231 research outputs found

    Advances in Evolutionary Algorithms

    Get PDF
    With the recent trends towards massive data sets and significant computational power, combined with evolutionary algorithmic advances evolutionary computation is becoming much more relevant to practice. Aim of the book is to present recent improvements, innovative ideas and concepts in a part of a huge EA field

    AT-MFCGA: An Adaptive Transfer-guided Multifactorial Cellular Genetic Algorithm for Evolutionary Multitasking

    Get PDF
    Transfer Optimization is an incipient research area dedicated to solving multiple optimization tasks simultaneously. Among the different approaches that can address this problem effectively, Evolutionary Multitasking resorts to concepts from Evolutionary Computation to solve multiple problems within a single search process. In this paper we introduce a novel adaptive metaheuristic algorithm to deal with Evolutionary Multitasking environments coined as Adaptive Transfer-guided Multifactorial Cellular Genetic Algorithm (AT-MFCGA). AT-MFCGA relies on cellular automata to implement mechanisms in order to exchange knowledge among the optimization problems under consideration. Furthermore, our approach is able to explain by itself the synergies among tasks that were encountered and exploited during the search, which helps us to understand interactions between related optimization tasks. A comprehensive experimental setup is designed to assess and compare the performance of AT-MFCGA to that of other renowned Evolutionary Multitasking alternatives (MFEA and MFEA-II). Experiments comprise 11 multitasking scenarios composed of 20 instances of 4 combinatorial optimization problems, yielding the largest discrete multitasking environment solved to date. Results are conclusive in regard to the superior quality of solutions provided by AT-MFCGA with respect to the rest of the methods, which are complemented by a quantitative examination of the genetic transferability among tasks throughout the search process

    Toward Automating EA Configuration: The Parent Selection Stage

    Get PDF
    One of the obstacles to Evolutionary Algorithms (EAs) fulfilling their promise as easy to use general-purpose problem solvers, is the difficulty of correctly configuring them for specific problems such as to obtain satisfactory performance. Having a mechanism for automatically configuring parameters and operators of every stage of the evolutionary life-cycle would give EAs a more widely spread popularity in the non-expert community. This paper investigates automatic configuration of one of the stages of the evolutionary life-cycle, the parent selection, via a new concept of semi-autonomous parent selection, where mate selection operators are encoded and evolved as in Genetic Programming. We compare the performance of the EA with semi-autonomous parent selection to that of a manually configured EA on three common test problems to determine the “price” we pay for user-friendliness

    Complex and dynamic population structures: synthesis, open questions, and future directions

    Get PDF
    The population structure of an evolutionary algorithm influences the dissemination and mixing of advantageous alleles, and therefore affects search performance. Much recent attention has focused on the analysis of complex population structures, characterized by heterogeneous connectivity distributions, non-trivial clustering properties, and degree-degree correlations. Here, we synthesize the results of these recent studies, discuss their limitations, and highlight several open questions regarding (1) unsolved theoretical issues and (2) the practical utility of complex population structures for evolutionary search. In addition, we will discuss an alternative complex population structure that is known to significantly influence dynamical processes, but has yet to be explored for evolutionary optimization. We then shift our attention toward dynamic population structures, which have received markedly less attention than their static counterparts. We will discuss the strengths and limitations of extant techniques and present open theoretical and experimental questions and directions for future research. In particular, we will focus on the prospects of "active linking,” wherein edges are dynamically rewired according to the genotypic or phenotypic properties of individuals, or according to the success of prior inter-individual interaction

    A study of evolutionary multiobjective algorithms and their application to knapsack and nurse scheduling problems

    Get PDF
    Evolutionary algorithms (EAs) based on the concept of Pareto dominance seem the most suitable technique for multiobjective optimisation. In multiobjective optimisation, several criteria (usually conflicting) need to be taken into consideration simultaneously to assess a quality of a solution. Instead of finding a single solution, a set of trade-off or compromise solutions that represents a good approximation to the Pareto optimal set is often required. This thesis presents an investigation on evolutionary algorithms within the framework of multiobjective optimisation. This addresses a number of key issues in evolutionary multiobjective optimisation. Also, a new evolutionary multiobjective (EMO) algorithm is proposed. Firstly, this new EMO algorithm is applied to solve the multiple 0/1 knapsack problem (a wellknown benchmark multiobjective combinatorial optimisation problem) producing competitive results when compared to other state-of-the-art MOEAs. Secondly, this thesis also investigates the application of general EMO algorithms to solve real-world nurse scheduling problems. One of the challenges in solving real-world nurse scheduling problems is that these problems are highly constrained and specific-problem heuristics are normally required to handle these constraints. These heuristics have considerable influence on the search which could override the effect that general EMO algorithms could have in the solution process when applied to this type of problems. This thesis outlines a proposal for a general approach to model the nurse scheduling problems without the requirement of problem-specific heuristics so that general EMO algorithms could be applied. This would also help to assess the problems and the performance of general EMO algorithms more fairly
    corecore