ϑ2,3 +

λ̇3
λ3
S3

)
+ x̂2 + f̂1sgn(ωm) + f̂2 (50)

4. Stability Analysis

In this section, the stability of closed-loop system is proved by Lyapunov

stability theory.
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Theorem 1: Consider the closed-loop system (1), for any bounded initial

conditions, actual controller (50), the virtual controllers (30), (36), and friction

compensation controller (49), adaptive laws (46) and (48) guarantee that all

the signals in the resulting closed-loop are semiglobally uniformly ultimately

bounded (SGUUB). Moreover, the tracking error and observer errors can be

made arbitrarily small by choosing the design parameters.

Proof Consider Lyapunov function candidate as

V =
1

2

3∑
i=1

z2i +
1

2
Θ̃TΓ−1

Θ Θ̃ +
1

2
Γ−1
∆1

∆̃2
1. (51)

Taking the time derivative of V , and Substituting (30), (36), (50), (46) and (48)

into (51), it can be shown that

V̇ =

3∑
i=1

ziżi + Θ̃TΓ−1
Θ

˙̃Θ + ∆̃1Γ
−1
∆1

˙̃∆1

= r1z1
(
λ2R

−1
2 (z2) + χ̄1 − ϑ2,1 − S1

λ̇1
λ1

)
+ r2z2

[
kf (λ3R

−1
3 (z3) + χ̄2 − x̂1)− ϑ2,2

− λ̇2
λ2
S2

]
− r3z3

[ 1

Jm
u− 1

Jm
x̂2 −

1

Jm
F − ϑ2,3 −

λ̇3
λ3
S3

]
− 1

ΓΘ
Θ̃T ˙̂

Θ− 1

Γ∆1

∆̃T
1
˙̂
∆1

= r1z1
(
− k1z1 + λ2R

−1
2 (z2)− δ̄1

r1z1λ
2
2

|r1z1λ2|+ µ1

)
+ r2z2

(
− k2z2 + λ3R

−1
3 (z3)

− δ̄2
r2z2λ

2
3

|r2z2λ3|+ µ2

)
+ r3k3z

2
3 − Θ̃T

(
r3z3Xsgn(ωm)− 1

ΓΘ

˙̂
Θ
)
− ∆̃T

1

(
r3z3|ωm| − 1

Γ∆1

˙̂
∆1

)
(52)

Using the Young’s inequality, one has

ϱ1Θ̃
T Θ̂ ≤ −ϱ1

2
Θ̃T Θ̃ +

ϱ1
2
Θ2 (53)

ϱ2∆̃1∆̂1 ≤ −ϱ2
2
∆̃T

1 ∆̃1 +
ϱ2
2
∆2

1. (54)

Substituting (53) and (54) into (52) results in

V̇ ≤ −r1k1z21 − r2k2z
2
2 − r3k3z

2
3 − ϱ1

2
Θ̃T Θ̃− ϱ2

2
∆̃T

1 ∆̃1 +
ϱ1
2
Θ2 +

ϱ2
2
∆2

1

≤ −π V + ι

(55)

where π and ι are positive constants, i.e.,
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Figure 6: Transients of the real, estimated by Luenberger state observer and its estimation

error: (a) motor speed, (b) load speed, and (c) torsional torques.

π = min
{
2r1k1, 2r2k3, 2r3k3ϱ1, ϱ2

}
, ι = ϱ1

2 Θ2 + ϱ2

2 ∆2
1.

Solving this inequality yields

0 ≤ V (t) ≤
(
V (0)− ι

π

)
e−πt +

ι

π
≤ V (0)e−πt +

ι

π
. (56)

From (55), V (t) is eventually bounded by ι/π , which can be made arbitrari-

ly small via designing controller parameters. Therefore, all the error signals are

semiglobally, uniformly and ultimately bounded, and the |S(t)| ≤
√
2V (0)e−ιt+√

2ι/π. As t −→ ∞, e−πt −→ 0, it follows that |S(t)| ≤
√
2ι/π. Moreover, the

bound |S(t)| ≤
√

2ι/π can be made as small as possible by choosing the design

parameters. Therefore, the transient performance of the system is guaranteed

with the prescribed performance bound for all t ≥ 0. This completes the proof.

Remark 1: In the proposed control scheme, the initial condition −δλ(0) <

e(0) < δλ(0) should be guaranteed by designing the PPF parameters λ0, δ and

δ, so that zi(0) is finite.
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Remark 2: It is noted that many parameters are adjusted for applying the

proposed control scheme for the nonlinear two-inertia system (1). From (55),

we known that the bound of |S(t)| ≤
√
2ι/π depends on parameters ι and π.

Increasing constant π and decreasing constant ι lead to small tracking error, i.e.,

increasing ki(i = 1, 2, 3) and decreasing µi(i = 1, 2). If µi is too small, it may not

be sufficient to prevent the parameter estimates from the drifting. If ki is large,

the control energy is significant. Therefore, in practice, the design parameters

should be chosen to trade off the transient and steady-state performance.

Remark 3: Compared with the traditional backstepping controller, the pro-

posed ECDSC does not involve ˙̄χi, this will avoid the explosion of complexity

caused by repeatedly differentiating χ̄i, and can reduce the computational cost-

s. In additional, the ECDSC is designed by introducing HGTD to replace the

first-order filter in each recursive step, the transient convergence of filter perfor-

mance on closed-loop stability can be improved though slightly increased com-

putational cost should be used in comparison to first order filter. The prescribed

performance function is integrated into controller design, which guarantees the

tracking error within the prescribed region.

5. Simulation Results

In this section, the nonlinear frictions, parameters uncertainties and external

disturbance are taken into consideration. The ECDSC with direct feedbacks

from all the state variables is first tested for the nonlinear two-inertia system.

The system model is constructed as Figure 1. In fact, the coefficients Jm,

kf , Jl are considered to be constant. The LG model is used to represent the

friction dynamics. The system parameters are given as Jm = 0.005kg · m,

Jl = 0.04kg · m, kf = 5, the prescribed performance function parameters are

chosen as λ0 = 1.2, λ∞ = 0.1, ci = 0.5, and δi = −1, δi = 1.5. For the ESNs

design, the number of neurons in the input and hidden layers are 2 and 13,

respectively. The initial weights are zero. Now, ECDSC parameters are given

as ρ1,i = ρ2,i = 1(i = 1, 2, 3), H = 100, α = 1/2, β = 2/3, µ1 = µ2 = 0.1,
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Figure 7: Transients of the nonlinear two-inertia system by ECDSC with friction compen-

sation: (a) motor speed and load speed (b) electromagnetic and torsional torques, and (c)

tracking error.

k1 = 5, k2 = 40, k3 = 25. As a comparison, an optimally tuned PID controller

[1] is simulated for the nonlinear two-inertia system, the controller u is given as

u =

(
Kp +

Ki

s
+Kds

)
e(t) (57)

where e(t) is the tracking error, and Kp = 3.025, Ki = 0.015 and Kd = 0.0765

represent the proportional, integral and derivative gains, respectively.

The simulation results are shown in Figures 6-10. The response curves of the

real values and estimated values and their estimate errors are shown in Figure

6. From Figure 6, one can be observed that the estimation of the state variables

can achieve the true values. In order to illustrate the effect of the parameters

uncertainties and external disturbance on the transient performance of the con-

trol system, the step signal d = 1, is added to simulation at time t = 0s. The

simulation results of proposed control scheme are shown in Figure 7. From Fig-
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Figure 8: Transients of the nonlinear two-inertia system by ECDSC with friction compen-

sation: (a) motor speed and load speed, (b) electromagnetic and torsional torques, and (d)

tracking error.

ure 7, one can see that the transient performance can be guaranteed when there

exist the the nonlinear friction, parameters uncertainties and external distur-

bance. The load-side speed can accurately track motor speed (Figure 7(a)), and

there is no shaft torque oscillation (Figure 7(b)), which means that the torsion-

al vibration is successfully damped. In addition, the tracking error is retained

within prescribed performance bounds. As a comparison, the results of PID

method are shown in Figure 9. It is clearly seen that the transient performance

of load-side cannot be guaranteed, the load speed can not accurately track mo-

tor speed (Figure 9(a)), and the oscillation occurred (Figure 9(b)). Besides, the

tracking error exceeds the prescribed performance boundary (Figure 9(c)).

Moreover, to study the effect of parameters uncertainties on the dynamic

response of the nonlinear control system, the system parameters Jm and Jl are

added ∆Jm = 0.05Jm and ∆Jm = 0.05Jl, respectively. The simulation results
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Figure 9: Transients of the nonlinear two-inertia system by PID: (a) motor speed and load

speed, and error, (b) electromagnetic and torsional torques, and (c) tracking error.
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Figure 10: (a) Transient performance of HGTD and FD, (b) Steady-state performance of

HGTD and FD

are shown in Figure 8. As seen, although the speed and toque happen very small

change, the dynamic performance of the control system can be guaranteed, and

the tracking error has also been remained within prescribed boundary. From

Figure 6 and Figure 8, it is clearly seen that the proposed control scheme can
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Figure 11: Diagram of the laboratory test rig

guarantee the dynamic performance of the control system when the parameters

uncertainties exists in control system.

Figure 10 shows the filter effect of HGTD and first-order filter(FD). It can

be found that both the transient and steady-state performance of HGTD are

better than that of first-order filter. In particular, for the first-order filter with a

large time constant (τ = 1 ), the steady-state performance is the same as that of

HGTD. However, the transient performance of first-order filter will deteriorate,

as shown in Figure 9. Thus, one can conclude that the filter effect of HGTD is

better than first-order filter.

6. Experimental results

6.1. Experimental setup

A realistic two-inertia system is used as the test-rig to validate the suggested

control method. The configuration of the whole experimental setup is shown

in Figure 11. The experimental setup is composed of the permanent-magnet

synchronous motors connects to a load, PC with a 2.0GHz i5 CPU and 2G

memory, and a digital signal processor (DSP, 28335). The control algorithms

are written by Visual C++ program. The sampling time in the experiment

setup is 0.1 ms. Nominal parameters of the drive system are presented in Table

1. The motor speed is measured by speed sensor in the test rig. However, the
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Table 1: Parameters of the two-inertia system

Parameter Value Unit

Power 1.5 kW

Nominal motor voltage 230 V

Shaft length 40 cm

Nominal speed 3600 r/min

Motor inertia Jm 0.0062 Kg ·m

Load inertia Jl 0.004106 Kg ·m

Stiffness coefficient kf 65 N ·m

state variables such as torsional torque and load speed can not be measured,

the Luenberger state observer is employed to estimate the unmeasured state

variables.

6.2. Controller design

The controller parameters are given as ρ1,i = ρ2,i = 1(i = 1, 2, 3), H = 100,

α = 1/2, β = 2/3, µ1 = µ2 = 0.1, k1 = 2, k2 = 10, k3 = 15. The prescribed

performance function parameters are λ0 = 4, λ∞ = 1, cj = 3, and δj = 1.5,

δj = 2, j = 1, 2. The ESNs parameters are the same as simulation. The PID

parameters are Kp = 4, Ki = 0.25 and Kd = 0.03.

6.3. Experimental results

Extensive experiments have been carried out on the two-inertia system to

show the effect of the proposed control scheme. First, the square-wave (Ampli-

tude = 10) reference signal is adopted to illustrate the effect of the nonlinear

friction, parameters uncertainties and external disturbance on transient response

of the two-inertia system. The experiment results are shown in Figure 12. Fig-

ure 12(a) shows that the tracking performance and vibration suppression of the

ECDSC is better than PID (Figure 12(b)), the overshoot is smaller than PID
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Figure 12: Transients performance and tracking performance for square wave (a)ECDSC,

(b)PID
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Figure 13: Tracking performance and tracking performance for sinusoid wave (a)PID,

(b)ECDSC, and (c)tracking error

and there is no torsional vibration. To further show the effect of the parame-

ters uncertainties and external disturbance on the dynamic performance of the

two-inertia system, the sinusoid signal xd = 5 sin(0.4πt) is adopted as reference

signal and the step signal d = 1 is adopted at time t = 1s as a disturbance
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Figure 14: Transients performance of the nonlinear two-inertia system for extra disturbance

(a) ECDSC with FC ,and (b) ECDSC without FC

Table 2: Comparison for four indexes of difference signals.

Square A = 10 xd = 5sin(0.4πt)

PID ECDSC PID ECDSC

IAE 23.3425 18.1953 9.7886 8.9597

ISDE 44.8311 37.8127 1.8276 0.9904

IAU 51.3472 38.1271 25.2047 23.3677

ISDU 171.0418 85.4938 8.7423 7.9858

signal is added to experiment, and the experiment results are shown in Figure

13. One can see that, compared with the PID method, the tracking performance

of proposed ECDSC is satisfactory, and the torsional vibration is damped. The

tracking error is smaller than PID (Figure 13(c)), and the robustness of proposed

control scheme is guaranteed when the external disturbance is added to experi-

ment. To illustrate the effect of the friction compensation. Figure 14 shows the

transients performance of the ECDSC with friction compensation and without

friction compensation when the extra disturbance is added to experiment. From

Figure 14, one can see that the proposed control scheme is effective to suppress

the extra disturbance and guarantee dynamic response of the nonlinear system

To further show the efficacy and compare the control performance, four

indices are adopted [39]; 1)integrated absolute error IAE =
∫
|S1(t)|dt; 2)inte-
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Table 3: Comparison for three indexes of difference signals.

Square A = 10 xd = 5sin(0.4πt)

PID ECDSC PID ECDSC

Me 3.8872 2.6507 0.5630 0.1407

µ 0.2334 0.1820 0.2594 0.0896

σ 0.0022 0.0018 0.002 0.0016

grated square error ISDE =
∫
(S1(t) − S0)

2dt, where S0 is the mean value of

error; 3)integrated absolute control IAU =
∫
|u(t)|dt; and 4)integrated square

control ISDU =
∫
(u(t) − u0)

2dt, where u0 is the mean value of the control

signal. The results are shown in Table 2. From Table 2, it is clearly shown that

the proposed ECDSC performs better than PID control method for different

reference signal. The four indices of proposed control scheme are smaller than

PID control scheme.

Moreover, another three performance indexes are used to measure the qual-

ity of each control algorithm, i.e., maximal absolute value of the tracking errors

Me = max
t=1,..,T

{|S1(t)|}, average tracking error µ = 1
T

∫
|S1(t)|dt, and standard

deviation of the tracking errors σ =
√

1
T

∫
[|S1(t)| − µ]2dt. The performance

indexes are given in Table 3. From Table 3, one can clearly see that all perfor-

mance indexes of the proposed control scheme are better than the PID control

method for different input signals.

7. Conclusion

This paper proposes a vibration suppression control design method for elas-

tically coupled two-inertia system based on ECDSC with friction compensation.

The torsional vibrations of the two-inertia system are effectively suppressed us-

ing the control structure with recursive feedbacks from the load speed, torsional

torque and motor speed. The unmeasured feedback signals are estimated by

using a Luenberger state observer. The nonlinear friction is compensated by
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using the ESNs. The stability of the closed-loop system is ensured by Lyapunov

method and the tracking error is retained within the prescribed performance

bounds. Comparative simulation and experiment results are obtained to illus-

trate the effectiveness of the proposed control scheme. In the future work, we

will focus on extending the suggested control to two-inertia system with un-

known parameters such as load inertia, elastic coefficients and motor inertia.
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