
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

01 Sep 2007

Toward Automating EA Configuration: The Parent Selection Stage Toward Automating EA Configuration: The Parent Selection Stage

Ekaterina Smorodkina

Daniel R. Tauritz
Missouri University of Science and Technology, tauritzd@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
E. Smorodkina and D. R. Tauritz, "Toward Automating EA Configuration: The Parent Selection Stage,"
Proceedings of the 2007 IEEE Congress on Evolutionary Computation (2007: Sep. 25-28, Singapore), pp.
63-70, Institute of Electrical and Electronics Engineers (IEEE), Sep 2007.
The definitive version is available at https://doi.org/10.1109/CEC.2007.4424455

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229134143?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F283&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F283&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/CEC.2007.4424455
mailto:scholarsmine@mst.edu

Toward Automating EA Configuration: the Parent Selection Stage

Ekaterina Smorodkina and Daniel Tauritz, Member, IEEE

Abstract— One of the obstacles to Evolutionary Algorithms
(EAs) fulfilling their promise as easy to use general-purpose
problem solvers, is the difficulty of correctly configuring them
for specific problems such as to obtain satisfactory performance.
Having a mechanism for automatically configuring parameters
and operators of every stage of the evolutionary life-cycle would
give EAs a more widely spread popularity in the non-expert
community. This paper investigates automatic configuration of
one of the stages of the evolutionary life-cycle, the parent se-
lection, via a new concept of semi-autonomous parent selection,
where mate selection operators are encoded and evolved as in
Genetic Programming. We compare the performance of the EA
with semi-autonomous parent selection to that of a manually
configured EA on three common test problems to determine
the “price” we pay for user-friendliness.

I. INTRODUCTION

One of the obstacles to Evolutionary Algorithms (EAs)
fulfilling their promise as easy to use general-purpose prob-
lem solvers, is the difficulty of correctly configuring them for
specific problems such as to obtain satisfactory performance
[5]. Proper configuration of evolutionary operators and/or
parameters requires extensive knowledge about how EAs
work; this feature makes EAs unappealing to non-experts.
The large-scope goal of this multi-step research project
is to create a general-purpose, user friendly, parameterless
EA-based solver for problems that are not easily solved
with traditional methods. We envision this problem solver
requiring minimal EA expertise. The only input that will
be needed from the user is the decision on the encoding of
candidate solutions1 and the implementation of the fitness
function. It is our hope that such a solver would make EAs
more widely used by the non-expert community.

Each stage of the evolutionary cycle: initialization, par-
ent selection, reproduction, competition, and termination
requires many decisions on the choice of operators and
parameters. In order to create a user-friendly EA-based
solver, these decisions need to be automated. We recognize
that each stage of the evolutionary cycle is very important to
the success of EAs and focus on one stage at a time. In this
paper the focus is on the parent selection stage.

The objective of this step of the research project is to
eliminate the need for choosing a particular parent selection
method to be used by the algorithm and to evaluate the
effectiveness of such an EA to determine the “price” of not
having to configure a parent selection mechanism manually.
Note that at this time we do not completely remove the
choice of the parent selection method from the user’s task

E. Smorodkina and D. Tauritz are with the Department of Computer
Science, University of Missouri-Rolla, Rolla, MO 65401 USA, email:
{eas7d3, tauritzd} at umr.edu.

1If non-standard encoding is used, custom recombination and mutation
operators will be needed.

list, but instead reduce the user’s responsibility for choosing
an appropriate parent selection method.

To automate the choice of the parent selection method
we use the concept of self-adaptation and somewhat de-
centralize the control of parent selection. We use a fixed
parent selection method, such as tournament selection, to
pick one of the individuals for reproduction, but instead
of also using a fixed scheme to choose a mate for the
selected individual, each individual has an evolving mate
selection function that he uses to select his preferred mate.
We use self-adaptation to evolve decentralized mate selection
functions and refer to this method as Self-Adapting Semi-
Autonomous Parent Selection (SASAPAS). As opposed to
traditional parent selection methods, where both parents are
centrally selected using the same mechanism, our approach
has an evolving mechanism for selecting half of the parents.
However, the other half of the parents is still selected by a
user-defined method. One way to completely eliminate the
need to specify a parent selection method manually is to
allow each individual in the population to reproduce.

There are various ways to pair up individuals using their
own mate selection functions, we describe two of them. The
first, which we call the democratic approach, involves having
all individuals rate the entire population using their mate
selection functions. Based on each individual’s preferences,
an instance of the stable roommates problem [12] can be cre-
ated. An instance of the stable roommates problem consists
of a set of individuals of even cardinality n. Each individual
in the set ranks the remaining n − 1 individuals in order
of his preference. The objective is to find a partition of the
set into n/2 pairs of roommates such that no two individuals
who are not roommates both prefer each other to their actual
roommates. We can use a solution to the stable roommates
problem created from the preferences of the individuals in
an EA population to pair them up. Consequently, if an
individual is selected for reproduction, then his preferred
mate is automatically selected as well. Unfortunately, some
instances of the stable roommates problem have no solutions
[12], therefore some compromising would need to be done.

The second pairing method, which we call the dictatorial
approach, allows each individual who is selected for mating
(who becomes the dictator for the moment) to pick whatever
mate he wishes. For humans this may not be the most ethical
approach, but it is less complex than the democratic approach
and may work just as well. In this paper we focus on our
proposed Self-Adaptive Semi-Autonomous Dictatorial Parent

63

1-4244-1340-0/07$25.00 c©2007 IEEE

Selection (SASADIPS)2 approach and leave the democratic
approach for future work.

II. RELATED WORK

The SASADIPS approach uses self-adaptation to config-
ure each individual’s mate selection function, decentralizes
the control of parent selection, and provides a method for
choosing specific mate pairings. In this section we give an
overview of related work on 1) self-adaptation, 2) decentral-
ized evolutionary control, and 3) controlling mate pairing.

A. Self-Adaptation

Self-adaptation works by encoding the configuration of
the evolutionary operators and/or parameters in the genome
along with a trial solution to the problem being solved. A
classic example of this is self-adaptation of mutation rates
[15]. Although self-adaptation of mutation rates in Genetic
Algorithms (GAs) and mutation distribution in Evolutionary
Strategies (ESs) sometimes leads to premature convergence
to suboptimal solutions [16], [17], self-adaptive EAs are
known to be state-of-the-art problem solvers with a high
degree of robustness [15]. Traditionally, the research on self-
adaptation has focused on adapting the parameters of vari-
ation operators (crossover and mutation) [1], [11]. Recently
adaptation of population size [2], [8] and selection pressure
for parent selection [8] have been shown to be beneficial.
In this paper we further explore self-adaptation of parent
selection by adapting not the selection pressure but the actual
parent selection method.

B. Decentralized evolutionary control

The evolutionary process that drives the vast majority of
EAs of all types is almost exclusively centrally controlled.
That is, a centrally controlled configuration of evolutionary
parameters and operators is applied uniformly to all indi-
viduals in the population. The primary exception is self-
adaptation of mutation rates which has a long history [15];
this is not a surprise as mutation is the only widely used
unary evolutionary operator at the individual level and is,
therefore, far easier to autonomously control than multi-ary
or population level operators.

Decentralizing the selection of evolutionary operators used
on each individual is an alternative approach to centrally
controlled evolution. Stańczak [18] created a self-adaptive
EA with decentralized selection of variation operators. He
did this by evolving a population of individuals each con-
taining a bit string and a vector of probabilities of using
each reproduction operator defined for the problem. In his
approach the genetic operators applied to the selected indi-
viduals were chosen based on the probability vector of that
individual. At the end of each generation, the probability
vector was updated. When a reproduction operator chosen
by an individual required more than one individual as input,

2SASADIPS is a subclass of SASAPAS, where our dictatorial approach
is used to select the mate for the parent selected by the central mechanism.
SASAPAS is an abstract method, where the details of mate selection remain
unspecified.

another individual who preferred the same reproduction oper-
ator was selected. Stańczak tested his approach on a traveling
salesman problem and on the problem of scheduling time-
dependent jobs on a multiprocessor system. His experiments
showed that decentralizing the selection of variation opera-
tors was beneficial for his test problems in terms of speed
and final solutions. In our paper we go a step further than
Stańczak’s approach by first decentralizing parent selection
and then evolving the actual parent selection method instead
of just having individuals select from a predefined set of
operators.

C. Centrally controlled mate pairing

Much interesting research has been done on optimizing
the pairing of individuals for reproduction using centralized
methods without self-adaptation. Our way of optimizing the
pairing of individuals for reproduction is different from what
has been done in the past because we do not centrally control
the selection of all parents participating in reproduction and
evolve the mate selection method over time.

Incest prevention in EAs has been studied and was shown
to have a positive effect in some cases [6], [9]. Ting and
Büning in [19] showed how integrating tabu search and
aspiration criteria in multi-parent crossover can improve
performance of an EA. Their tabu search checked whether or
not an offspring was produced from two or more parents with
the same heritage (i.e., it checked for incest) and prevented
an offspring from surviving if incest had occurred. Aspiration
criteria would override the tabu restriction if the fitness of
the offspring produced from “tabu crossover” was superior
to the fitness of the best individual in the population. The
effectiveness of Ting’s and Büning’s approach was verified
on four common test functions.

Restricted mating, introduced by Booker in [4], is another
way of optimizing the pairing of individuals for reproduction.
In restricted mating, individuals are only allowed to be
paired for reproduction if their genotypes are similar. This
method encourages speciation, a process where a single
species splits into two or more species [3]. Since often the
fitness function has many local maxima, convergence to one
local maximum may prevent the algorithm from finding a
globally optimal solution. Restricted mating is advantageous
for EAs as it prevents the population from converging to
only one local maximum and allows finding several local
maxima. Restricted mating is a fixed (non-evolving) method
for pairing up individuals that is centrally controlled, whereas
SASADIPS is decentralized and allows evolution of the way
individuals are paired up.

III. SASADIPS METHODOLOGY

The purpose of SASADIPS is to eliminate the need to
specify the mate selection operator to be used by the EA,
without significantly sacrificing performance. SASADIPS is
applicable to EAs that use recombination as one of the repro-
duction operators. In this paper we restrict ourselves to the
standard two-parent recombination, but this can be extended
to multi-parent recombination. As suggested by its name,

64 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

self-adaptive semi-autonomous dictatorial parent selection is
not completely autonomous. To produce an offspring the
first parent is selected by a pre-defined central selection
method, such as tournament selection, roulette selection,
random selection, etc. The concept of the first parent is
important here. At this point the first parent becomes the
‘dictator’ and gets to choose the other parent with whom
he will produce offspring. This is the autonomous part of
the algorithm, since each dictator has his own mate selection
function.

To implement this approach we need a way of representing
mate selection functions and a method for evolving them.

A. Mate selection function representation

Each individual in the population consists of a chro-
mosome representing this individual’s trial solution to the
problem being solved and another chromosome encoding his
mate selection function in the form of an expression tree as in
Genetic Programming (GP). In SASADIPS a mate selection
function takes a population of individuals as input and returns
one individual from the population as output. The returned
individual is the selected parent that is used for reproduction
together with the first parent (the dictator).

To construct mate selection functions in the form of
expression trees as in GP, it is necessary to supply a set
of primitives (terminals and non-terminals) from which the
functions are to be constructed [13]. The ability of an indi-
vidual to select his preferred mate is limited by the primitives
used in his mate selection function. Any program, and thus
the optimal mate selection function, can be represented
with the set of instructions of a programming language.
Including all instructions of a programming language would
result in an extremely large and complex search space, as
this space would contain all possible computer programs.
We can greatly reduce the search space by only including
some pre-built mate selection components, however such a
search space may not contain the optimal mate selection
function. In this work we opted for the reduced search
space to minimize computational overhead associated with
SASADIPS and supplied the individuals with the pre-built
selection primitives that we thought might make sense to
use for mate selection. The sole terminal primitive was
‘Population’. The non-terminal primitives used to construct
mate selection functions along with their descriptions are
shown in Table I.

Some of these primitives take the entire population as
input, while others take two individuals. To ensure type
compatibility, we used strongly typed GP. All mate selec-
tion functions were randomly initialized. An example of
a randomly initialized mate selection function is shown in
Figure 1.

B. Mate selection function evolution

When two individuals are selected for reproduction, vari-
ation operators (crossover followed by mutation) are ap-
plied to those individuals’ candidate solution chromosomes

Fig. 1. An example of a randomly initialized mate selection function.

producing c new chromosomes3. These new chromosomes
become the offspring’s candidate solutions to the problem
being solved. Next, the offspring need to obtain their own
mate selection functions since they may become the ‘dicta-
tors’ in future generations. There are several possibilities for
offspring to obtain a mate selection function: (1) randomly
generate a new mate selection function (no inheritance), (2)
inherit one of the parents’ mate selection functions (single
parent inheritance), and (3) recombine the parents’ mate
selection functions (multi-parent inheritance). Since we want
to obtain the best possible mate selection function for each
offspring, randomly generating a new mate selection function
is not a good option. Instead, we want to use the knowledge
acquired so far about mate selection functions and pass it
along to the offspring.

In a typical EA, if we plot the fitness of the best individual
at each generation, the slope of the plot will be steep in the
early generations and will decrease in the later generations
(sometimes it will be more of an s-curve). An example of
such a plot is shown in Figure 2. Increasing the number
of generations during which the slope of the maximum
fitness plot is steep would be expected to result in a higher
maximum fitness which would thus improve the performance
of an EA. We will use the slope of the maximum fitness
plot to decide how an offspring obtains his mate selection
function.

50

60

70

80

90

100

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

generation

m
ax

im
um

 fi
tn

es
s

(%
 o

f m
ax

 p
os

si
bl

e
fit

ne
ss

)

Fig. 2. Example of maximum fitness plot of an EA (taken from experiments
on the ONEMAX problem conducted during this research).

3In our experiments, c was set to 1.

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 65

TABLE I

PRIMITIVES USED IN CONSTRUCTING MATE SELECTION FUNCTIONS.

Primitive name Description

Tournament Selection standard deterministic tournament selection with tournament size of 5
Roulette Selection standard roulette selection
Random Selection a routine that uniform randomly selects one individual
Parsimony Tournament lexicographic parsimony pressure tournament selection operator [14]
Selection
Max Fitness Individual a routine that selects the individual with the highest fitness
Min Fitness Individual a routine that selects the individual with the lowest fitness
Bigger Distance given two individuals, selects the one with the bigger hamming distance from the first parent
Smaller Distance given two individuals, selects the one with the smaller hamming distance from the first parent
More Uniform given two individuals whose candidate solutions are in the set {0, 1}N , rewrite them as

0x11x20x3 · · · 1xi such that i is as small as possible and select the one with the smaller
value of i; here exponent indicates concatenation operator, for example 13 is 111

Less Uniform given two individuals whose candidate solutions are in the set {0, 1}N , rewrite them as
0x11x20x3 · · · 1xi such that i is as small as possible and select the one with the larger
value of i

Bigger Fitness given two individuals, selects the one who has a higher fitness
Smaller Fitness given two individuals, selects the one who has a lower fitness
Subset Fitness GTOE given a group of individuals, selects a subset of individuals whose fitness is greater than

or equal to the fitness of the first parent
Subset Fitness LTOE given a group of individuals, selects a subset of individuals whose fitness is less than

or equal to the fitness of the first parent

The decision on whether an offspring should obtain his
mate selection function via single or multi-parent inheritance
was made based on the fitness of the offspring’s solution
to the problem. Recall that each individual in an EA with
SASADIPS has two chromosomes: one representing his trial
solution to the problem being solved and the other one
representing his mate selection function. Let F be the fitness
function defined on an individual’s chromosome representing
his trial solution to the problem being solved. We define
improvement of an offspring x whose parents are p1 and p2

as:

improvement(x) = F (x) − max{F (p1), F (p2)}. (1)

In an attempt to increase the number of generations
during which the slope of the maximum fitness plot is
steep, we will keep intact those mate selection functions
that result in improvements greater than or equal to the
slope of the maximum fitness plot at the previous generation.
This is a reasonable approach because if every offspring
produced is better than both parents by the same amount
(or greater) as the slope of the maximum fitness plot, then
the slope will not decrease. The slope of the maximum
fitness plot at the previous generation, denoted as s(gi−1),
is estimated using the difference between maximum fitness
at the previous generation, gi−1, and the maximum fitness
at generation gi−K divided by K (here K is a constant).
Then if improvement(x) ≥ s(gi−1), the child inherits the
mate selection function from the first parent. In single parent

inheritance we restrict the inheritance to the mate selection
function of the first parent only, because the first parent is
the one responsible for a particular pairing up of individuals
for reproduction. Otherwise, the mate selection function is
obtained via recombination of the mate selection functions
of both parents. Furthermore, there is a small chance that
mate selection functions obtained via recombination will be
mutated.

A note on our definition of improvement. In order to have
positive improvement, the fitness of an offspring must be
greater than the fitnesses of both of his parents. Alternatively,
improvement can be defined as the difference between the
offspring’s fitness and the fitness of the first parent. The
latter approach introduces a bias toward selecting the fittest
individual in the population. That is, if improvement is
defined in such a manner, the majority of the population
will be choosing the individual with the highest fitness for
mating, which may not be optimal.

Semi-autonomous parent selection requires some addi-
tional parameters compared to a standard EA. These param-
eters are: minimum and maximum tree depth, GP mutation
rate, and the number of generations over which the slope of
the maximum fitness plot is calculated (previously denoted
as K). Optimizing these parameters for a specific problem
will increase the performance of the algorithm. Automating
the control of these additional parameters will aid in making
EAs with SASADIPS easy to use problem solvers and is
high on the authors’ future work list.

66 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

A reader may be concerned about the speed of SASADIPS,
as it requires the first parent to select his mate from the
entire population. Although this is a valid concern, fitness
evaluation is frequently the performance bottleneck in EAs
and SASADIPS adds only a small performance overhead.

IV. EXPERIMENT DESIGN

To determine the “price” of reducing the user’s responsibil-
ity for choosing an appropriate parent selection method (i.e.,
only half of the parents will be chosen by it) we compare
our EA with SASADIPS to a regular EA with a fixed central
parent selection method. We tested our algorithm on three
problems of various fitness landscape complexity: ‘count-
ing ones’ (ONEMAX) problem, a 4-bit ‘bounded deceptive
trap’ (BOUNDED D-TRAP) problem4, and instances of the
boolean satisfiability problem in conjunctive normal form
(SAT). The fitness of a candidate solution to the ONEMAX
problem is the number of ones in its bit string. For our
experiments, we used bit strings of length 3000, so the
maximum fitness of the ONEMAX problem of length 3000
is 3000. In our experiments on the BOUNDED D-TRAP
problem, we used a concatenation of 250 copies of a 4-bit
trap function with deceptive to optimal ratio of 0.375 [7];
our 4-bit trap function is a function of the number of ones,
u, in a 4-bit string defined as:

f(u) =

{
3 − u if u ≤ 3
8 otherwise

(2)

The fitness of a trial solution to the BOUNDED D-TRAP
problem is the sum of values of each copy of the trap
function. In this work we experimented with a BOUNDED
D-TRAP problem containing 250 copies of a trap function.
The maximum value of each copy of our trap function is 8,
so the maximum fitness of our instance of the BOUNDED
D-TRAP problem is 2000. Figure 3 shows an example of a
trial solution to the BOUNDED D-TRAP instance and the
value of each copy of the trap function in this trial solution.

Fig. 3. Example trial solution to the instance of the BOUNDED D-TRAP
problem used in the experiments. According to the fitness function defined
in (2), the fitness of trap 1 is 2, the fitness of trap 2 is 0, and the fitness of
trap N is 8.

A standard fitness measure of a candidate solution to
a SAT instance is the number of clauses satisfied by the
given truth assignment. For these experiments we used five
SAT instances, each containing 760 variables and 43780
clauses. These SAT instances were taken from the set of
SAT instances that were used in the CSP Solver Competition

4These test problems were used in [5].

20055. Consequently, the fitness of the optimal solution to
the SAT instances used in the experiments is 43780.

The performance of the algorithms was measured based on
the Mean Best Fitness (MBF) statistic - the average over all
the runs of the best fitness found by the particular algorithm
on the particular problem.

To ensure fair comparison, both algorithms used the exact
same evolutionary operators and parameters, as described in
Table II. The parent selection operator used to select the first
parent in the EA with SASADIPS was the same as the parent
selection operator in the regular EA. The only difference is
that in the EA with SASADIPS the fixed parent selection
operator was used only to select the first parent; the second
parent was selected using the first parent’s mate selection
function. In the regular EA, the fixed parent selection op-
erator was used to select both parents. We experimentally
determined good parameter values for SASADIPS, which
were 30% for GP-mutation rate, 2 and 5 for the minimum
and maximum tree depth respectively, and 10 for K – the
number of generations over which the slope of the maximum
fitness plot is computed.

Both algorithms employed a population of fifty individuals
for all problems used in the experiments. Fifty offspring were
produced at each generation, one from every pair of parents.
Preliminary experiments were conducted to determine the
number of generations after which the regular EA reaches
a plateau or the maximum fitness for each problem. Based
on these results we determined that the maximum number
of generations for the ONEMAX problem is 4000, for the
BOUNDED D-TRAP problem is 2000, and for SAT in-
stances is 300. Both algorithms were terminated when either
the maximum fitness was reached or when the maximum
number of generations had been evolved.

All experiments were performed using the Open BEAGLE
framework6. Functionality was added to this framework to
enable SASADIPS.

V. EXPERIMENTAL RESULTS

The goal of SASADIPS is to reduce the user’s responsi-
bility for choosing an appropriate parent selection method,
as one of the steps toward a user-friendly EA. In this section
we review the effectiveness of the EA with SASADIPS and
determine the price of leaving out mate selection method
specification from the user’s responsibilities.

In order to statistically validate the performance compar-
ison of the two algorithms, we conducted 50 runs for the
ONEMAX and BOUNDED D-TRAP test problems using
both EAs. We used five different SAT instances with the
same maximum fitness, and ran each EA six times on each
SAT instance (for a total of 30 runs on SAT instances).

On two out of three test problems, ONEMAX and SAT,
the MBF found by the EA with SASADIPS upon algorithm

5These SAT instances can be found at http://www.nlsde.buaa.
edu.cn/˜kexu/benchmarks/benchmarks.htm under the link to
frb40-19-cnf.tar.gz

6This framework and its documentation can be found at http://
beagle.gel.ulaval.ca/

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 67

TABLE II

EVOLUTIONARY OPERATORS AND PARAMETERS USED IN THE EXPERIMENTS.

Operator Relevant parameters

Random initialization population size: 50
each bit is initialized to either 0 or 1 with probability 0.5

Tournament parent selection tournament size: 5
One point crossover crossover point is uniform randomly selected
Bit flip mutation each bit is flipped with probability 0.01%
Tournament competition tournament size: 5 (bit string uniqueness is enforced); elitism size: 1

termination was higher than the MBF found by the regular
EA upon algorithm termination. On the BOUNDED D-
TRAP problem the regular EA achieved a higher MBF than
the EA with SASADIPS upon algorithm termination. The
exact results of the experiments are presented in Table III.
The two-tailed t-test for two samples assuming unequal
variances was used to validate the differences with 5%
significance level. From these results we conclude that the
price we pay for not specifying parent selection method is: 1)
a small computational overhead associated with SASADIPS
and 2) a 2.9% lower average performance in the case of the
BOUNDED D-TRAP problem.

Aside from looking at the final results, it is also interesting
to examine the performance of both algorithms over time and
the slope of the maximum fitness plot at each generation, as
shown in Figure 4 – Figure 6.

In Figure 4 we see that both algorithms start out with
the same steep slope of the maximum fitness plot, but
the slope of the maximum fitness plot of the regular EA
quickly decreases in the initial generations. The slope of
the maximum fitness plot of the EA with SASADIPS also
decreases, but not as rapidly. The steeper slope gives the
EA with SASADIPS an advantage over the regular EA,
resulting in a higher average performance. The situations
shown in Figures 5 and 6 are different. In Figure 5 the
EA with SASADIPS manages to maintain the slope of the
maximum fitness plot steeper than that of the regular EA for
the first 300 generations, but after that the slope decreases
more rapidly than the slope of the maximum fitness plot
of the regular EA. After that point, the regular EA has a
steeper slope, crossing the maximum fitness plot of the EA
with SASADIPS near generation 500. Finally, in Figure 6
the slope of the maximum fitness plot of the regular EA is
steeper than that of the EA with SASADIPS in the first 15
generations. After that point, the EA with SASADIPS has
a steeper slope of the maximum fitness curve, crossing the
maximum fitness plot of the regular EA near generation 130
and maintaining higher maximum fitness after that.

Large fitness increases in the early generations imposed
by SASADIPS may result in premature convergence to
suboptimal solutions; however, this did not happen in our
experiments (at least not as a result of the SASADIPS
approach), except possibly in the BOUNDED D-TRAP prob-
lem.

Our experiments show that while our proposed methodo-

50

60

70

80

90

100

0 500 1000 1500 2000 2500 3000 3500 4000

generation

M
B

F
(%

 o
f m

ax
 p

os
si

bl
e

fit
ne

ss
)

regular EA EA with SASADIPS

Fig. 4. Average maximum fitness at each generation for the ONEMAX
problem.

20

25

30

35

40

45

50

55

60

0 250 500 750 1000 1250 1500 1750 2000

generation

M
B

F
(%

 o
f m

ax
 p

os
si

bl
e

fit
ne

ss
)

regular EA EA with SASADIPS

Fig. 5. Average maximum fitness at each generation for the BOUNDED
D-TRAP problem.

logy for EAs with SASADIPS is capable of achieving results
comparable to those of a regular EA on some problems, it
is not guaranteed to do so on all problems. For instance,
our method performed worse on the BOUNDED D-TRAP
problem. In the worst case the performance of the EA with
SASADIPS was 2.9% lower than that of the regular EA,
while in the best case it was higher by 1.9%. Experiments
on additional common test functions are needed to determine
a more accurate and statistically significant bound on the
performance gap of the EA with SASADIPS.

68 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

TABLE III

AVERAGE PERFORMANCE AND STANDARD DEVIATION (IN TERMS OF FITNESS AND PERCENTAGE OF THE MAXIMUM FITNESS) OF THE TWO

ALGORITHMS ON THE THREE TEST PROBLEMS

Regular EA EA with SASADIPS
avg st.dev. avg st.dev.

ONEMAX 2925.74 (97.52%) 6.83 (0.22%) 2982.22 (99.41%) 4.75 (0.15%)
BOUNDED D-TRAP 1168.36 (58.42%) 37.24 (1.86%) 1134.80 (56.74%) 34.31 (1.72%)
SAT 43720.77 (99.86%) 9.48 (0.02%) 43737.87 (99.90%) 9.39 (0.02%)

80

85

90

95

100

0 50 10
0

15
0

20
0

25
0

30
0

generation

M
B

F

(%
 o

f m
ax

 p
os

si
bl

e
fit

ne
ss

)

regular EA EA with SASADIPS

Fig. 6. Average maximum fitness at each generation for SAT instances.

VI. DISCUSSION

In the EA with SASADIPS the evolution of high quality
mate selection functions is key to minimizing the perfor-
mance inferiority of the algorithm, as compared to man-
ually configured EAs. The goal is not to find a problem
independent mate selection function, but to optimize parent
selection for a specific problem and specific individual at
a specific stage of the evolutionary process. In this section
we will look at the final mate selection functions of the
best individuals from our experiments with the ONEMAX
problem and analyze some general trends.

Fig. 7. An example of a mate selection function at the end of the evolution
(taken from experiments on the ONEMAX problem).

An example of a highly evolved mate selection function is

shown in Figure 7. This example is taken from the ONEMAX
experiments. This evolved mate selection function has a high
selection pressure, which is enforced by ‘Bigger Fitness’
and ‘Subset Fitness GTOE’ primitives. Additionally, this
mate selection function has a feature of Assortative Mating
Genetic Algorithms [10], a mating strategy where individuals
with similar genotypes are more likely to be paired up for
recombination. This feature is indicated by the ‘Smaller
Distance’ primitive.

The primitives at the higher level (closer to the root node)
of a mate selection function have the most influence on
the final selection. The most frequently found primitives
(see Table I for a description of each primitive used in the
experiments) at the roots of the mate selection functions of
the fittest individuals upon the termination of the EA with
SASADIPS on the ONEMAX problem were ‘More Uniform’
(16 out of 50), ‘Smaller Distance’ (12 out of 50), and ‘Bigger
Fitness’ (11 out of 50).

VII. CONCLUSIONS AND FUTURE WORK

The multitude of parameters and operators needed to
properly configure EAs prevents them from gaining wide
spread popularity in the non-expert community. Automating
the choice of operators and parameters at each stage of the
evolutionary cycle without significantly sacrificing perfor-
mance would make EAs a user friendly, general purpose
problem solving tool. In this paper we focused on automating
the parent selection stage, leaving the other stages to future
work. We introduced semi-autonomous parent selection: a
decentralized approach to parent selection in EAs, where
each individual has his own mate selection function. Our
method uses self-adaptation to evolve mate selection func-
tions for all individuals in the population. We described
two approaches to semi-autonomous parent selection on the
conceptual level, democratic and dictatorial, focusing on the
dictatorial approach. We experimentally compared our EA
with SASADIPS to a regular EA on three commonly used
test problems: ONEMAX, BOUNDED D-TRAP, and SAT.
The results of our experiments showed that in the worst case
our EA with SASADIPS achieves performance lower than
that of the regular EA by 2.9% on these three problems;
this is the price we pay for not configuring mate selection
method manually. In the case of the ONEMAX problem,
where the fitness landscape is linear, our EA with SASADIPS
achieved a performance higher than that of the regular
EA by 1.9%, so the price we pay is not always negative.

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 69

Experimental evaluation of the EA with SASADIPS on
additional commonly used test functions will help determine
a more accurate bound on the performance gap of the EA
with SASADIPS as compared to the regular EA.

SASADIPS can be easily extended for multi-parent re-
combination when the number of parents is more than two.
One way to do this is to select the first parent by a fixed
centrally controlled selection method and then use the first
parent’s mate selection function k times (with or without
replacement), when k + 1 parents are needed for recombi-
nation. Additionally the multi-parent inheritance of the mate
selection function would need to be adjusted accordingly.

In the future, we need to automate the control of additional
parameters required for SASADIPS to completely eliminate
the need of user’s input on the mate selection method.
Additional future steps in this research are comparison of
the dictatorial parent selection to the democratic approach,
investigation of the full automation of the parent selection
process, and automation of other stages of the evolutionary
life-cycle.

REFERENCES

[1] T. Bäck. Evolutionary Computation 2, chapter 21, pages 188–211.
Institue of Physics Publishing, 2000.

[2] T. Bäck, A. E. Eiben, and N. A. L. van der Vaart. An empirical study
on GAs “without parameters”. In PPSN VI: Proceedings of the 6th
International Conference on Parallel Problem Solving from Nature,
pages 315–324, 2000.

[3] D. Beasley, D. Bull, and R. Martin. An overview of genetic algorithms:
Part 2, research topics. University Computing, 15(4):170–181, 1993.

[4] L.B. Booker. Improving the performance of genetic algorithms in
classifier systems. In Proceedings of the 1st International Conference
on Genetic Algorithms, pages 80–92, 1985.

[5] J. Clune, S. Goings, B. Punch, and E. Goodman. Investigations in
meta-GAs: panaceas or pipe dreams? In GECCO ’05: Proceedings of
the 2005 Workshops on Genetic and Evolutionary Computation, pages
235–241, 2005.

[6] R. Craighurst and W. N. Martin. Enhancing GA performance through
crossover prohibitions based on ancestry. In Proceedings of the
6th International Conference on Genetic Algorithms, pages 130–135,
1995.

[7] K. Deb and D. Goldberg. Analyzing deception in trap functions.
In Proceedings of the Second Workshop on Foundations of Genetic
Algorithms (FOGA 2), pages 93–108, 1992.

[8] A. E. Eiben, M. C. Schut, and A. R. de Wilde. Is self-adaptation of
selection pressure and population size possible? - A case study. In
PPSN 2006: The 9th International Conference on Parallel Problem
Solving from Nature, pages 900–909, 2006.

[9] C. Fernandes and A. Rosa. A study of non-random mating and varying
population size in genetic algorithms using a royal road function.
In CEC 2001: The 2001 Congress on Evolutionary Computation,
volume 1, pages 60–66, 2001.

[10] Carlos Fernandes, Rui Tavares, Cristian Munteanu, and Agostinho
Rosa. Using assortative mating in genetic algorithms for vector
quantization problems. In SAC ’01: Proceedings of the 2001 ACM
Symposium on Applied Computing, pages 361–365, 2001.

[11] J. Gomez. Self adaptation of operator rates in evolutionary algorithms.
In GECCO 2004: Proceedings of the Genetic and Evolutionary Com-
putation Conference, pages 1162–1173, June 2004.

[12] R.W. Irving. An efficient algorithm for the “stable roommates”
problem. Journal of Algorithms, 6:577–595, 1985.

[13] J.R. Koza. Genetic Programming II: Background on Genetic Algo-
rithms, LISP, and Genetic Programming. MIT Press, Cambridge, MA,
USA, 1994.

[14] S. Luke and L. Panait. Lexicographic parsimony pressure. In GECCO
’02: Proceedings of the Genetic and Evolutionary Computation Con-
ference, pages 829–836, 2002.

[15] S. Meyer-Nieberg and H.-G. Beyer. Self-Adaptation in Evolutionary
Algorithms. In Fernando G. Lobo, Claudio F. Lima, and Zbigniew
Michalewicz, editors, Parameter Setting in Evolutionary Algorithms,
volume 54 of Studies in Computational Intelligence, pages 47–76.
Springer, 2007.

[16] G. Rudolph. Self-adaptation and global convergence: a counter-
example. In CEC’99: Proceedings of the 1999 Congress on Evo-
lutionary Computation, volume 1, pages 646–651, 1999.

[17] G. Rudolph. Self-adaptive mutations may lead to premature conver-
gence. IEEE Transactions on Evolutionary Computation, 5(4):410–
414, August 2001.

[18] J. Stańczak. Biologically inspired methods for control of evolutionary
algorithms. Control and Cybernetics, 32(2):411–434, 2003.

[19] C.-K. Ting and H. K. Büning. A mating strategy for multi-parent
genetic algorithms by integrating tabu search. In CEC 2003: The 2003
Congress on Evolutionary Computation, volume 2, pages 1259–1266,
2003.

70 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

	Toward Automating EA Configuration: The Parent Selection Stage
	Recommended Citation

	Toward automating EA configuration: the parent selection stage Proceedings of CEC 2007 - IEEE Congress on Evolutionary Computation

