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Abstract

Transfer Optimization is an incipient research area dedicated to solving multiple optimiza-
tion tasks simultaneously. Among the di↵erent approaches that can address this problem
e↵ectively, Evolutionary Multitasking resorts to concepts from Evolutionary Computation
to solve multiple problems within a single search process. In this paper we introduce a
novel adaptive metaheuristic algorithm to deal with Evolutionary Multitasking environ-
ments coined as Adaptive Transfer-guided Multifactorial Cellular Genetic Algorithm (AT-
MFCGA). AT-MFCGA relies on cellular automata to implement mechanisms in order to
exchange knowledge among the optimization problems under consideration. Furthermore,
our approach is able to explain by itself the synergies among tasks that were encountered
and exploited during the search, which helps us to understand interactions between related
optimization tasks. A comprehensive experimental setup is designed to assess and com-
pare the performance of AT-MFCGA to that of other renowned evolutionary multitasking
alternatives (MFEA and MFEA-II). Experiments comprise 11 multitasking scenarios com-
posed of 20 instances of 4 combinatorial optimization problems, yielding the largest discrete
multitasking environment solved to date. Results are conclusive in regard to the superior
quality of solutions provided by AT-MFCGA with respect to the rest of the methods, which
are complemented by a quantitative examination of the genetic transferability among tasks
throughout the search process.
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1. Introduction

Inspired by the same rationale that underlies Transfer Learning and Multitask Learn-
ing, Transfer Optimization (TO, [16]) is currently gaining momentum within the research
community [27]. The main motivation behind this paradigm is that real-world optimization
problems hardly ever occur in isolation. Consequently, TO aims to exploit the knowledge
learned throughout the optimization of one problem (task) when solving another related or
unrelated problem or task. Since it can be regarded as a relatively new research stream,
the community has only recently started to consider this transferability of knowledge among
problems to be a research priority. Besides the co-occurrence of optimization problems in
practice, other fundamental reasons for this increasing interest in TO include the growing
scales and level complexity of such optimization tasks, which has led to the need to use
previously obtained knowledge.

Three di↵erent categories of TO can be distinguished in the literature: sequential trans-
fer, multitasking and multiform optimization. The first one is related to tasks that are solved
sequentially. The knowledge collected when facing preceding tasks is harnessed as external
information to be used for the optimization of new instances/problems. The second cat-
egory is referred to as multitasking, which addresses di↵erent yet equally important tasks
in a simultaneous fashion. In this category, the dynamic exploitation of synergies among
problems is a crucial issue. Lastly, multiform optimization regards the simultaneous tackling
of a single task under di↵erent alternative problem formulations. Since the inception of the
field, multitasking stands out as arguably the most prolific research strand.

Within the taxonomy described above, this paper focuses on Evolutionary Multitasking
(EM, [26]), which relies on operators and search procedures from Evolutionary Compu-
tation [12] to realize e�cient multitasking methods. Many e↵orts have been reported in
the recent literature trying to solve a variety of discrete, continuous, single-objective and
multi-objective optimization problems through the perspective of EM [37, 13]. From the
algorithmic point of view, most of the current research related to EM is materialized by
embracing a Multifactorial Optimization (MFO) strategy. In MFO a unique factor is es-
tablished for each solution in order to determine its specialization with respect to the set
of problems being solved, ultimately driving the search of population-based methods. The
combination of MFO and EM concepts has given rise to the renowned Multifactorial Evo-
lutionary Algorithm (MFEA, [15]), which is undoubtedly at the forefront of the techniques
introduced so far in the TO field.

Although TO is a relatively young research field, there is consensus in the community
regarding the capital relevance of the correlation among problems, particularly in multitask-
ing [15]. The exploitation of these interrelationships is paramount to positively capitalize
the transfer of valuable knowledge during the search [50]. Several influential studies have
been published recently that analyze this issue. Some of these studies introduce alternatives
that properly quantify the similarities among optimization tasks and problems [14]. Never-
theless, in many practical circumstances and scenarios all problems cannot be guaranteed
to be strictly related to each other. When no such synergies exist, sharing genetic material
between unrelated tasks usually leads to performance downturns (negative transfer, [6]).
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This phenomenon has been reported in recent studies as the main pitfall of multitasking
approaches, as it is a common challenge in the modeling of new solving schemes. In this
context, the Multifactorial Evolutionary Algorithm II (MFEA-II, [6]) incorporates adaptive
mechanisms for dynamically learning how much knowledge should be transferred across dif-
ferent problems. As occurred with MFEA in the past, MFEA-II has emerged as a baseline
of new adaptive TO schemes, introducing new algorithmic ingredients that make its search
resilient against negative information transfer.

Keeping all this in mind, the principal objective of this paper is to propose a new MFO
approach called Adaptive Transfer-guided Multifactorial Cellular Genetic Algorithm (AT-
MFCGA). AT-MFCGA relies on the foundations of cellular automata and Cellular Genetic
Algorithms (cGAs [24]) for controlling the mating process among individuals. This method
builds on preliminary research in [29] and improves it significantly by addressing the need
to dynamically identify and exploit the synergies between tasks that arise during the search
process. Specifically, the two key elements of this paper with respect to the state of the art
and our preliminary findings in [29] can be summarized as follows:

• AT-MFCGA is able to assess the performance of mating operations conducted among
individuals specialized in di↵erent tasks, quantifying both negative and positive transfers
along the search. Based on this information, the cellular grid in which the population
is organized is rearranged to promote crossovers among individuals specialized in tasks
expected to yield positive knowledge transfer. In addition, we introduce a mechanism to
also adapt local search operators based on this information.

• The search strategy of AT-MFCGA allows for a quantitative examination of synergies that
arise among tasks. This feature provides a novel explainability interface for the user to
better understand the interactions between problems. We take advantage of this charac-
teristic by further examining the genetic transferability among the problem instances used
in our experiments. This analysis is a valuable addition to the state of the art [50, 14],
and provides useful insights for further research. In addition, we provide an additional
visualization of the solver’s performance, visually depicting the influence of the genetic
complementarities on the rebuilt cellular grid.

An extensive set of experiments is reported using instances of 4 combinatorial opti-
mization problems, namely, Traveling Salesman Problem (TSP, [20]), Capacitated Vehicle
Routing Problem (CVRP, [35]), Quadratic Assignment Problem (QAP, [19]) and Linear
Ordering Problem (LOP, [7]). The experimental setup comprises 11 test cases, using 20
di↵erent instances (5 for each combinatorial problem). To the best of our knowledge, the
experimentation presented and discussed in this paper is one of the most extensive and de-
tailed in discrete MFO. Moreover, we compare the performance of AT-MFCGA to that of
MFEA [15] and MFEA-II [6]. The obtained results conclude that AT-MFCGA outperforms
the rest of algorithms in the benchmark with statistical significance, eliciting visual insights
about the positive and negative genetic transfers held during the search.

In summary, the main contribution of this paper is threefold: i) the design and imple-
mentation of a novel Adaptive Transfer-guided Multifactorial Cellular Genetic Algorithm
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for multitask optimization problems; ii) a deep examination of the genetic knowledge trans-
fer among the instances of optimization problems of a diverse nature (TSP, VRP, QAP
and LOP); and iii) an extensive experimentation composed of 20 instances belonging to 4
di↵erent combinatorial optimization problems.

The rest of the paper is organized as follows: Section 2 presents a brief overview of
the background related to EM, cGAs, MFEA and recent solvers dealing with the negative
transfer phenomenon. Section 3 details the main characteristics of AT-MFCGA. The de-
scription of the designed experimental setup is given in Section 4. Experimental results are
presented and discussed in 5, along with a detailed analysis of the genetic transfer between
tasks. Section 6 examines the grid rebuilding mechanism of AT-MFCGA. Finally, Section
7 concludes the paper by drawing conclusions and outlining several future lines of research
derived from this work.

2. Background

This section o↵ers a brief background of the four main aspects addressed in this study:
EM and MFO (Section 2.1), MFEA (Section 2.2), MFEA-II and adaptive EM solvers (Sec-
tion 2.3), and cGAs (Section 2.4).

2.1. Evolutionary Multitasking and Multifactorial Optimization

As previously mentioned, multitasking optimization is dedicated to simultaneously tack-
ling several problems or tasks. Thus, this branch of TO is characterized by omni-directional
knowledge sharing among di↵erent problems, potentially reaching a synergistic completion
among the tasks being solved [16]. EM has arisen as an e�cient approach for dealing with
these simultaneous optimization environments.

Two main features encouraged researchers to formulate the EM paradigm. First, the
inherent parallelism enabled by a population of individuals that are evolved together is well
suited for simultaneously dealing with concurrent optimization problems. Some recently
published studies have reported the benefits of this simultaneous treatment for dynamically
unveiling latent relationships among problems [27]. The second crucial feature of EM is the
uninterrupted sharing of genetic material during the evolutionary search, which permits all
tasks to benefit from one another [15]. As such, there are several methods used to deal with
multitasking scenarios through the perspective of EM, the two most used approaches being:
parallel search processes (typical in Multipopulation-based Multitasking) or the execution
of a single search procedure (as in MFO).

A common point of agreement in the related literature is that until [9], the EM paradigm
was only materialized through the perspective of MFO. Several approaches have since then
embraced this concept, encompassing hybrid solvers [40], modern metaphors [47], or multi-
population schemes [21]. Furthermore, other alternatives to MFO have also been proposed
in the form of new algorithmic schemes, such as coevolutionary multitasking or multitasking
multi-swarm optimization [32]. Despite this recent upsurge of new MFO and EM frame-
works, MFEA is still the spearhead of the field [15].
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Mathematically, MFO is described as an EM environment comprising K optimization
tasks {T

k

}K
k=1 to be solved in a simultaneous manner. This scenario is made up by as many

search spaces as problems being considered, each one corresponding to a single task T
k

.
Moreover, the objective function for the k-th task is represented as f

k

: ⌦
k

! R, where ⌦
k

is the search space of T
k

. Let us assume that all tasks are minimization problems. Thus, the
main goal of MFO is to find a set of solutions {x1, . . . ,xK

} such that x
k

= argmin
x2⌦k

f
k

(x).
Instead of facing all these tasks via independent search processes, MFO solvers work with a
population P of candidate solutions, with each x

p

2 P belonging to a unified search space
⌦

U

. This way, each independent search space ⌦
k

belonging to a task k can be translated to
⌦

U

using an encoding/decoding function ⇠
k

: ⌦
k

7! ⌦
U

. As a consequence, each individual
x
p

2 P must be encoded as x
p,k

= ⇠�1
k

(x
p

) in order to properly represent a task-specific
solution x

p,k

for each of the K problems.
It is interesting here to delve further into the formulation of the common search space

⌦
U

, which is arguably one of the key aspects of EM. This ⌦
U

should be consistent with the
level overlapping between tasks being addressed. In this regard, and based on the research
conducted by Ong and Gupta in [27], we can assess the overlap (�) of two tasks based on
the number of variables in the task-specific solution space which have the same phenotypic
meaning, i.e., � = |x

overlap

|. This way, we can identify three superposition categories of
overlap in the phenotype space: i) complete overlap (x1 x

overlap

= x2 x
overlap

= ; ), when
problems to solve di↵er only in their task-specific auxiliary variables; ii) partial overlap
(x1 x

overlap

6= ; and/or x2 x
overlap

6= ; and � > 1), for problems in which the distribution
of variables is similar, or when tasks have some recurrent variables in common; and iii) no
overlap (x

overlap

= ;), when tasks do not have any structural characteristics in common.
In addition to the above notation, MFO algorithms rely on four di↵erent specific concepts,

associated to each solution x0
p

2 ⌦0 of the P population:

• Factorial Cost : the factorial cost  p

k

of an individual x0
p

is the fitness value for a specific
task T

k

.

• Factorial Rank : the factorial rank rp
k

of a population member x
p

in a task T
k

is the rank
of this member within the whole population, sorted in ascending order of  p

k

.

• Scalar Fitness : the scalar fitness 'p of an individual x0
p

is computed using the best rp
k

over all the tasks, i.e., 'p = 1/
�
min

k2{1...K} r
p

k

�
.

• Skill Factor : the skill factor ⌧ p is the index of the task in which x0
p

performs best, namely,
⌧ p = argmin

k2{1,...,K} r
p

k

.

These four definitions are the ones on which all MFO techniques rely. Going further,
these concepts are employed with di↵erent purposes, such as i) assigning tasks to individu-
als ii) deciding how population members interact, iii) sorting and classifying the complete
population and iv) deciding which solutions survive the iterations. As such, these definitions
have led to the design and implementation of di↵erent e�cient solving approaches.

In addition, it is also worth-mentioning that two knowledge sharing patterns can be
found in EM methods: implicit transfer and explicit transfer. On the one hand, in implicit

5



transfer, the sharing of genetic material is capitalized through search operators as crossover
functions. On the other hand, explicit knowledge sharing is principally materialized by mi-
grating complete solutions among populations, namely from one task to another. Arguably,
one of the most frequently occurring patterns is the first one, implicit transfer, which is the
one used throughout this paper.

2.2. Multifactorial Evolutionary Algorithm

MFEA, a recently introduced MFO solver based on bio-cultural schemes of multifactorial
inheritance, is grounded on the previously described concepts [15]. In Algorithm 1 we depict
the main workflow of MFEA. In order not to dwell extensively on algorithmic aspects, we
refer interested readers to the detailed description provided in [15]. Briefly explained, the
search process of MFEA relies on four key concepts:

• Unified solution representation: one of the most crucial aspects when developing a MFEA
is the representation strategy used to encode an individual x0

i

, which yields the unified
search space ⌦0. The experimental benchmark proposed in this study can exemplify how
a representation strategy should be designed. Since four di↵erent permutation based dis-
crete optimization problems (TSP, CVRP, QAP and LOP) are considered, a permutation
encoding strategy can be chosen as the unified representation of x0

i

. In this regard, we have
faithfully followed the procedure described in [46] for the individual representation. Thus,
if K problems are to be faced simultaneously, and denoting the dimension of each task T

k

as D
k

, an individual x0
i

is represented as a permutation of the integer set {1, 2, . . . , D
max

},
where D

max

= max
k2{1,...,K} Dk

, that is, the maximum dimension among all the consid-
ered K tasks. Therefore, when x0

i

is to be measured in the task T
k

whose D
k

< D
max

,
only those values lower than D

k

are considered for building the argument solution x
k

of
f
k

(·). This reconstruction is carried out by maintaining the same order as in x0
i

. Other
unified encoding approaches utilized in the literature include, among others, random keys
representation [9].

• Assortative Mating : this characteristic establishes that individuals prioritize relationships
with mates belonging to the same cultural background [15]. This way, genetic operators
used for implementing a MFEA should encourage the cross between individuals with the
same skill factor ⌧ i. Further technical details on the implementation of this mechanism
can be found in the aforementioned studies.

• Selective evaluation: this mechanism states that each generated o↵spring is assessed in just
one task, instead of being measured in each task separately. A newly created individual
is evaluated in task T

⌧

i
⇤ , where ⌧

i

⇤ is the skill factor of its parent. In case the o↵spring has
more than one parent, ⌧ i⇤ is randomly selected among their skill factors. Furthermore, the
factorial cost  i

k

is set to 1 8k 2 {1, . . . , ⌧ i⇤ � 1, ⌧ i⇤ + 1, . . . , K}.

• Scalar fitness based selection: analogously to canonical Genetic Algorithms, this feature
represents the survivor function of the MFEA. In this case, the selection is based on an
elitist strategy, i.e. the best P individuals in terms of scalar fitness are those selected for
survival and are passed on to the next generation.
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Algorithm 1: Pseudocode of MFEA

1 Randomly draw a population of |P| = P individuals {x
i

}P
i=1, with x

i

2 ⌦
U

2 Evaluate each generated individual for the K problems
3 Calculate the skill factor ⌧

i

of each x
i

4 while termination criterion not reached do
5 Set Q = ;
6 while individuals still to be selected do
7 Randomly sample without replacement x

i

0 ,x
i

00 2 P
8 if ⌧

i

0 = ⌧
i

00 then
9 [x

A

,x
B

] = IntrataskCX(x
i

0 ,x
i

00)
10 Set ⌧

A

and ⌧
B

equal to ⌧
i

0

11 else if rand  RMP then
12 [x

A

,x
B

] = IntertaskCX(x
i

0 ,x
i

00)
13 Set ⌧

A

= rand(⌧
i

0 , ⌧
i

00) and ⌧
B

= rand(⌧
i

0 , ⌧
i

00)
14 else
15 x

A

= mutation(x
i

0); ⌧
A

= ⌧
i

0

16 x
B

= mutation(x
i

00); ⌧
B

= ⌧
i

00

17 Evaluate x
A

for task ⌧
A

, and x
B

for task ⌧
B

18 Q = Q [ {x
A

,x
B

}
19 end
20 Select the best P individuals in P [Q as per their '

i

21 end
22 Return the best individual in P for each task T

k

Since it was first reported in 2015, MFEA has been the focus of vibrant research activity.
To begin with, in [46] MFEA was adapted to di↵erent discrete problems, such as TSP, LOP
and QAP. Similar research was introduced in [49], where MFEA was applied to the Vehicle
Routing Problem. Another discrete problem – Clustered Minimum Routing Cost Problem
– was also addressed with MFEA by Trung et al. in [36]. More recent is the study proposed
in [33], in which a MFEA in the context of wireless sensor networks is developed, aiming at
maximizing data aggregation tree lifetime. Other applications of MFEA can be found in [37]
for the composition of semantic web services, and in [25] to evolve deep reinforcement learn-
ing models. Furthermore, an enhanced variant of the MFEA is introduced in [13], endowing
the basic version of the algorithm with a dynamic resource allocation strategy. A similar phi-
losophy is followed in [45], describing an improved MFEA by incorporating opposition-based
learning. In [17], a multiobjective version of MFEA is introduced (MO-MFEA), assessing
its e�ciency over continuous benchmark functions, as well as a real-world manufacturing
process design problems. Also interesting is the study proposed in [41] in which authors
introduce a two-stage assortative mating mechanism for improving the performance of the
MO-MFEA. A novel multi-objective approach is also presented in [39], in this case in form of
an adaptive multiobjective and multifactorial di↵erential evolution algorithm. Moreover, an
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improved MO-MFEA is proposed in [42], based on the decomposition and dynamic resource
allocation strategy. In such paper, nine benchmark test cases are selected for experimental
studies, each one comprising two-task problems.

2.3. From MFEA to MFEA-II: searching for adaptability

Notwithstanding the success of MFEA, EM and the wider field of TO, these areas are
the target of controversial discussions questioning the e�ciency of methods proposed to
date. These criticisms accentuate the complexity of avoiding, identifying and/or reacting
against negative transfers between tasks [38]. As pointed out in the previous section, it is
well established that to obtain the best performance and real potential of TO algorithms,
the exploitation of the synergies between the problems is of paramount importance. This
is the main reason why the related community is striving to propose new methods to cope
with this situation, favoring positive transfers and making optimization algorithms resilient
to the existence of negative influences among tasks [22]. In fact, this is the main goal of the
AT-MFCGA solver proposed in this study, and also the objective of the evolution of MFEA,
which has been coined MFEA-II [6].

Accordingly, the principal contribution provided by MFEA-II with respect to its prede-
cessor is the inclusion of a transfer parameter matrix (RMP matrix), which takes on the
responsibility of determining the extent of genetic transfer across individuals with di↵erent
skill tasks. This transfer parameter matrix is dynamically updated based on the information
generated during the course of the multitasking search. This RMP matrix is managed and
updated by an online RMP learning module. An additional characteristic of MFEA-II is
the inter-task crossover procedure, which is composed by parent-centric operators [11]. In
short, these operators are conceived to generate solutions close to their parents in the search
space (in this case, the unified search space ⌦

U

). Based on the insights introduced in Bali
et al.’s pioneering study, the main modifications of MFEA-II are concentrated in the inter-
task crossover steps (lines 11-16 in Algorithm 1), which are replaced by those represented
in Algorithm 2.

Besides MFEA-II, a growing corpus of literature has recently been noted around dynam-
ically and e�ciently dealing with negative knowledge transfer in multitasking environments.
That which is most directly related to MFEA-II is its multi-objective variant (MO-MFEA-
II [5]), which follows the same concepts as its single-objective counterpart. The research
proposed in [43] follows this same line of thought, proposing a multi-objective novel interval
MFEA that embraces the RMP online updating strategy of MFEA-II. A similar philosophy
is followed in [34], in which an adapted multifactorial particle swarm optimization method
is proposed based on an inter-task learning parameter being updated during the search.
Another solver introducing mechanisms to avoid negative transfers is the one presented in
[44]. In this case, authors implement the classical MFEA using a new inter-task knowledge
transfer strategy. This new strategy is based on search direction instead of individuals, gen-
erating o↵spring as per the sum of an elite solution of one task and a di↵erence vector from
another task. In [48], a solver referred to as self-regulated evolutionary multitasking optimiza-
tion is presented. This method introduces a self-regulated knowledge transfer scheme that
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Algorithm 2: Inter-task crossover procedure of MFEA-II

1 if ⌧
i

0 6= ⌧
i

00 then
2 if rand  RMP

⌧i0 ,⌧i00 then
3 [x

A

,x
B

] = IntertaskParentCentricCX(x
i

0 ,x
i

00)
4 Update x

A

= mutation(x
A

)
5 Update x

B

= mutation(x
B

)
6 ⌧

A

= rand(⌧
i

0 , ⌧
i

00)
7 ⌧

B

= rand(⌧
i

0 , ⌧
i

00)
8 else
9 Randomly select x

i1 2 P with ⌧
i1 = ⌧

i

0

10 x
A

= IntrataskParentCentricCX(x
i

0 ,x
i1)

11 Update x
A

= mutation(x
A

)
12 ⌧

A

= ⌧
i

0

13 Randomly select x
i2 2 P with ⌧

i2 = ⌧
i

00

14 x
B

= IntertaskParentCentricCX(x
i

00 ,x
i2)

15 Update x
B

= mutation(x
B

)
16 ⌧

B

= ⌧
i

00

establishes several innovative concepts such as ability vector or task-groups. These concepts
permit the amount of material shared among the population elements to be controlled.

2.4. Cellular Genetic Algorithm

The herein proposed AT-MFCGA embraces cGAs at their core, which are a specific kind
of Genetic Algorithm characterized by a population structured in small-sized neighborhoods
[24]. This way, each individual can only interact with solutions belonging to its neighbor-
hood. This feature enhances the exploration of the search space through the induced slow
di↵usion of solutions across the population. Furthermore, exploitation is conducted within
each neighborhood [1]. Hence, while classical GAs are organized in a unique panmictic pop-
ulation, in cGAs the population is arranged on a grid (usually two-dimensional), on which
neighborhood relationships are established. Specifically, these two are the most frequently
utilized neighborhood structures in cellular algorithms: i) NEWS (also referred to as linear5
or Von Neumann), in which the neighborhood of a population member is composed of its
North (N), East (E), West (W), and South (S) counterparts; and ii) C9 (also known as
Moore), in which the neighborhoods are composed of NW, N, NE, W, E, SW, S and SE
individuals. These two structures can also be extended as shown in Figure 1, in which both
canonical and extended versions of the NEWS and C9 neighborhood structures are depicted.
We recommend [2] for further information about possible cellular grid structures.

Thus, genetic operators in a cGA operate inside the neighborhood, mating each element
with one of its neighbors. Additionally, newly created solutions are not merged in the whole
population. Instead, they replace their previous individual upon the fulfillment of a certain
criterion (usually an improvement in the fitness function). Indeed, the parallel and locally
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C9 C25 L5 L9

(b) r = 2(a) r = 1 (d) r = 2(c) r = 1

Figure 1: Examples of NEWS (a and b) and C9 (c and d) neighborhood structures, in both their canonical
(r = 1) and extended variants (r = 2).

controlled interactions enabled by cellular neighborhoods have encouraged us to adopt the
structure of cGAs for the algorithmic design of our proposed AT-MFCGA.

Two types of cGAs can be found in the literature depending on the policy adopted
to update individuals in the grid. On the one hand, synchronous cGAs carry out all the
replacements at the same time. On the other hand, in asynchronous cGAs individuals are
sequentially updated. This approach overrides the need for any auxiliary population, so
that the search can adapt faster to the newly generated genetic material. Furthermore, it
naturally suits asynchronous distributed computing environments better.

3. Proposed Adaptive Transfer-guided Multifactorial Cellular Genetic Algo-
rithm

Based on the background given in the previous section, we will now describe the design
of the AT-MFCGA approach proposed in this paper in depth. First, Section 3.1 details the
non-adaptive version (MFCGA), which serves as the baseline for the design of AT-MFCGA.
Next, Section 3.2 elaborates on the key aspects of AT-MFCGA, focusing on its novelty and
the main characteristics that make it a promising alternative when solving EM scenarios
(Section 3.3).

3.1. Preliminary Steps: Multifactorial Cellular Genetic Algorithm (MFCGA)

As outlined in Sections 2.2 and 2.3, both MFEA and MFEA-II build upon four basic
design principles: unified representation, assortative mating, selective evaluation, and scalar
fitness based selection. These four principles are also considered when designing the MFCGA
approach. This way, MFCGA must be regarded as a static MFEA counterpart that is, not
sensitive to the search performance nor resilient to negative information transfer. Algorithm
3 shows the pseudocode of MFCGA, which is inspired by cGAs and MFEA.

To begin with, MFCGA adopts the unified representation principle of MFEA. The genetic
operators are based on the classical evolutionary crossover and mutation mechanisms. This
way, at each generation these two operators are applied to each member x

i

of the population,
without any mutation or crossover probabilities. Thus, two new individuals xcrossover

i

and
xmutation

i

are generated. On the one hand, xcrossover

i

is created as a result of mating x
i

with a
randomly selected neighbor x

j

from the cellular neighborhood X~
i

of x
i

. On the other hand,
xmutation

i

is produced as a result of the application of the mutation operator to x
i

.
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Algorithm 3: Pseudocode of MFCGA

1 Randomly generate a population of P individuals
2 Assess each individual for all the K tasks
3 Assign the skill factor (⌧ i) to each member x

i

of the population
4 Let X~

i

represent the set of neighbors of x
i

5 while termination criterion not reached do
6 for i = 1, . . . , P do
7 Select at random a neighbor x

j

of X~
i

8 xcrossover

i

 crossover(x
i

,x
j

)
9 xmutation

i

 mutation(x
i

)
10 Evaluate xcrossover

i

and xmutation

i

for ⌧ i

11 x
i

 best(x
i

,xcrossover

i

,xmutation

i

)
12 Update ⌧ i and 'i of the evolved x

i

13 end

14 end
15 Return as solution the best individuals of each task T

k

Once xcrossover

i

and xmutation

i

have been created, they are evaluated by following the
same selective evaluation criteria described in Section 2.2. This crucial aspect ensures the
computational e�ciency and scalability of MFCGA. At this point we underscore that both
xcrossover

i

and xmutation

i

are evaluated in task T
⌧

i , where ⌧ i is the skill factor of x
i

. This specific
detail implies a substantial di↵erence regarding MFEA and MFEA-II. This is due to the fact
that in MFCGA one individual is devoted to optimizing the same single task throughout the
entire search process, and does not change from one task to another under any circumstance.
To that e↵ect, and for the sake of the equilibrium within the population, the first evaluation
and sorting is based on both factorial rank and scalar factor, thus allocating a similar number
of elements to each of the considered tasks.

It is worth pausing at this point to delve into the detail of this equilibrium of the pop-
ulation. The reader may think that this static assignment among tasks and individuals
may hinder the e↵ective adaptability of the method throughout the search. However, AT-
MFCGA overcomes this issue by introducing a dynamic rearrangement of the grid, by which
individuals modify their position in the grid during the search, thereby adapting the compo-
sition of their neighborhoods and placing individuals together that are specialized in tasks
with positive knowledge transfer.

Another relevant feature of the MFCGA is its local improvement selection mechanism.
Specifically, a newly generated xcrossover

i

or xmutation

i

can only substitute its primal solution
x
i

. Thus, the individual survivor is the best among xcrossover

i

, xmutation

i

and x
i

, automatically
discarding the others.

3.2. From MFCGA to AT-MFCGA: dealing with negative genetic transfer

Despite the good performance shown by MFCGA in TSP problems, it shares the same
problem as the vast majority of the techniques that are designed for this very same pur-
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pose: the inability to cope e�ciently with negative genetic transfers. This issue implies the
execution of unprofitable crossovers that ultimately hinder convergence and penalizes the
scalability of the algorithm. Therefore, we have devised new mechanisms to make MFCGA
sensitive to the search process and the synergies among the tasks being solved, yielding the
Adaptive Transfer-guided Multifactorial Cellular Genetic Algorithm (AT-MFCGA) that lies
at the core of this research.

The main scheme of the AT-MFCGA has been built with two main objectives in mind,
which should be properly balanced:

• The first objective is the e�cient adaptation of the search process to the synergies that
arise from the tasks throughout the execution. This adaptation entails the addition of
new additional mechanisms to MFCGA. As seen in recent studies, dealing with negative
genetic transfers properly should lead to better overall results.

• The second objective is to maintain comparable complexity levels in comparison with
MFCGA and other previously published alternatives such as MFEA-II. For this reason,
newly added adaptation mechanisms should be e↵ective and computationally e�cient,
making the overall multitasking approach attractive and easy to implement.

After stating the two objectives above, we will now explain the two novel mechanisms:
grids rebuilding and multi-mutation in detail. We note that these two mechanisms that
embody the main proposal of this study add a small computational overhead to the original
MFCGA. These two features are introduced as part of a process called dynamicAdaptation(),
which is executed between steps 13 and 14 of Algorithm 3 at each adaptiveFrequency gener-
ation. The pseudocode of the whole procedure is shown in Algorithm 4. In this pseudocode,
isEmpty(⌧

i

) denotes a Boolean function returning a True value if all elements with skill
factor ⌧

i

have been already introduced in the new grid:

• Grid Rebuilding : in most cGAs developed by the research community to date, the grid
built when initializing the population remain stable throughout the algorithm execution.
Although in other applications the reconstruction of this grid could seem counterproduc-
tive for the search, EM provides the perfect ground for this novel feature. Specifically,
the adaptation of the grid aims to place individuals together that belong to synergistic
and complementary tasks, inherently minimizing the incidence of negative genetic trans-
fer in the search. Thus, the Grid Rebuilding mechanism is conceived as a procedure to
dynamically adapt the neighborhoods of each individual in the population.

Delving now into the procedure used to rebuild the grid, AT-MFCGA records at each
generation the amount of positive genetic transfers produced along the search in the
form of a K ⇥ K matrix G of integers, where g

⌧j ,⌧i represents the number of times an
individual xcrossover

i

resulting from mating x
i

(with skill factor ⌧
i

) and x
j

(with skill factor
⌧
j

) outperforms xmutation

i

and x
i

. In these cases, a positive transference of genetic material
has been produced, so the matrix input corresponding to the skill factors of the breeding
individuals is incremented. This way, the method has an updated track of the performance
of the genetic material exchange among the tasks.
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Algorithm 4: dynamicAdaptation() mechanism of AT-MFCGA

Input: OldGrid: {x
i

, ..., x
P

}
Output: NewGrid: {x

i

, ..., x
P

}
Params: Rand1: random integer 2 [1, P ], Rand2: random double 2 [0, 1], p

same task

1 NewGrid[1] = OldGrid[Rand1]
2 Assign mutation(·) to NewGrid[1] through Multi-mutation mechanism
3 for p = 2, . . . , P do
4 if Rand2 < p

same task

and not isEmpty(⌧
p�1) then

5 NewGrid[p] = random individual from OldGrid with skill factor = ⌧
p�1

6 else
7 Assign to ⌧

k

a value following the Roulette Wheel Selection criterion
8 NewGrid[p] = random individual from OldGrid with skill factor = ⌧

k

9 for k0 = 1, . . . , K do
10 if isEmpty(⌧

k

0) then
11 Recompute Roulette Wheel Selection probabilities
12 end
13 Assign mutation(·) to NewGrid[p] through Multi-mutation mechanism
14 end

Every time dynamicAdaptation() is run, the grid is reconstructed based on the K ⇥K
matrix. This procedure begins by drawing an individual x

i

2 P uniformly at random,
which is placed in the first position of the new grid. After this first placement, the
remaining members of the population are sequentially inserted into the position adjacent
to the last introduced element. For new placements, a random individual with the same
skill factor ⌧

i

is chosen under a probability equal to p
same task

, which remains the same
throughout the search. If learned during the search in the same fashion as the rest of
the K ⇥ K matrix, the high number of mutations make p

same task

eventually dominate
numerically over the probability of locating di↵erent tasks together. This eventually
hinders the convergence of AT-MFCGA as per its cellular neighborhood structure. With
probability 1 � p

same task

, x
j

is chosen by following a roulette wheel selection procedure
using the K ⇥ K matrix described above. Specifically, x

j

is drawn at random from the
individuals in the remaining population that feature skill factor ⌧

j

, where:

Pr(⌧
j

= k) =
g
⌧i,kP

K

k

0=1 g⌧i,k0
. (1)

It should be noted that additional generic procedures can be found in the literature for
the same purpose: to sample an individual from a ranked population as per its relative
fitness value. We have used this procedure due to the fact that it is conceptually simple,
yet leads to a grid rebuilding mechanism that allocates together synergistically related
individuals over the cellular automata.

Two crucial aspects should be considered in order to fully understanding this procedure.
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On the one hand, once a new row is started, the last element of the previous row is
used as reference for the new insertion, so that border e↵ects are minimized (due to
e.g. rectangular cellular grids a Moore neighborhoods). On the other hand, once all
the individuals with the same skill tasks are already inserted, the probabilities of the
roulette wheel selection are updated considering the tasks of individuals that are still to
be deployed on the grid.

• Multi-mutation: one of the main features of our approach is that the search process is not
solely based on direct interactions among individuals. Thus, both mutation and crossover
operations are granted the same importance in the search. This is the main reason for
adding an adaptation mechanism related not only to the way in which individuals interact
with each other, but also in the way in which solutions individually explore their nearest
regions of the search space. The main contribution of this mechanism to the whole AT-
MFCGA algorithm is the enhancement of the local exploration capacity of the individuals
within the population. This has been carried out thanks to the dynamic variation of the
neighborhood. More specifically, we modify the mutation operator of the individuals in
the cellular structure so that they can explore their neighborhood using di↵erent patterns,
potentially discovering better fitted solutions.

To this end, AT-MFCGA is endowed with a set of mutation operators. One function is
first selected from all the available functions and automatically assigned to each individual
once it is created in the initialization process (step 1 of Algorithm 3). After that, and
as part of the newly introduced dynamicAdaptation() procedure, the mutation function
of each individual is randomly reassigned to all the operators available, using the same
probability for each function. Furthermore, within the dynamicAdaptation() operation,
the multi-mutation mechanism is triggered after the grid rebuilding process (step 13 of
Algorithm 4). For a better understanding of this mechanism, let us assume a possible
individual x

i

, which is part of a population P trying to solve a given EM environment.
In doing so, AT-MFCGA contains a pool of three mutation operators M = {m1,m2,m3}.
At the beginning of the execution of the algorithm, an operator is selected uniformly at
random from M and assigned to x

i

, (e.g. m1), which is used for mutation purposes (step
9 of Algorithm 3). After that, at the next time dynamicAdaptation() is triggered, a new
mutation function is assigned to x

i

, where in our example, m2 and m3 are considered
eligible. In other words, the mutation operator in use is forced to vary among consecutive
executions of the dynamicAdaptation() strategy.

We finish this section by highlighting that these two simple mechanisms barely increase
the computational complexity of the method, while the benefits provided to the algorithm
are remarkable. Furthermore, in order to enhance the understandability of both methods, in
Figure 2 we have graphically shown the main di↵erences among MFCGA and AT-MFCGA.
As will be empirically shown in Section 6, the adaptability of AT-MFCGA to the synergies
between tasks encountered throughout the search is significant and easily provable. This
feature helps the solver attain better results and distribute the acquired knowledge to the
population of individuals in a more e�cient way.
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Figure 2: Graphical representation of the main di↵erences among MFCGA (a) and AT-MFCGA (b), and
how they a↵ect the structure and behavior of the population of individuals.

3.3. What makes AT-MFCGA a promising EM method?

In this subsection we summarize the 4 key aspects that makes AT-MFCGA a competitive
method when solving EM scenarios. It should be considered that the fulfillment of these
points have acted as a guide for the design and development of this method:

• The cellular structure guarantees the scalability of the method : the first interesting feature
that characterizes AT-MFCGA is its grid-based topology used to organize the popula-
tions of individuals. The inherently parallel structure of cGAs creates an appropriate
scenario for the e�cient solving of EM environments, which are known to require dis-
tributed mechanisms to accommodate the huge computation e↵ort when dealing with
many optimization tasks. Moreover, the adaptation of cGA to EM opens the door to fur-
ther research opportunities, by incorporating future advances in cellular algorithms into
this field. These opportunities could include, for example, new distributed computing
procedures for highly-dimensional problems.

• AT-MFCGA deals e�ciently with negative transfers : the most important feature of AT-
MFCGA is arguably its ability to handle negative transfers between unrelated tasks. The
local improvement selection described in Section 2.2 inherently minimizes the impact of
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negative transfers on the convergence of the solver. This is due to the fact that since our
proposal generates two di↵erent individuals for each member of the population through
the application of classical genetic operators. For this reason, the same importance is
given to the recombination of the original individual with a neighbor, and to the local
movement made through the mutation operator. In this way, for these cases in which
the transfer of knowledge is not profitable, the solver inherently sets aside the individual
generated through the application of the crossover function, intensifying the search on
local variations of the primal solution. Furthermore, the mechanism for seeking good
local solutions is improved in AT-MFCGA with the introduction of the multi-mutation
feature.

• AT-MFCGA minimizes the number of negative transfers : AT-MFCGA implicitly down-
plays the importance of individuals produced as a result of the recombination process
carried out in cases in which tasks are not complementary. However, a great amount of
non-profitable crossover operations could still be performed, leading to a significant waste
of computational resources. These computational resources should be used to enhance
the communication of synergistic tasks. As will be shown in Section 6, the Grid Rebuild-
ing mechanism further contributes to the reduction of the number of negative transfers,
favoring the relationships between complementary tasks.

• Transfer-based explainability of inter-task synergies : as pointed in the introduction, AT-
MFCGA are adequate to explicitly quantify the amount of synergistic communications
among the di↵erent problems being faced. This characteristic provides the researcher
with an explainability interface, not only to be able to visually examine and understand
the interactions between tasks, but also to help enhance the overall performance of the
method with the construction of synergistic EM scenarios. This interesting feature is
taken a step further by AT-MFCGA with the inclusion of the Grid Rebuilding mechanism,
whose output permits to visually inspect how individuals are reorganized within the grid
according to the level of complementarity of their specialized tasks. A further discussion
on this feature of AT-MFCGA is made in Section 6.

4. Experimental Setup

An extensive experimental setup has been designed to assess the performance of AT-
MFCGA when dealing with EM scenarios comprising di↵erent optimization tasks. Further-
more, experiments are also devised to compare the performance of AT-MFCGA to that of
MFEA, MFEA-II and the non-adaptive version of our proposal (MFCGA). We also examine
the genetic transfer resulting from the execution of AT-MFCGA in the considered tasks, and
the influence of the synergies that appeared between these tasks on the adaptive organization
of the cellular grid.

As pointed in the introduction of this paper, the experimentation has been conducted
over four di↵erent well-known combinatorial optimization problems:

• TSP [20], which is arguably one of the most recurrent problems used for benchmarking
purposes and for modeling real-world logistic and transportation problems. A myriad of
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methods have been applied to this problem, ranging from classical solvers to more recently
proposed nature-inspired techniques.

• CVRP [35], which is closely related to the previous TSP, has also played a paramount role
in problems arising from the transportation and mobility realms. For readers interested
in the VRP problem, we recommend reference material such as [30].

• QAP [19], whose main goal is to assign a group of facilities to a set of locations, thus
minimizing the total related cost. This problem has been studied in the last few decades
in very di↵erent areas such as data allocation or scheduling.

• LOP [7] is the last problem considered in this experimentation. This classical combi-
natorial optimization problem can be briefly formulated as the search for the optimal
permutation of the rows and columns of a W ⇥W matrix W comprised by nonnegative
values, that maximizes the accumulated value of its upper-diagonal values. This formu-
lation allows for the modeling of a diversity of problems that arise in assorted areas such
as archeology, economics or sports.

Concretely, the performance of AT-MFCGA, MFEA, MFEA-II and MFCGA has been
assessed over 11 di↵erent test cases, constructed by the combination of 20 public test in-
stances of the above problems. To begin with, 5 TSP instances of the Krolak/Felts/Nelson
benchmark comprising 100 to 200 nodes have been used, which are contained in the TSPLIB
repository. In the case of the CVRP, 5 instances with 50 to 60 nodes have been considered,
all of them part of the Augerat benchmark. Regarding QAP, another 5 instances with sizes
25 to 32 have been collected from the QAPLib repository. Finally, the LOP instances con-
sidered in our benchmark have been retrieved from the LOPLib library, all with a size value
equal to W = 44.

We remark that all these 20 instances have been chosen not only due to their acceptance
by the related community, but also because of the di↵erent degrees of genetic complemen-
tarities in their structure. In Table 1 we depict the genetic overlaps for the 20 instances,
split by problem. These overlaps have been calculated as per the percentage of nodes (in
the case of the TSP and CVRP) and weights (in the case of QAP and LOP) that the in-
stances share. This percentage can be considered to be an early indicator of the influence
of these complementarities in the positive and negative genetic exchanges of the imple-
mented EM solvers. Two clarifications should be made at this point. First, since instances
belong to di↵erent problems of di↵erent nature, we expect that negative transfers will oc-
cur in certain inter-problem interactions. Secondly, the main goal of EM algorithms is to
solve di↵erent multitasking scenarios without assuming any background knowledge about
the problems/tasks to be solved. This is why high-quality EM solvers aim to automatically
infer positive and negative transfers by dynamically exploiting complementarities among
tasks, and to attain competitive results even if such complementarities are scarce (with
better outcomes in synergistic tasks).

In each of the generated test cases, the implemented solvers should tackle the tasks be-
longing to the test case simultaneously. Table 2 summarizes the composition of each of these
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test cases. As can be seen, we have first constructed a test case for each considered problem
(TSP, CVRP, QAP and LOP), comprising the 5 instances of each case. Then we have con-
structed 6 medium-sized test cases, each comprising 10 di↵erent instances of two problems
(5 instances per problem). Finally, we have arranged a large test case considering all the 20
problem instances under consideration. The reasons for performing experiments with these
11 test cases is twofold: i) to increase the heterogeneity and variety of configurations and
problems being solved; and ii) to assess whether the complementarities represented in Table
1 can be exploited even if instances belong to di↵erent optimization problems. To the best
of our knowledge, this is the largest discrete multitasking environment solved by Transfer
Optimization.

Table 1: Summary of genetic complementarities for all the instances employed in the experimentation,
computed as the percentage of overlap between the nodes/weights of every pair of instances in comparison

Instance kroA100 kroA150 kroA200 kroB150 kroC100

kroA100 80% 66% 1% 2%
kroA150 57% 1% 1%
kroA200 66% 57%
kroB150 80%

Instance P-n50-k7 P-n50-k8 P-n55-k7, P-n55-k15 P-n60-k10

P-n50-k7 100% 95% 95% 90%
P-n50-k8 95% 95% 90%
P-n55-k7 100% 95%
P-n55-k15 100%

Instance Nug25 Nug30 Kra30a Kro30b Kra32

Nug25 35% 0% 0% 0%
Nug30 0% 0% 0%
Kro30a 50% 25%
Kro30b 37%

Instance N-t59d11xx N-t59f11xx N-t59i11xx N-t65f11xx N-t70f11xx

N-t59d11xx 2% 26% 16% 17%
N-t59f11xx 16% 10% 8%
N-t59i11xx 10% 16%
N-t65f11xx 10%

Regarding the parameters used for each solver, and for the sake of a fair comparison we
have chosen similar values and operators for all the techniques employed. Furthermore, we
ensure the reproducibility of the presented results by showing the configuration of all the
considered methods in Table 3. Regarding AT-MFCGA, the parameters listed in Table 3
are used as the configuration of the algorithm. Additionally, in order to define the values of
these and other parameters in the experimentation, we have focused on the guidelines and
configurations previously reported in studies dealing with cGAs, MFEA and MFEA-II for
discrete optimization problems [1, 46, 28]. Further verification tests have been conducted
to ensure that all these parameters gave rise to good performance in all the algorithms.
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This trend has also been followed for the methods used in the comparison: MFEA, MFEA-
II and MFCGA. Additionally, good methodological practices for bio-inspired optimization
research have also been embraced [18]: each test case has been run 20 times, and hypothesis
tests have been applied to obtain informed insight on the statistical significance of the
reported performance gaps. Furthermore, as termination criteria, all EM methods used in
this experimentation end their execution after 500 · 103 objective function evaluations.

Finally, in order to take a step beyond the replicability of this experimentation, a public
JAVA implementation of AT-MFCGA has been made publicly available at the following
repository: https://git.code.tecnalia.com/aritz.martinez/at-mfcga. This reposi-
tory also contains the source code that produces the results presented and discussed in this
paper. Furthermore, interested readers can also find the source code of the basic version of
the method, MFCGA, in: https://git.code.tecnalia.com/aritz.martinez/mfcga.

Table 2: Summary of the 11 test cases built for the experimentation.

Test Case Instances involved

TC TSP kroA100, kroA150, kroA200, kroB150, kroC100
TC VRP P-n50-k7, P-n50-k8, P-n55-k7, P-n55-k15, P-n60-k10
TC QAP Nug25, Nug30, Kra30a, Kro30b, Kra32
TC LOP N-t59d11xx, N-t59f11xx, N-t59i11xx, N-65f11xx, N-70f11xx

TC TSP VRP TC TSP [ TC VRP

TC TSP QAP TC TSP [ TC QAP

TC TSP LOP TC TSP [ TC LOP

TC VRP QAP TC VRP [ TC QAP

TC VRP LOP TC VRP [ TC LOP

TC QAP LOP TC QAP [ TC LOP

TC ALL TC TSP [ TC VRP [ TC QAP [ TC LOP

Table 3: Parameter values for MFEA, MFEA-II, MFCGA and AT-MFCGA.

MFEA MFEA-II MFCGA AT-MFCGA

Parameter Value Parameter Value Parameter Value Parameter Value

P size (small TCs) 200 P size (small TCs) 200 Grid size (small TCs) 10⇥ 20 Grid size (small TCs) 10⇥ 20
P size (large TCs) 300 P size (large TCs) 300 Grid size (large TCs) 10⇥ 30 Grid size (large TCs) 10⇥ 30
CX OX [10] Intra-task CX(·) OX CX(·) OX CX(·) OX
mutation(·) 2-opt [23] mutation(·) 2-opt mutation(·) 2-opt mutation(·) {2-opt, Insertion}
RMP 0.9 Initial values of RMP

k,k

0 0.95 Neighborhood Moore Neighborhood Moore
Parent Centric CX(·) Dynamic OX adaptiveFrequency 100 generations
P
m

0.2 p
same task

0.5
�

inc

/ �
dec

0.99 / 0.99

5. Results and Discussion

Table 4 summarizes the results obtained by MFEA, MFEA-II, MFCGA and AT-MFCGA
for all the designed test cases. Specifically, each entry of this table indicates the average and
standard deviation of the fitness attained for each instance and test cases, computed over the
20 independent runs performed for every test case. Best average results have been highlighted
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in bold to ease their visual inspection. We also provide the optima for each instance that has
been given by the repositories from where the instances have been retrieved. Nevertheless,
it is important to point out that the objective of this experimentation is not to reach the
optimal solution of every instance, but rather to use these solutions as references of the
performance of the compared multitasking methods.

Several interesting findings emerge after a thorough inspection of the outcomes in Table
4. First of all, we clearly observe that AT-MFCGA is, overall, the best performing method.
The performance shown by its non-adaptive version (MFCGA) is also worth noting, as it
outperforms both MFEA and MFEA-II in most instances. Finally, the method that performs
the worst is MFEA. Looking more closely at the results, the test case TC ALL seems
particularly interesting, as in it AT-MFCGA attains the best results in all its compounding
20 instances. This trend also holds in other scenarios. Finally, and although it is not the
main goal of this experimentation, it is also interesting to remark that the di↵erence between
the known optima and the average results obtained by AT-MFCGA is 1.60% for the best case
(KroA100), and 10,02% for the worst instance (Kra30a). This is quite remarkable considering
the technique is devised to simultaneously optimize 20 tasks with just 300 individuals.

Moreover, if we analyze the results reached for all test environments comprising 5 and 10
tasks and in TC ALL, MFEA-II and AT-MFCGA seem to scale better and are more resilient
to modifications in the problem instances to solve. Specifically, the results of MFCGA
degrade significantly in some cases, obtaining the worst outcome in the last test case. This
is more noticeable in instances of higher dimensions, such as KroA150 or KroA200. The
same degradation can be observed in Kra30a, Kra30b and Kra32. This phenomenon does
not occur in the case of AT-MFCGA, which maintains its performance in every multitasking
environment, even improving it in some cases for TC ALL. This can be seen in tasks such
as KroA100 or N-t59d11xx, in which AT-MFCGA attains the best outcomes in last test
case. As mentioned, a similar behavior can be also observed in the case of MFEA-II, which
outperforms MFCGA in some specific tasks of TC ALL, such as KroA200, Kra30a and Kra32,
something not characteristic for the rest of the environments. This situation is symptomatic
of the adaptability of both AT-MFCGA and MFEA-II and evinces the superiority of these
adaptive methods when compared to their static versions MFCGA and MFEA.

With the aim of verifying the statistical relevance of the reported performance gaps, we
follow the guidelines in [18] and perform two di↵erent tests with the outcomes obtained
for the last test case. We have chosen this last environment since we have considered it to
be the most representative and demanding one within our experimental setup. Results of
both tests can be found in Table 5. To begin with, the Friedman’s non-parametric test for
multiple comparisons allows us to prove whether di↵erences among the results obtained by
all reported methods can be declared to be statistically significant or not. The first column
of Table 5 shows the mean ranking returned by this non-parametric test for each of the
compared algorithms (the lower the rank, the better the performance). The outcomes of this
test support our above statements: AT-MFCGA is the best performing solver. Additionally,
the obtained Friedman statistic is 55.62. Taking into account that the confidence interval
is set to 99%, the critical point in a �2 distribution with 3 degrees of freedom is 11.34.
Thus, since 55.62 > 11.34, it can be concluded that the di↵erences among the results
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Table 4: Results obtained by MFEA, MFEA-II, MFCGA and AT-MFCGA for all the test environments.
Best average results have been highlighted in bold. Each (algorithm,instance) entry indicates the mean (top)
and standard deviation (bottom) of the fitness over 20 runs. Fitness values of LOP instances are negative
to invert the direction of the search (maximize 7! minimize).

Method
TSP instances CVRP instances QAP instances LOP instances
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845.55 554.62 737.29 996.60 619.85 – – – – – – – – – – – – – – –

MFEA-II
22419.9 29432.8 32097.8 28601.5 22604.4 – – – – – – – – – – – – – – –
564.91 234.15 589.14 622.52 250.29 – – – – – – – – – – – – – – –

MFCGA
21950.6 28383.4 31710.5 27717.5 21506.1 – – – – – – – – – – – – – – –
226.34 372.35 426.96 499.32 283.46 – – – – – – – – – – – – – – –

AT-MFCGA
21883.8 28057.9 31196.9 27430.4 21411.5 – – – – – – – – – – – – – – –
417.13 449.85 543.64 365.42 255.33 – – – – – – – – – – – – – – –

T
C

V
R
P

MFEA
– – – – – 623.8 701.1 665.3 1011.9 840.4 – – – – – – – – – –
– – – – – 17.35 22.20 21.01 20.16 40.65 – – – – – – – – – –

MFEA-II
– – – – – 602.5 680.2 673.0 989.3 819.9 – – – – – – – – – –
– – – – – 25.76 20.72 29.74 24.62 28.12 – – – – – – – – – –

MFCGA
– – – – – 586.9 669.5 610.0 995.7 805.5 – – – – – – – – – –
– – – – – 13.50 8.50 7.15 11.71 11.72 – – – – – – – – – –

AT-MFCGA
– – – – – 583.2 664.0 604.6 984.2 797.5 – – – – – – – – – –
– – – – – 11.58 12.91 13.63 16.79 12.45 – – – – – – – – – –

T
C

Q
A
P

MFEA
– – – – – – – – – – 4068.8 6768.8 101321.0 101265.0 99416.0 – – – – –
– – – – – – – – – – 69.83 120.53 3393.98 2973.0 2827.21 – – – – –

MFEA-II
– – – – – – – – – – 4107.0 6646.6 97616.0 98797.0 96843.0 – – – – –
– – – – – – – – – – 85.31 85.57 1720.83 2932.02 2055.47 – – – – –

MFCGA
– – – – – – – – – – 3964.9 6573.2 95721.5 96806.0 95396.5 – – – – –
– – – – – – – – – – 48.28 57.16 1049.83 1062.55 1431.35 – – – – –

AT-MFCGA
– – – – – – – – – – 3950.0 6564.6 95535.5 96383.0 95179.0 – – – – –
– – – – – – – – – – 58.59 43.55 1313.23 1540.23 1296.81 – – – – –

T
C

L
O
P

MFEA
– – – – – – – – – – – – – – – -141930.6 -120577.3 -8149786.0 -214448.8 -352931
– – – – – – – – – – – – – – – 2595.52 2477.61 938.15 66574.67 2206.62

MFEA-II
– – – – – – – – – – – – – – – -143557.1 -121683.4 -8204880.6 -215744.8 -354715.1
– – – – – – – – – – – – – – – 1427.67 493.70 40069.50 1265.54 2595.52

MFCGA
– – – – – – – – – – – – – – – -145677.2 -122284.4 -8246649.7 -215087.3 -356379.9
– – – – – – – – – – – – – – – 1100.62 227.88 7901.64 351.30 1164.44

AT-MFCGA
– – – – – – – – – – – – – – – -147024.4 -122518.8 -8261545 -216849.1 -359361.0
– – – – – – – – – – – – – – – 363.93 366.58 6590.01 171.54 399.06

T
C

T
S
P

V
R
P

MFEA
22973.2 32004.1 33702.1 31402.9 23208.7 617.2 718.5 658.7 1004.0 832.0 – – – – – – – – – –
903.88 565.82 750.32 991.95 600.35 21.53 25.92 30.05 25.01 77.48 – – – – – – – – – –

MFEA-II
22215.3 29730.7 32050.4 28700.1 22532.4 596.3 672.4 680.3 992.4 822.6 – – – – – – – – – –
610.21 381.35 612.72 700.95 357.64 32.74 25.99 40.21 28.01 36.83 – – – – – – – – – –

MFCGA
21902.2 28290.9 31902.9 27702.2 21603.9 591.7 669.4 616.5 996.7 806.1 – – – – – – – – – –
230.33 365.79 462.33 259.94 269.74 10.00 8.07 10.47 15.31 9.55 – – – – – – – – – –

AT-MFCGA
21841.9 27864.2 31186.4 27430.4 21491.1 593.4 671.6 615.2 985.8 814.3 – – – – – – – – – –
374.94 554.74 332.57 469.01 406.38 16.40 12.53 19.18 15.31 21.13 – – – – – – – – – –

T
C

T
S
P

Q
A
P

MFEA
22815.5 30491.2 32749.6 31017.0 23291.5 – – – – – 4170.5 6814.3 100819.4 102031.9 100800.0 – – – – –
955.76 703.77 819.39 1013.95 690.32 – – – – – 100.83 100.21 3806.42 3850.01 3603.90 – – – – –

MFEA-II
22450.1 29600.6 31892.0 28842.4 22669.1 – – – – – 4032.4 6752.3 980689.2 98512.0 97076.9 – – – – –
600.84 315.04 632.83 680.94 244.53 – – – – – 78.02 50.01 3021.43 2599.97 2600.79 – – – – –

MFCGA
22031.0 28369.4 31980.9 27747.4 21504.7 – – – – – 3962.9 6581.3 97127.5 98261.5 97534.0 – – – – –
238.53 413.06 494.39 444.52 328.16 – – – – – 41.47 34.29 1906.44 1561.78 2229.12 – – – – –

AT-MFCGA
21911.2 27973.0 31273.7 27654.3 21460.2 – – – – – 3982.0 6574.6 97067.5 98310.5 96699.5 – – – – –
407.6 447.3 553.91 481.15 403.5 – – – – – 39.74 63.04 2196.5 1809.3 2235.6 – – – – –

T
C

T
S
P

L
O
P

MFEA
22867.2 30574.8 32739.0 31486.0 23280.2 – – – – – – – – – – -139119.9 -118590.2 -7968085.5 -207933.2 -342932.2
949.01 597.14 992.44 950.43 700.99 – – – – – – – – – – 2313.81 1876.06 4302.32 3140.17 5540.02

MFEA-II
22152.0 29229.1 31928.3 28602.0 22792.2 – – – – – – – – – – -143794.6 -121998.4 -8240106.5 -215190.2 -356432.8
588.64 270.93 700.79 682.14 301.02 – – – – – – – – – – 1070.06 212.10 2878.09 592.33 3007.18

MFCGA
21941.1 28351.9 31966.1 27778.4 21561.1 – – – – – – – – – – -145014.6 -121995.2 -8232359.4 216008.8 -356234.7
296.55 428.54 473.75 420.46 323.44 – – – – – – – – – – 771.21 230.98 2197.02 289.84 739.35

AT-MFCGA
21845.7 27763.1 31195.0 27464.1 21508.6 – – – – – – – – – – -147142.7 -122517.2 -8261545.0 -216869.7 -359468.2
383.47 376.47 520.82 443.82 403.5 – – – – – – – – – – 259.59 109.59 1100.12 228.54 473.29

T
C

V
R
P

Q
A
P

MFEA
– – – – – 642.3 709.2 665.2 1034.5 870.2 4130.0 6803.4 100718.0 101928.0 100733.0 – – – – –
– – – – – 24.2 34.83 36.39 41.23 51.91 50.78 86.63 3798.44 3759.36 3284.81 – – – – –

MFEA-II
– – – – – 632.9 703.8 657.5 1014.9 867.6 4066.6 6733.4 98268.0 98389.0 98015.0 – – – – –
– – – – – 19.16 25.56 30.65 25.62 46.85 67.74 39.03 2891.13 2325.8 2419.48 – – – – –

MFCGA
– – – – – 592.2 671.9 616.6 995.5 821.7 3968.3 6597.5 97793.0 98703.5 98277.0 – – – – –
– – – – – 8.93 13.60 11.20 13.61 14.93 40.64 32.48 1473.90 1518.72 1318.72 – – – – –

AT-MFCGA
– – – – – 586.0 661.2 612.4 993.4 801.2 3959.9 6573.0 96637.0 97716.5 96291.9 – – – – –
– – – – – 14.79 9.05 16.2 17.38 13.86 41.21 62.71 1639.58 1716.33 1770.0 – – – – –

T
C

V
R
P

L
O
P

MFEA
– – – – – 647.2 710.6 689.2 1125.6 893.8 – – – – – -140768.5 -118738.2 -8065891.1 -211554.2 -349389.1
– – – – – 38.23 28.52 38.80 29.82 42.91 – – – – – 3144.10 1635.78 4801.40 1806.31 3419.38

MFEA-II
– – – – – 625.9 704.8 671.6 1049.7 887.8 – – – – – -143997.0 -121710.9 -8202345.3 -215237.6 -354737.7
– – – – – 24.59 15.49 31.47 16.69 27.26 – – – – – 1300.87 564.26 2748.98 690.58 1565.91

MFCGA
– – – – – 590.05 670.5 615.2 997.1 804.1 – – – – – -144619.0 -122086.5 -8237236.2 215899.2 -355770.0
– – – – – 12.65 9.72 10.70 17,14 12.32 – – – – – 846.31 191.16 2717.05 281.26 923.31

AT-MFCGA
– – – – – 583.5 662.3 604.6 986.6 798.8 – – – – – -147258.1 -122519.4 -8261545.0 -216897.7 -359534.3
– – – – – 13.74 13.24 12.08 19.06 12.06 – – – – – 233.77 236.73 2141.0 220.71 496.28

T
C

Q
A
P

L
O
P

MFEA
– – – – – – – – – – 4103.0 6796.0 101677.0 101508.0 100857.0 -140768.5 -118738.2 -8065891.1 -211554.2 -349389.1
– – – – – – – – – – 68.95 76.05 2399.80 2031.24 2815.81 3144.10 1635.78 4801.40 1806.31 3419.38

MFEA-II
– – – – – – – – – – 4040.8 6715.8 99111.0 99477.0 99032.0 -140900.6 -120095.6 -8093245.7 -213327.4 -352395.5
– – – – – – – – – – 51.90 74.90 2116.49 1849.21 2147.79 1367.32 1635.78 3835.75 1021.93 1542.24

MFCGA
– – – – – – – – – – 3976.2 6595.3 97977.5 98950.0 98414.0 -140768.5 -118738.2 -8065891.1 -211554.2 -349389.1
– – – – – – – – – – 46.63 55.32 1210.83 1417.24 1203.70 3144.10 1635.78 4801.40 1806.31 3419.38

AT-MFCGA
– – – – – – – – – – 3976.8 6546.9 96767.0 98387.5 96387.5 -147220.9 -122516.0 -8261545.0 -216913.3 -359540.6
– – – – – – – – – – 46.64 66.88 1763.44 1554.43 1800.09 221.58 241.02 4801.40 199.49 505.86

T
C

A
L
L

MFEA
22900.7 30536.2 32900.5 31283.3 23500.5 646.3 725.8 680.3 1110.3 888.4 4163.0 6852.0 101420.5 102985.3 101450.7 -135521.5 -120100.0 -8111898.9 -210817.6 -351378.5
950.22 629.60 800.15 1218.84 794.38 43.07 30.12 45.62 34.12 47.01 115.07 86.04 3140.34 1135.52 1279.0 3899.10 1690.5 5639.45 2054.82 1086.5

MFEA-II
22529.6 29250.4 31994.2 28293.1 22121.0 615.8 700.8 676.8 1030.7 895.6 4048.6 6730.0 98389.0 101069.0 99064.0 -142411.0 -121054.2 -8158697.3 -213935.5 -353615.6
830.62 374.02 700.10 638.58 312.59 33.99 36.64 33.94 18.13 37.60 79.19 114.19 2114.12 1977.07 1888.72 1888.72 803.16 3997.07 1237.81 2401.57

MFCGA
22115.5 28610.3 32595.8 27899.7 21705.5 594.4 667.6 619.7 1002.9 806.0 3989.0 6587.4 98791.5 99184.5 99176.5 -145297.3 -121611.6 -8206310.4 -215327.8 -354694.3
272.42 277.61 443.61 316.56 245.33 9.76 11.87 13.36 14.10 14.73 36.25 57.60 1725.35 1073.10 1789.26 582.47 446.60 7915.96 571.35 1122.70

AT-MFCGA
21637.3 27769.3 30998.3 27309.2 21310.1 588.6 665.6 608.2 1001.9 796.6 3970.2 6585.4 97814.0 98910.5 97743.0 -147310.9 -122518.2 -8260978.8 -217034.8 -359566.4
242.37 377.63 385.3 435.68 303.67 9.51 12.65 10.93 19.96 13.70 42.51 66.94 1419.86 1391.85 1771.85 103.11 245.84 4121.90 212.59 530.42

Optima 21282 26524 29368 26524 20749 554 629 568 945 744 3744 6124 88900 91420 88700 -163219 -140678 -9182291 -254568 -413948
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Table 5: Results of the Friedman’s non-parametric tests, and unadjusted and adjusted p-values obtained
through the application of Holm’s post-hoc procedure using AT-MFCGA as control algorithm.

Friedman’s Test Holm’s Post Hoc

Algorithm Rank Unadjusted p Adjusted p

MFEA 3.95 0 0
MFEA-II 2.90 0.000003 0.000007
MFCGA 2.15 0.0004849 0.004849

AT-MFCGA 1.00 – –

reported by the four compared algorithms are statistically significant, with AT-MFCGA
ranking the lowest (the best). Besides that, in order to evaluate the statistical significance
of the better performance of AT-MFCGA, the Holm’s post-hoc test has been conducted
and used as control algorithm. The unadjusted and adjusted p-values obtained as a result
of the application of this procedure are depicted in the second and third columns of Table
5. Analyzing this information, and taking into account that all the p-values are lower than
0.01, it can be concluded that AT-MFCGA is significantly better at a 99% confidence level.

In addition to the quantitative analysis of the results provided in this section, we will now
introduce a detailed examination of the genetic transferability detected by the AT-MFCGA
among studied test cases.

5.1. Analysis of the Genetic Transfer between Tasks

In this section we analyze the genetic transfer across the di↵erent instances considered in
this experimentation. To conduct this examination, we focus our attention on the proposed
AT-MFCGA. Furthermore, we perform four separate analyses, one for each of the problems
considered. For this reason, we will use the inter-task interactions occurred along the 20
repetitions of the four tests cases dedicated to each problem: TC TSP, TC VRP, TC QAP and
TC LOP. We have chosen these test cases in order to concentrate on positive and negative
transfers within instances belonging to the same family of combinatorial optimization prob-
lems. As mentioned at the beginning of Section 4, as we are dealing with di↵erent problems,
we assume the existence of negative transfer in every inter-problem interaction. Thus, the
main goal of this study is i) to get a glimpse of the positive knowledge transfer among prob-
lem tasks; ii) to discover synergies between them; and iii) to empirically gauge inter-task
interactions.

It is interesting to mention here that both MFCGA and AT-MFCGA are particularly well
suited for conducting this genetic transfer analysis. This is so by virtue of the replacement
strategy of these methods, namely, the local improvement selection mechanism (Section 3.1).
As such, in MFCGA and AT-MFCGA an individual x

i

of the population is only replaced
if any of the solutions created as a result of crossover (xcrossover

i

) or mutation (xmutation

i

)
outperforms x

i

in terms of its best performing task (skill factor). As such, in cases in which
xcrossover

i

replaces x
i

we can ensure that a positive transfer of genetic material has occurred
from x

j

to x
i

(see Section 3 and Algorithm 3 for details on the notation). In the context
of the problems considered, this transfer is materialized through the insertion of part of x

j
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into the genetic structure of x
i

, conceiving this process as a positive contribution of task ⌧ j

to task ⌧ i.
Bearing in mind the above consideration, Figures 3.a to 3.c illustrate the number of

positive genetic transfer episodes between each pair of tasks. In these plots, the radius of
each circle is proportional to the average amount of transfers per run in which an individual
with the skill factor of the column label has shared some of its genetic material with an
individual whose skill factor is indicated in the row label. Furthermore, circles placed on the
diagonal line symbolize the sum of all intra-task (gray portion) and inter-task (blue portion)
exchanges. An intra-task transfer occurs when the genetic exchange is produced between
individuals with the same skill factor.

The above figures reveal several interesting findings. The first one is the confirma-
tion of the existence of synergies between the considered instances. An exemplifying few
examples can be seen in {kroA100,kroA150}, {P-n50-k7,P-n55-k7}, {kra30a,kra32} and
{N-t59f11xx,N-t59i11xx}, which evince an intense synergy over the search. We can hence
confirm that the genetic transfer among these pairs of tasks (and others for which similar
conclusions can be drawn) have contributed to the multitasking search process.

The second conclusion is related to the negative transfer and to those task pairs in
which the intensity of genetic material exchange is almost negligible. Examples such as
{kroA100,kroC100}, {Nug25,kra32} or any relation with N-t59d11xx are representative of
this situation. This fact unveils that the exchanges of genetic material among these tasks
can be considered to be negative [8], not contributing at all to the convergence of the search
process. In task pairs such as {Nug25,kra32} or {N-t59d11xx,N-t59f11xx}, this negative
knowledge sharing could be expected beforehand, since the similarity between these two
instances as per Table 1 is very low (0% and 2%, respectively).

Unexpectedly, the proliferation of unprofitable transfers in pairs such {kroA100, kroA200},
{kroA150,kroA200} or {kroA200,kroB150} can be contradictory with respect to the infor-
mation depicted in Table 1. The complementarity in the structure of these task-pairs can be
considered as high (66%, 57% and 66%, respectively). However, the inter-task interaction for
these pairs depicted in Figure 3.a is practically nonexistent. This finding contradicts some
influential studies [15]. Indeed, assessing the correlation in the composition of the afore-
mentioned pairs, we can arguably confirm that the so-called partial domain overlap exists
[16]. In other words, the domains of pairs such as {kroA100,kroA200}, {kroA150,kroA200}
or {kroA200,kroB150} partially overlap because of the existence of set of features which are
common to both tasks.

To shed further light on this unexpected mismatch, we have conducted a deeper analysis
of the 5 TSP instances. In this second study we focus our attention on the correlation
between the best known solutions of such instances, for which we resort to quantitative
measures proposed in recent research dedicated to continuous optimization problems [9, 50].
The specific definition used for intersection or overlapping is the one provided in [9]: two
tasks partially overlap with each other if the global optima of the two tasks are identical in
the unified search space with respect to a subset of variables, and di↵erent with respect to the
remaining variables.

In Table 6 we summarize the genetic similarities found in the optimal solutions of the
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(a) (b)

(c) (d)

Figure 3: Average intensities of genetic transfer between (a) TSP; (b) CVRP; (c) QAP; (d) LOP instances.
Radius of each circle is proportional to the average amount of positive transfers per run in which an individual
with the skill factor of the column label and an individual whose skill factor is indicated in the row label.
Circles in the diagonal represent the sum of all inter-task (blue portion) and intra-task (gray portion)
exchanges.

considered TSP instances. For the sake of completeness, we complement this table with
the same data regarding the VRP, aiming at strengthening the conclusions drawn from this
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second analysis. We have highlighted in blue those cells corresponding to tasks that have
elicited a significant positive inter-task knowledge transfer, as given in Figures 3.a and 3.b:
the more intense the inter-task activity was, the more intense the blue used for coloring the
entry in Table 6 will be.

Several interesting trends can be observed in Table 6. To begin with, pairs with the
highest positive transfer activity expose a significant overlap in their optimal solutions. This
statement is particularly visible in cases such as {kroA100,kroA150}, {kroC100,kroA200},
{P-n50-k7,P-n55-k7} or {P-n50-k7,P-n50-k8}. Likewise, pairs with a lower or a non
existent level of overlap between their optimal solutions show less intensity on their positive
genetic transfer. Arguably, TSP cases such as {kroA100,kroB150} or {kroA200,kroA150},
and the VRP instance pair {P-n55-k15,P-n60-k10} are instances that buttress this fact.
On the contrary, a few specific examples do not comply with this observation. This is so
due to the randomness inherent in any meta-heuristic algorithm such as AT-MFCGA.

Table 6: Genetic complementarities among the best known solutions of the TSP instances utilized in the
experimentation

Instance kroA100 kroA150 kroA200 kroB150 kroC100

kroA100 32% 5% 0% 0%
kroA150 3% 0% 0%
kroA200 3% 21%
kroB150 10%

Instance P-n50-k7 P-n50-k8 P-n55-k7 P-n55-k15 P-n60-k10

P-n50-k7 51% 59% 26% 34%
P-n50-k8 46% 32% 30%
P-n55-k7 31% 37%
P-n55-k15 24%

This second analysis leads to another interesting discovery: in evolutionary multitasking,
positive transfers are strictly driven by the degree of intersection between the best solutions
of tasks involved in the transfer. We have tested that overlapping degrees higher than 10%
su�ce for guaranteeing a minimum positive push from one task to another. Moreover,
instances with a greater degree of overlap are prone to showing more intense knowledge
sharing. For this reason, the sole complementarity in the structure of problem instances is
concluded to be irrelevant for the existence of positive genetic transfer between tasks, as has
been proven empirically in our experiments.

6. Grid Rebuilding Mechanism: Improved Knowledge Exchange and Visual Ex-
plainability of Synergies among Tasks

Finally, in a separate section we will briefly discuss the influence Grid Rebuilding has
in the grid structure of AT-MFCGA. Our purpose is to demonstrate how AT-MFCGA
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(a) (b)

(c) (d)

Figure 4: First and last organizations of the cellular grid for (a) TC TSP VRP; (b) TC TSP LOP; (c) TC VRP QAP;
(d) TC QAP LOP. The color of each cell depicts the skill task of the solution placed in that position. Considering
that each grid is composed of 300 individuals, the square placed in the upper-left corner represents individual
x1, while the element in the lower-right corner represents solution x300.
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autonomously reorganizes its whole population based on the real-time analysis of the genetic
transfer produced during the execution. In this regard, one could intuitively think that AT-
MFCGA reallocates the set of individuals in the cellular grid, composing new neighborhoods
of interrelated tasks. However, the goal of this mechanism is not to create grids that are
fully composed of individuals optimizing the same tasks. For this reasons a roulette wheel
selection procedure has been used (Section 3.2 for further details). Thus, in order to avoid
the premature convergence and to promote diversity in the cellular neighborhoods, our
goal with this mechanism is to create grids composed mainly of synergistic tasks, but not
excluding the inclusion of non-related tasks.

Figures 4.a to 4.d show the initial and final organizations of the cellular grid of AT-
MFCGA in 4 of the 6 test cases, composed of two di↵erent problems: TC TSP VRP, TC TSP LOP,
TC VRP QAP, and TC QAP LOP. We have chosen these four cases in order to facilitate the vi-
sual understanding of the grid rebuilding mechanism. For example, TC all would be hard
to visualize in a such figure as it contains 20 di↵erent tasks. Furthermore, in order to gen-
erate these figures, we have gathered the information resulting from the first of the 20 runs
executed in each test case. Each of the colored squares corresponds to a specific individual
in the grid. Since each of the test cases represented in these figures comprises two problems,
tasks referring to the first problem are filled with a red-color palette, whereas instances
corresponding to the second task are colored using di↵erent tones of blue. This information
is shown in every figure. Considering that each 10⇥ 30 grid comprises 300 individuals (see
Table 3 for more detail), the square placed in the upper-left corner corresponds to x1, and
the element in the lower-right corner depicts x300. The color of each cell represents the skill
task of the solution placed in that position. Each time the Grid Rebuilding mechanism is
executed, the placement of individuals is modified by following the principles described in
Section 3.2. It is worth noting that in these figures we do not explicitly show in which
position a specific individual is arranged, since the tracking of a concrete solution is of no
interest in this study. Instead, the purpose of these plots is to yield a general picture of how
individuals with related skill tasks are placed in close positions.

In these figures we clearly discern the main philosophy of the Grid Rebuilding mechanism:
tasks belonging to the same problem (those of the same primary color) tend to be placed
in adjacent positions. This is clearly verifiable in every test case: in Figures 4.a, 4.b and
4.d, for example, a group of blue individuals can be distinguished in the bottom and central
part of the grid. In Figure 4.c this group block can be identified in the upper part of the
grid. The same observation can be made when focusing on the red palette: red blocks can
be perceived in the upper parts of Figures 4.a, 4.b, and the bottom part of Figure 4.c. It is
also interesting to analyze isolated tasks, e.g. in Figure 4.d, individuals specialized in task
N-t59d11xx are mainly concentrated in the bottom part of the matrix. Taking Figure 3.d
into account, we know that N-t59d11xx is not complementary with any other intra-problem
tasks. Furthermore, we see that no inter-problem relationship is synergistic. For this reason,
all individuals optimizing N-t59d11xx tend to be placed in the last part of the grid.

Given these outcomes we can conclude that Grid Rebuilding mechanism e↵ectively re-
organizes the cellular grid of AT-MFCGA, favoring the adjacency of synergistic tasks, and
isolating those that do not contribute to a better convergence of their counterparts. The
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information contained in the grid after the execution of this mechanism presents the rela-
tionships between tasks, grouping them together spatially. This o↵ers an explanation of
what AT-MFCGA discovers during the search, which helps understand the evolution of the
knowledge grasped by the algorithm, disregarding the technical background of the user at
hand.

7. Conclusions and Future Research

This paper has elaborated on the design, implementation and performance analysis of an
Adaptive Transfer-guided Multifactorial Cellular Genetic Algorithm (AT-MFCGA) suited to
dealing with multitasking scenarios in which several optimization problems must be solved
by a single search process, harnessing eventual synergies between problems. Our method
incorporates several key aspects that make it a promising meta-heuristic for multitasking
setups: 1) a neighborhood relationship induced on a grid arrangement of the individuals,
which allows the coverage of the evolutionary crossover operator to be controlled; and 2)
two adaptive mechanisms in order to e�ciently face negative knowledge transfers: Grid
Rebuilding and Multi-Mutation.

In order to quantitatively assess the performance of the proposed approach, we have
designed 11 multitasking environments comprising 20 di↵erent instances of 4 combinatorial
optimization problems (TSP, CVRP, QAP and LOP), over which the quality of solutions pro-
duced by AT-MFCGA has been compared to that of MFEA, MFEA-II and the non-adaptive
MFCGA. The obtained results verify that AT-MFCGA is a promising method that performs
better (with statistical significance) than the other methods considered in the benchmark.
Furthermore, an additional analysis of the inter-task genetic transfer produced during the
search process has been carried out, and shows that the empirical crossover counts between
tasks are in accordance with the estimated overlap of their optimal solutions, hence uncov-
ering the complexity of identifying the synergies between problems beforehand. Finally, the
last stage of our experimental study shows the impact of the grid rebuilding mechanisms of
AT-MFCGA, clearly depicting how individuals optimizing synergistic tasks are prone to be
placed close to each other with the entire cell. This last feature of AT-MFCGA also provides
a friendly interface for users to better understand relationships existing between tasks.

The findings reported in this study pave the way for several future research directions.
In the short term, it is our intention to assess the e�ciency of AT-MFCGA using additional
problem instances. Another interesting line of research to be pursued in the near future is
to exploit the information contained in the cellular grid to cope with non-stationary tasks,
namely, tasks that evolve over time. We believe that the neighborhood-based structure of
AT-MFCGA does not only contribute to the convergence of the overall algorithm, but also
serves to detect changes in tasks that reflect the synergies among problems. Finally, we
plan to address other practical scenarios suited to be tackled with multitasking approaches,
such as fuzzy control systems [31], fuzzy conformable fractional di↵erential equations [4],
second-order boundary value problems [3].
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