728 research outputs found

    The Deployment in the Wireless Sensor Networks: Methodologies, Recent Works and Applications

    Get PDF
    International audienceThe wireless sensor networks (WSN) is a research area in continuous evolution with a variety of application contexts. Wireless sensor networks pose many optimization problems, particularly because sensors have limited capacity in terms of energy, processing and memory. The deployment of sensor nodes is a critical phase that significantly affects the functioning and performance of the network. Often, the sensors constituting the network cannot be accurately positioned, and are scattered erratically. To compensate the randomness character of their placement, a large number of sensors is typically deployed, which also helps to increase the fault tolerance of the network. In this paper, we are interested in studying the positioning and placement of sensor nodes in a WSN. First, we introduce the problem of deployment and then we present the latest research works about the different proposed methods to solve this problem. Finally, we mention some similar issues related to the deployment and some of its interesting applications

    Contribution au déploiement optimisé des réseaux de capteurs sans fil

    Get PDF
    National audienceLes réseaux de capteurs sans fil (RCSF) sont un domaine de recherche en évolution continue avec une multitude de contextes d'application. Le déploiement des noeuds capteurs est une phase décisive qui influe considérablement sur le fonctionnement et la performance du réseau. Dans ce papier, nous nous intéressons à étudier le positionnement et le placement des noeuds capteurs dans un RCSF. Nous présentons tout d'abord la problématique de déploiement et nous détaillons ensuite les travaux de recherche les plus récents qui concernent les méthodologies de résolution de cette problématique

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Resilient Wireless Sensor Networks Using Topology Control: A Review

    Get PDF
    Wireless sensor networks (WSNs) may be deployed in failure-prone environments, and WSNs nodes easily fail due to unreliable wireless connections, malicious attacks and resource-constrained features. Nevertheless, if WSNs can tolerate at most losing k − 1 nodes while the rest of nodes remain connected, the network is called k − connected. k is one of the most important indicators for WSNs’ self-healing capability. Following a WSN design flow, this paper surveys resilience issues from the topology control and multi-path routing point of view. This paper provides a discussion on transmission and failure models, which have an important impact on research results. Afterwards, this paper reviews theoretical results and representative topology control approaches to guarantee WSNs to be k − connected at three different network deployment stages: pre-deployment, post-deployment and re-deployment. Multi-path routing protocols are discussed, and many NP-complete or NP-hard problems regarding topology control are identified. The challenging open issues are discussed at the end. This paper can serve as a guideline to design resilient WSNs

    Coverage issues in wireless sensor networks.

    Get PDF
    A fundamental issue in the deployment of a large scale Wireless Sensor Network (WSN) is the ability of the network to cover the region of interest. While it is important to know if the region is covered by the deployed sensor nodes, it is of even greater importance to determine the minimum number of these deployed sensors that will still guarantee coverage of the region. This issue takes on added importance as the sensor nodes have limited battery power. Redundant sensors affect the communications between nodes and cause increased energy expenditure due to packet collisions. While scheduling the activity of the nodes and designing efficient communication protocols help alleviate this problem, the key to energy efficiency and longevity of the wireless sensor network is the design of efficient techniques to determine the minimum set of sensor nodes for coverage. Currently available techniques in the literature address the problem of determining coverage by modeling the region of interest as a planar surface. Algorithms are then developed for determining point coverage, area coverage, and barrier coverage. The analysis in this thesis shows that modeling the region as a two dimensional surface is inadequate as most applications in the real world are in a three dimensional space. The extension of existing results to three dimensional regions is not a trivial task and results in inefficient deployments of the sensor networks. Further, the type of coverage desired is specific to the application and the algorithms developed must be able to address the selection of sensor nodes not only for the coverage, but also for covering the border of a region, detecting intrusion, patrolling a given border, or tracking a phenomenon in a given three dimensional space. These are very important issues facing the research community and the solution to these problems is of paramount importance to the future of wireless sensor networks. In this thesis, the coverage problem in a three dimensional space is rigorously analyzed and the minimum number of sensor nodes and their placement for complete coverage is determined. Also, given a random distribution of sensor nodes, the problem of selecting a minimum subset of sensor nodes for complete coverage is addressed. A computationally efficient algorithm is developed and implemented in a distributed fashion. Numerical simulations show that the optimized sensor network has better energy efficiency compared to the standard random deployment of sensor nodes. It is demonstrated that the optimized WSN continues to offer better coverage of the region even when the sensor nodes start to fail over time. (Abstract shortened by UMI.

    An Optimal Routing Protocol Using a Multiverse Optimizer Algorithm for Wireless Mesh Network

    Get PDF
    Wireless networks, particularly Wireless Mesh Networks (WMNs), are undergoing a significant change as a result of wireless technology advancements and the Internet's rapid expansion. Mesh routers, which have limited mobility and serve as the foundation of WMN, are made up of mesh clients and form the core of WMNs. Mesh clients can with mesh routers to create a client mesh network. Mesh clients can be either stationary or mobile. To properly utilise the network resources of WMNs, a topology must be designed that provides the best client coverage and network connectivity. Finding the ideal answer to the WMN mesh router placement dilemma will resolve this issue MRP-WMN. Since the MRP-WMN is known to be NP-hard, approximation methods are frequently used to solve it. This is another reason we are carrying out this task. Using the Multi-Verse Optimizer algorithm, we provide a quick technique for resolving the MRP-WMN (MVO). It is also proposed to create a new objective function for the MRP-WMN that accounts for the connected client ratio and connected router ratio, two crucial performance indicators. The connected client ratio rises by an average of 16.1%, 12.5%, and 6.9% according to experiment data, when the MVO method is employed to solve the MRP-WMN problem, the path loss falls by 1.3, 0.9, and 0.6 dB when compared to the Particle Swarm Optimization (PSO) and Whale Optimization Algorithm (WOA), correspondingly

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Wireless Sensor Networks

    Get PDF
    The aim of this book is to present few important issues of WSNs, from the application, design and technology points of view. The book highlights power efficient design issues related to wireless sensor networks, the existing WSN applications, and discusses the research efforts being undertaken in this field which put the reader in good pace to be able to understand more advanced research and make a contribution in this field for themselves. It is believed that this book serves as a comprehensive reference for graduate and undergraduate senior students who seek to learn latest development in wireless sensor networks
    • 

    corecore