39 research outputs found

    Complexity of Atrial Fibrillation Electrograms Through Nonlinear Signal Analysis: In Silico Approach

    Get PDF
    Identification of atrial fibrillation (AF) mechanisms could improve the rate of ablation success. However, the incomplete understanding of those mechanisms makes difficult the decision of targeting sites for ablation. This work is focused on the importance of EGM analysis for detecting and modulating rotors to guide ablation procedures and improve its outcomes. Virtual atrial models are used to show how nonlinear measures can be used to generate electroanatomical maps to detect critical sites in AF. A description of the atrial cell mathematical models, and the procedure of coupling them within two‐dimensional and three‐dimensional virtual atrial models in order to simulate arrhythmogenic mechanisms, is given. Mathematical modeling of unipolar and bipolar electrogramas (EGM) is introduced. It follows a discussion of EGM signal processing. Nonlinear descriptors, such as approximate entropy and multifractal analysis, are used to study the dynamical behavior of EGM signals, which are not well described by a linear law. Our results evince that nonlinear analysis of EGM can provide information about the dynamics of rotors and other mechanisms of AF. Furthermore, these fibrillatory patterns can be simulated using virtual models. The combination of features using machine learning tools can be used for identifying arrhythmogenic sources of AF

    Analysis of Atrial Electrograms

    Get PDF
    This work provides methods to measure and analyze features of atrial electrograms - especially complex fractionated atrial electrograms (CFAEs) - mathematically. Automated classification of CFAEs into clinical meaningful classes is applied and the newly gained electrogram information is visualized on patient specific 3D models of the atria. Clinical applications of the presented methods showed that quantitative measures of CFAEs reveal beneficial information about the underlying arrhythmia

    Spatial Characterization and Estimation of Intracardiac Propagation Patterns During Atrial Fibrillation

    Get PDF
    This doctoral thesis is in the field of biomedical signal processing with focus on methods for the analysis of atrial fibrillation (AF). Paper I of the present thesis addresses the challenge of extracting spatial properties of AF from body surface signals. Different parameters are extracted to estimate the preferred direction of atrial activation and the complexity of the atrial activation pattern. In addition, the relation of the spatial properties to AF organization, which is quantified by AF frequency, is evaluated. While no significant correlation between the preferred direction of atrial activation and AF frequency could be observed, the complexity of the atrial activation pattern was found to increase with AF frequency. The remaining three papers deal with the analysis of the propagation of the electrical activity in the atria during AF based on intracardiac signals. In Paper II, a time-domain method to quantify propagation patterns along a linear catheter based on the detected atrial activation times is developed. Taking aspects on intra-atrial signal organization into account, the detected activation times are combined into wavefronts, and parameters related to the consistency of the wavefronts over time and the activation order along the catheter are extracted. Furthermore, the potential relationship of the extracted parameters to established measures from body surface signals is investigated. While the degree of wavefront consistency was not reflected by the applied body surface measures, AF frequency could distinguish between recordings with different degrees of intra-atrial signal organization. This supports the role of AF frequency as an organization measure of AF. In Paper III, a novel method to analyze intracardiac propagation patterns based on causality analysis in the frequency domain is introduced. In particular, the approach is based on the partial directed coherence (PDC), which evaluates directional coupling between multiple signals in the frequency domain. The potential of the method is illustrated with simulation scenarios based on a detailed ionic model of the human atrial cell as well as with real data recordings, selected to present typical propagation mechanisms and recording situations in atrial tachyarrhythmias. For simulated data, the PDC is correctly reflecting the direction of coupling and thus the propagation between all recording sites. For real data, clear propagation patterns are identified which agree with previous clinical observations. Thus, the results illustrate the ability of the novel approach to identify propagation patterns from intracardiac signals during AF which can provide important information about the underlying AF mechanisms, potentially improving the planning and outcome of ablation. However, spurious couplings over long distances can be observed when analyzing real data comprised by a large number of simultaneously recorded signals, which gives room for further improvement of the method. The derivation of the PDC is entirely based on the fit of a multivariate autoregressive (MVAR) model, commonly estimated by the least-squares (LS) method. In Paper IV, the adaptive group least absolute selection and shrinkage operator (LASSO) is introduced in order to avoid overfitting of the MVAR model and to incorporate prior information such as sparsity of the solution. The sparsity can be motivated by the observation that direct couplings over longer distances are likely to be zero during AF; an information which has been further incorporated by proposing distance-adaptive group LASSO. In simulations, adaptive and distance-adaptive group LASSO are found to be superior to LS estimation in terms of both detection and estimation accuracy. In addition, the results of both simulations and real data analysis indicate that further improvements can be achieved when the distance between the recording sites is known or can be estimated. This further promotes the PDC as a method for analysis of AF propagation patterns, which may contribute to a better understanding of AF mechanisms as well as improved AF treatment

    Multichannel Analysis of Intracardiac Electrograms - Supporting Diagnosis and Treatment of Cardiac Arrhythmias

    Get PDF
    Cardiologists diagnose and treat atrial tachycardias using electroanatomical mapping systems. These can be combined with multipolar catheters to record intracardiac electrograms. Within this thesis, various signal processing techniques were implemented and benchmarked to analyze electrograms. They support the physician in diagnosis and treatment of atrial flutter and atrial fibrillation. The developed methods were assessed using simulated data and demonstrated on clinical cases

    A multi-variate predictability framework to assess invasive cardiac activity and interactions during atrial fibrillation

    Get PDF
    Objective: This study introduces a predictability framework based on the concept of Granger causality (GC), in order to analyze the activity and interactions between different intracardiac sites during atrial fibrillation (AF). Methods: GC-based interactions were studied using a three-electrode analysis scheme with multi-variate autoregressive models of the involved preprocessed intracardiac signals. The method was evaluated in different scenarios covering simulations of complex atrial activity as well as endocardial signals acquired from patients. Results: The results illustrate the ability of the method to determine atrial rhythm complexity and to track and map propagation during AF. Conclusion: The proposed framework provides information on the underlying activation and regularity, does not require activation detection or postprocessing algorithms and is applicable for the analysis of any multielectrode catheter. Significance: The proposed framework can potentially help to guide catheter ablation interventions of AF

    Characterization of the Substrate Modification in Patients Undergoing Catheter Ablation of Atrial Fibrillation

    Full text link
    Tesis por compendio[ES] La fibrilación auricular (FA) es la arritmia cardíaca más común. A pesar de la gran popularidad de la ablación con catéter (AC) como tratamiento principal, todavía hay margen de mejora. Aunque las venas pulmonares (VPs) son los principales focos de FA, muchos sitios pueden contribuir a su propagación, formando el sustrato de la FA (SFA). El mapeo preciso del SFA y el registro de la modificación del SFA, como marcador positivo después de AC, son fundamentales. Los electrocardiogramas (ECG) y los electrogramas (EGM) se reclutan para este propósito. Los EGM se utilizan para detectar candidatos de AC como áreas que provocan o perpetúan la FA. Por lo tanto, el análisis de EGM es una parte indispensable de AC. Con la capacidad de observar las aurículas globalmente, la principal aplicación de los ECG es evaluar la modificación del SFA analizando las ondas f o P. A pesar del extenso análisis de cualquiera de los tipos de registro, existen algunas brechas. La AC no-VP aumenta el tiempo en quirófano, provocando mayores riesgos y costos. En cuanto al análisis de la modificación del SFA, se utilizan varios umbrales para definir una onda P prolongada. El principal objetivo de la presente Tesis es contribuir al esfuerzo de análisis de SFA y de modificación de SFA. Para ello, la presente Tesis se desarrolló bajo dos hipótesis principales. Que la calidad de la información extraída durante el SFA y el análisis de modificación del SFA se puede mejorar mediante la introducción de pasos innovadores. Además, la combinación de análisis de ECG y EGM puede aumentar la resolución del mapeo y revelar nueva información sobre los mecanismos de FA. Para cumplir con el objetivo principal, el análisis se divide en 4 partes, conformando los 4 capítulos del Compendio de articulos. En primer lugar, se reclutó la dimensión de correlación de grano grueso (DCGG). DCGG localizó de manera confiable EGM complejos y la clasificación por tipos de FA arrojó una precisión del 84 %. Luego, se adoptó un análisis alternativo de la onda P, estudiando por separado su primera y su segunda parte, correspondientes a la aurícula derecha (AD) e izquierda (AI). Los resultados indicaron LA como la principal fuente de modificación del SFA y subrayaron la importancia de estudiar partes integrales de ECG. Los hallazgos de este estudio también sugieren la implementación de partes integrales de ondas P como un posible alivio de las discrepancias en los umbrales de ondas P para definir el tejido fibrótico. Posteriormente, se estudió el efecto diferente del aislamiento de la VP izquierda (AVPI) y derecha (AVPD) sobre la modificación del SFA. AVPI fue la parte crítica, siendo la fuente exclusiva de acortamiento de onda P. El análisis de los registros durante la AC también permitió una observación más cercana de las fluctuaciones de la variabilidad de la frecuencia cardíaca (VFC) a lo largo del procedimiento de CA, lo que reveló información sobre el efecto de la energía de radiofrecuencia (RF) en el tejido auricular. La última parte se centró en el seno coronario (SC), una estructura fundamental en el mapeo de FA para aumentar la resolución de la información. Se definieron los canales más y menos robustos durante el ritmo sinusal (RS) y se investigó la utilidad de SC en la evaluación de la modificación del SFA. Aunque CS no proporcionó una imagen global de la alteración del SFA, pudo registrar con mayor sensibilidad las fluctuaciones en la respuesta auricular durante la AC. Los hallazgos presentados en esta Tesis Doctoral ofrecen una perspectiva alternativa sobre la modificación del SFA y contribuyen al esfuerzo general sobre el mapeo de FA y la evaluación del sustrato posterior a la CAAC, abriendo futuras líneas de investigación hacia una resolución más alta y un mapeo más eficiente de los mecanismos desencadenantes de la FA.[CA] La fibril·lació auricular (FA) és l'arítmia cardíaca més comú. Tot i la gran popularitat de l'ablació amb catèter (AC) com a tractament principal, encara hi ha marge de millora. Tot i que les venes pulmonars (VPs) són els principals focus de FA, molts llocs poden contribuir a la seva propagació, formant el substrat de la FA (SFA). El mapatge precís de l'SFA i el registre de la modificació de l'SFA, com a marcador positiu després d'AC, són fonamentals. Els electrocardiogrames (ECG) i els electrogrames (EGM) es recluten per a aquest propòsit. Els EGM es fan servir per detectar candidats d'AC com a àrees que provoquen o perpetuen la FA. Per tant, lanàlisi dEGM és una part indispensable dAC. Amb la capacitat d'observar les aurícules globalment, la principal aplicació dels ECG és avaluar la modificació de l'SFA analitzant les ones f o P. Tot i l'extensa anàlisi de qualsevol dels tipus de registre, hi ha algunes bretxes. L'AC no-VP augmenta el temps a quiròfan, provocant majors riscos i costos. Pel que fa a l'anàlisi de la modificació de l'SFA, s'utilitzen diversos llindars per definir una ona P perllongada. L'objectiu principal d'aquesta Tesi és contribuir a l'esforç d'anàlisi de SFA i de modificació de SFA. Per això, aquesta Tesi es va desenvolupar sota dues hipòtesis principals. Que la qualitat de la informació extreta durant el SFA i lanàlisi de modificació de lSFA es pot millorar mitjançant la introducció de passos innovadors. A més, la combinació d'anàlisi d'ECG i EGM pot augmentar la resolució del mapatge i revelar informació nova sobre els mecanismes de FA. Per complir amb l'objectiu principal, l'anàlisi es divideix en 4 parts i es conforma els 4 capítols del Compendi d'articles. En primer lloc, es va reclutar la dimensió de correlació de gra gruixut (DCGG). DCGG va localitzar de manera fiable EGM complexos i la classificació per tipus de FA va donar una precisió del 84%. Després, es va adoptar una anàlisi alternativa de l'ona P, estudiant per separat la primera i la segona part corresponents a l'aurícula dreta (AD) i esquerra (AI). Els resultats van indicar LA com la font principal de modificació de l'SFA i van subratllar la importància d'estudiar parts integrals d'ECG. Les troballes d'aquest estudi també suggereixen la implementació de parts integrals d'ones P com a possible alleugeriment de les discrepàncies als llindars d'ones P per definir el teixit fibròtic. Posteriorment, es va estudiar l'efecte diferent de l'aïllament de la VP esquerra (AVPI) i la dreta (AVPD) sobre la modificació de l'SFA. AVPI va ser la part crítica, sent la font exclusiva d'escurçament d'ona P. L'anàlisi dels registres durant l'AC també va permetre una observació més propera de les fluctuacions de la variabilitat de la freqüència cardíaca (VFC) al llarg del procediment de CA , cosa que va revelar informació sobre l'efecte de l'energia de radiofreqüència (RF) en el teixit auricular. L'última part es va centrar al si coronari (SC), una estructura fonamental al mapeig de FA per augmentar la resolució de la informació. Es van definir els canals més i menys robustos durant el ritme sinusal (RS) i es va investigar la utilitat de SC a l'avaluació de la modificació de l'SFA. Tot i que CS no va proporcionar una imatge global de l'alteració de l'SFA, va poder registrar amb més sensibilitat les fluctuacions a la resposta auricular durant l'AC. Les troballes presentades en aquesta Tesi Doctoral ofereixen una perspectiva alternativa sobre la modificació de l'SFA i contribueixen a l'esforç general sobre el mapeig de FA i l'avaluació del substrat posterior a la CAAC, obrint futures línies de recerca cap a una resolució més alta i un mapeig més eficient dels mecanismes desencadenants de la FA.[EN] Atrial fibrillation (AF) is the commonest cardiac arrhythmia. Despite the high popularity of catheter ablation (CA) as the main treatment, there is still room for improvement. Time spent in AF affects the AF confrontation and evolution, with 1,15% of paroxysmal AF patients progressing to persistent annually. Therefore, from diagnosis to follow-up, every aspect that contributes to the AF confrontation is of utmost importance. Although pulmonary veins (PVs) are the main AF foci, many sites may contribute to the AF propagation, by triggering or sustaining the AF, forming the AF substrate. Precise AF substrate mapping and recording of the AF substrate modification, as a positive marker after CA sessions, are critical. Electrocardiograms (ECGs) and electrograms (EGMs) are vastly recruited for this purpose. EGMs are used to detect candidate CA targets as areas that provoke or perpetuate AF. Hence, EGMs analysis is an indispensable part of the CA procedure. With the ability to observe the atria globally, ECGs' main application is to assess the AF substrate modification by analyzing f- or P-waves from recordings before and after CA. Despite the extensive analysis on either recording types, some gaps exist. Non-PV CA increases the time in operation room, provoking higher risks and costs. Furthermore, whether non-PV CA is beneficial is under dispute. As for the AF substrate modification analysis, various thresholds are used to define a prolonged P-wave, related with poor CA prognostics. The main objective of the present Thesis is to contribute to the effort of AF substrate and AF substrate modification analysis. For this purpose, the present Thesis was developed under two main hypotheses. That the information quality extracted during AF substrate and AF substrate modification analysis can be improved by introducing innovative steps. Also, that combining ECG and EGM analysis can augment the mapping resolution and reveal new information regarding AF mechanisms. To accomplish the main objective, the analysis is split in 4 parts, forming the 4 chapters of the Compendium of publications. Firstly, coarse-grained correlation dimension (CGCD) was recruited. CGCD reliably localized highly complex EGMs and classification by AF types yielded 84% accuracy. Then, an alternative P-wave analysis was suggested, studying separately the first and second P-wave parts, corresponding to the right (RA) and left (LA) atrium. The findings indicated LA as the main AF substrate modification source and underlined the importance of studying integral ECG parts. The findings of this study additionally suggest the implementation of integral P-wave parts as a possible alleviation for the discrepancies in P-wave thresholds to define fibrotic tissue. Afterwards, the different effect of left (LPVI) and right pulmonary vein isolation (RPVI) on the AF substrate modification was studied. LPVI was the critical part, being the exclusive source of P-wave shortening. Analysis of recordings during CA also allowed a closer observation of the heart rate variability (HRV) fluctuations throughout the CA procedure, revealing information on the effect of radiofrequency (RF) energy on the atrial tissue. The last part was focused on coronary sinus (CS), a fundamental structure in AF mapping to increase the information resolution. The most and least robust channels during sinus rhythm (SR) were defined and the utility of CS in AF substrate modification evaluation was investigated. Although CS did not provide a global picture of the AF substrate alteration, it was able to record with higher sensitivity the fluctuations in the atrial response during the application of RF energy. The findings presented in this Doctoral Thesis offer an alternative perspective on the AF substrate modification and contribute to the overall effort on AF mapping and post-CA substrate evaluation, opening future lines of research towards a higher resolution and more efficient mapping of the AF drivers.Vraka, A. (2022). Characterization of the Substrate Modification in Patients Undergoing Catheter Ablation of Atrial Fibrillation [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/191410Compendi

    Simplified Cardiodynamic Tissue Electrophysiology Characterization, Reduced Order Modeling with Therapeutic Perspective

    Get PDF
    Atrial fibrillation (Afib) is the most common cardiac arrhythmia affecting millions of people around the world. Mapping and analysis of electrical activation patterns such as electric rotors during Afib is crucial in understanding arrhythmic mechanisms and assessment of diagnostic measures. To this end, there exists various mapping studies where textit{'quantitative'} features such as local activation time, dominant frequency, wave direction, and conduction velocity are extracted from recorded intracardiac electrograms (EGMs). However, obtaining quantitative features further adds to multiplicity of the data and henceforth does not help interpretation of measured signals as opposed to using a more compressed diagnostic terms such as linking the measurements to reentry mechanisms. Through some techniques it is possible to construct isopotential and phase mappings by the help of monophasic action potential recordings in higher spatial resolution. In those cases, however, both expensive mapping tools performing multi-site simultaneous recordings which are not available to most of electrophysiologists are required. On the other hand, the most commonly used catheters which provide high resolution but local measurements remain rather rudimentary in mapping a spatially more global arrhythmic behaviors in a simultaneous fashion. Spiral waves are tissue level phenomena observed in both clinical and experimental settings. They are the product of electrical rotors which are associated with reentry mechanisms during Afib. They can be reproduced using computer models of cardiac electrical activity. Current computer models vary in complexity, accuracy, and efficiency. One particular type is called biophysical models which are based on detailed ion channel interactions. Besides being computationally demanding, they are exceedingly complex and intractable preventing their use in a systems approach where multilevel events are generally considered together. Phenomenological models, on the other hand, include summarized details of ionic events yet preserve fundamental biophysical accuracy. A particular one of them, a minimal resistor model (MRM), was shown to reproduce relevant basic electrophysiological behaviors such as (action potential) AP and electrical restitution properties for human ventricular tissue. The objective in present thesis is to 'qualitatively' characterize fibrillatory wavefront propagation dynamics in cardiac tissue using simulated intracardiac EGMs obtained from most commonly used and lower cost catheter types providing high resolution but localized readings. Another purpose connected to the previous is to show adequacy of a phenomenological model, MRM, in reproducing biophysically related behaviors for human atria. In this respect, two category of problems are handled throughout the thesis: (1) parameter estimation of MRM and (2) discrimination of spiral wave behaviors through intracardiac EGMs simulated using MRM. In the first part, representativeness of MRM for human atrial electrophysiology is established through adaptation of it to a biophysically detailed model originated from experimental data. Specifically, a method is proposed for parameter estimation of the simple model, MRM, to match a targeted behavior such as AP and electrical restitutions first generated from a complex model, by using extended Kalman filter (EKF). In the second part, a method that receives intracardiac EGMs and returns corresponding wavefront propagation patterns classified in terms of electric rotor dynamics is introduced. The method incorporates an information theoretical distance which is called normalized compression distance (NCD) used for assessment of distance measure between simulated behaviors. Achieving outstanding performance together with robustness in discrimination through usage of simulated data enables a theoretical validation of the method. Proposed frameworks collectively yield (1) potential usability of a computationally efficient and easier in analysis model for tissue level cardiac events and (2) simplicity and practicality in clinics through a mapping from a multiple, complex EGM signals to electric rotor behaviors, symptoms more relevant to the diagnosis.Ph.D., Electrical Engineering -- Drexel University, 201

    Characterization of Cardiac Electrogram Signals During Atrial Fibrillation

    Get PDF
    Atrial fibrillation (AF) is the most common cardiac arrhythmia in United States. The most popular treatment for AF is a percutaneous procedure called catheter ablation. Current AF ablation procedures unfortunately have a poor success rate, primarily because the mechanisms involved in AF are incompletely understood even today. Intra-atrial electrograms have previously been shown to provide information on the mechanisms of AF. This thesis focuses on two such mechanisms – AF-sustaining sites known as sustained rotational activities (RotAs), and atrial tissue with unique electrical properties known as myocardial scars. Catheter ablation procedures today construct the 3D electroanatomic map of the left atrium (LA) by maneuvering a conventional Multipolar Diagnostic Catheter (MPDC) along the LA endocardial surface. These procedures are limited to pulmonary vein isolation and other linear ablation performed on various regions of the left atrium (such as roof and mitral isthmus) where the regions are decided based on the atrial anatomy. However, it remains unclear how to utilize the information provided by the MPDC to analyze and characterize the RotAs and scars. Previous electrogram characterization studies mainly use a single bipole rather than MPDCs to characterize the electrograms based on features such as cycle length or dominant frequency from the time or frequency domain. In this thesis we developed novel techniques for investigating the above mentioned mechanisms using signal analysis, mathematical modeling, numerical simulation and clinical experiments, all utilizing MPDC recordings. First, the variations in the total conduction delay (TCD) from MPDC electrograms as the MPDC moves towards a RotA source was investigated. Second, the maximum peak-to-peak amplitudes of MPDC electrograms recorded during AF and NSR were analyzed. This thesis provides insights into methods of characterization of cardiac electrograms and the findings of this thesis could address the current challenges in AF ablation
    corecore