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Abstract

Identification of atrial fibrillation (AF) mechanisms could improve the rate of ablation 
success. However, the incomplete understanding of those mechanisms makes difficult 
the decision of targeting sites for ablation. This work is focused on the importance of EGM 
analysis for detecting and modulating rotors to guide ablation procedures and improve 
its outcomes. Virtual atrial models are used to show how nonlinear measures can be used 
to generate electroanatomical maps to detect critical sites in AF. A description of the atrial 
cell mathematical models, and the procedure of coupling them within two‐dimensional 
and three‐dimensional virtual atrial models in order to simulate arrhythmogenic mecha‐
nisms, is given. Mathematical modeling of unipolar and bipolar electrogramas (EGM) 
is introduced. It follows a discussion of EGM signal processing. Nonlinear descriptors, 
such as approximate entropy and multifractal analysis, are used to study the dynamical 
behavior of EGM signals, which are not well described by a linear law. Our results evince 
that nonlinear analysis of EGM can provide information about the dynamics of rotors 
and other mechanisms of AF. Furthermore, these fibrillatory patterns can be simulated 
using virtual models. The combination of features using machine learning tools can be 
used for identifying arrhythmogenic sources of AF.

Keywords: atrial fibrillation, arrhythmogenic sources, electrogram model, computer 
simulation, nonlinear features, electroanatomical mapping

1. Introduction

The most common sustained cardiac arrhythmias in humans are associated with the atria. 
Atrial arrhythmias, mainly atrial fibrillation (AF), frequently provoke incapacitating symp‐
toms and severe complications such as stroke and heart failure [1]. Overall, 20–25% of all 
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strokes are caused by AF [2]. The presence of AF is related to a significant increase in morbid‐
ity and mortality [3]. Electrocardiogram‐based surveys suggest that 1% of the total population 
is affected by AF [4].

There are a large number of clinical conditions that are associated with an increased incidence 
of AF. This contributes to a progressive process of atrial remodeling characterized by a set of 
changes in atrial properties that contributes in sustaining of the arrhythmia. These changes 
include alterations in the electrical cellular activity, calcium handling and in the atrial struc‐
ture such as cellular hypertrophy and fibrosis. They have been described in some animal 
models [5–8] and in humans [9–11]. These alterations may favor the occurrence of triggers 
that initiate the AF and the formation of a substrate that promotes its perpetuation. Changes 
in electrical activity cause a significant shortening of the action potential duration (APD) and 
a decrease in refractoriness [8–10], which may support the initiation and maintenance of mul‐
tiple re‐entrant waves, as suggested by experimental studies [5, 9].

It is well known that AF can be caused by different mechanisms, including single‐circuit re‐
entry, multiple‐circuit re‐entry, rapid local ectopic activity and rotors [12–15]. It is very impor‐
tant to know the mechanisms underlying AF, since these have implications in the treatment of 
the disease. An important percentage of patients suffers of paroxysmal AF, which is initiated 
by focal triggers that are localized at preferential sites, mainly in the pulmonary veins (PV) 
[13]. Electrical isolation of pulmonary veins can prevent recurrence of AF in 70–80% of these 
lone AF patients. The rationale for this is the crucial observation, reported in [13], that AF was 
mostly triggered by ectopic beats arising from the muscle sleeves of the pulmonary veins. 
They demonstrated that atrial rapid paces or ectopic activity originated in the proximities or 
in the interior of the pulmonary veins could act like triggers, and, in some cases, they would 
be responsible for the maintenance of paroxysmal AF episodes [16, 17]. A unifying theory 
suggests that rapid focal activity is responsible for generating atrial, which is necessary to 
maintain a substrate for the generation of multiple re‐entrant waves [18, 19]. While parox‐
ysmal AF is maintained predominantly by ectopic focal activity or local re‐entrant circuits 
located in one or more pulmonary veins, as the arrhythmia evolves into more persistent forms 
promoted by atrial remodeling, the mechanisms that maintain AF move toward the atria and 
are increasingly based on re‐entry substrates [11, 20–22]. Based on clinical [23–25] and experi‐
mental [14, 26] results, certain types of AF can be attributed to a stable high‐frequency rotor or 
a small number of rotor waves in left atrium, which maintain the arrhythmia, whose periodic 
activation can be converted into a chaotic pattern when the wavefronts propagate across the 
atrial wall. This phenomenon, known as the mother rotor hypothesis, is the most recently pro‐
posed mechanism of AF [27], which suggests that AF is triggered by a series of ectopic beats, 
whose wave fronts give rise to a rotor. The rotor is a stable re‐entry around a functionally 
unexcitable core [15] that works as a maintenance mechanism with some spatial temporal 
stability, activating the local tissue at high frequency, generating wave fronts that fragment 
and propagate as multiple daughter wavelets. Stable rotors are at diverse locations, mostly in 
the left atrium, including sites outside the pulmonary veins, as well as the posterior, inferior, 
and roof regions. Several studies have observed rotors in in vitro and animal models [14, 28, 
29], and its presence in humans has been reported [27, 30, 31].
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All localized sources of AF as re‐entry circuits, ectopic foci, or rotors, cause fibrillatory conduc‐
tion remote from the source, which is difficult to distinguish from propagation that maintains 
the AF by multiple wavelets, and any of these phenomena may generate rotors registered by 
intracardiac recordings [32, 24]. Studies carried out by [33, 34] have shown evidence that human 
AF can be sustained by localized rotors; however, the existence of stable rotors maintaining AF 
remains a focus of discussion. Hence, the importance of the implementation of virtual models 
and computational tools in the studies of AF sources and its relation with the signals recorded 
from surface. In the same way, the rotors have been shown in computer models of AF [35–38].

Ablation has emerged as an important treatment strategy for AF [39]. Pulmonary veins iso‐
lation reaches single procedure success rates of 60–80% for paroxysmal AF treatment [40]. 
However, for the chronic case, this strategy does not achieve satisfactory outcomes [41]; con‐
sequently, complex ablation lines are added to the procedure [45]. Catheter ablation guided by 
electroanatomic mapping has revolutionized the treatment of permanent AF. Identification of 
AF mechanisms could improve the rate of ablation success. However, the incomplete under‐
standing of those mechanisms makes difficult the decision of targeting sites for ablation. To 
overcome this limitation, two‐dimensional and realistic three‐dimensional human atria com‐
puter models have been developed to investigate the relationship between the characteristics 
of EGM and the propagation pattern associated with them [42–45].

It is thought that the different mechanisms lead to changes in the characteristics of spatiotem‐
poral organization of AF [44, 45]. EGM‐guided ablation procedures have been proposed as an 
alternative strategy, which involves mapping and ablating focal sources or complex fraction‐
ated atrial electrograms (CFAE) [46]. Recent studies have shown that a large number of sites 
representing AF substrates are characterized by a high degree of disorganization in EGM 
signals [29], and therefore, signal processing methods are being designed in order to quantify 
their degree of fractionation [47, 48]. The relationship between the rotor tip and CFAE has 
been published in recent studies [36, 45, 47, 49, 50]; however, automatic rotor mapping meth‐
ods have not been fully developed.

Different mapping techniques are being used to identify target sites for ablation, and some 
of them are activation waves, voltage, dominant frequency [23, 51–55] and CFAE maps [39, 
46, 56]. Nevertheless, there are several limitations with these techniques, and one of the most 
important is that they depend considerably on the electrophysiologist expertise [57].

The term CFAE was introduced by Nademanee [46] as a pathophysiological concept; however, 
its definition is unclear and broad and includes inherent subjectivity [58]. CFAE are formally 
defined as follows: (1) atrial EGM that have fractionated electrograms composed of two deflec‐
tions or more, and/or perturbation of the baseline with continuous deflection of a prolonged 
activation complex over a 10 s recording period; (2) atrial EGM with a very short cycle length 
(<120 ms) over a 10 s recording period. CFAE definition does not distinguish between different 
morphologies; consequently, fractionated EGM according with CFAE definition are not neces‐
sarily related to arrhythmogenic substrates. Moreover, several studies have shown conflicting 
results with Nademanee [56, 59]. This may lead the electrophysiologist to confuse the fractionated 
EGM that are functional in nature [60] with fractionated EGM corresponding to  arrhythmogenic 
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sources, leading to incorrect target sites for ablation. This also makes clinical results difficult 
to compare. Inconsistent results have been found in different studies using the CFAE concept. 
Although the concept of CFAE has made a great contribution to the study of AF, it may fail to 
describe the wide range of fractionation that occurs in the EGM signals in specific cases. Thus, the 
electrogram‐guided approach by mapping and targeting areas of CFAE is a technique that is still 
debated [61], and further studies are needed to strengthen the treatment techniques.

To date, indexes computation from EGM is carried out mostly based on the detection of local 
activation waves and time intervals. However, the concept of EGM fractionation, such as 
CFAE, defined using time criteria, is not enough to describe the complexity of EGM during 
AF. Morphological irregularity and temporal variability of the signal must be included. To 
overcome the limitations of CFAE definition, designation of different degree of fractionation 
has been proposed based on the perturbation of baseline and the presence of continuous 
deflection [36]. Some studies have presented evidence linking the vortex of the rotor with 
a high degree of fractionation in the EGM [36, 47]. However, the patterns of EGM signals 
associated with the rotors are still unknown, and the development of tools for characteriz‐
ing fractionated EGM signals is still a current topic. In addition, there is not a standard for 
description of fractionation degrees, and there are different descriptions in the literature. In 
order to quantify the behavior of different morphologies of EGM signals and the fraction‐
ation degrees, recent studies have helped to understand the concept of EGM fractionation as 
a nonlinear phenomenon [47, 48, 62]. Mathematical descriptors of the nonlinear dynamical 
behavior have been used to study cardiac signals and are based on the description of the state 
of the system and its evolution. If a linear law does not describe the evolution of the system, 
the dynamics is nonlinear. Thus, indexes and features calculated using nonlinear dynamics 
theory become an alternative for enhancing assessment of EGM complexity.

2. Simulated atrial fibrillation dynamics

The mathematical modeling of atrial electrophysiology has become a useful method for study‐
ing the underlying mechanisms responsible for AF. Different models of human atrial elec‐
trophysiology have been published with various formulations of ionic currents and calcium 
handling, therefore, with different electrophysiological properties [63–67]. In our studies, the 
transmembrane potential was based on the Courtemanche‐Ramirez‐Nattel and Kneller [63, 
68] model of human atrial cell kinetics in the presence of 0.005 μM of acetylcholine (ACh). 
Based on the experimental data [9, 10, 69], the cell model was modified in order to reproduce 
electrophysiological conditions of permanent AF: the maximum conductance of delayed rec‐
tifier potassium current (IKur) and transient potassium current (Ito) was decreased by 50%, 
the maximum conductance of potassium time independent current (IK1) was increased by 
100%, and the maximum conductance of L‐type calcium current (ICaL) was decreased by 70% 
(see Table 1). Thus, the action potential duration at 90% of the repolarization (APD90) was 
reduced by 70% (Figure 1A), which is in accordance with experimental studies developed by 
Workman et al. [9] and Bosch et al. [10] in isolated myocytes from patients with permanent 
AF, using the whole cell patch clamp technique.
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The development of multi‐dimensional models has allowed representing fibers, pieces of 
tissue and atrial cavities. These models have served to approach, among other aspects, 
the biophysics of the action potential propagation under physiological and pathological 
conditions.

Different studies have developed and implemented two‐dimensional (2D) models of atrial tis‐
sue to study the action potential propagation dynamics under physiological and pathological 
conditions [36, 37, 68, 70].

We have developed a two‐dimensional model of human atrial tissue. The tissue surface was 
discretized into a 150 × 150 hexahedral mesh (22,500 elements and 45,602 nodes). Spatial reso‐
lution was 0.4 mm. The electrical propagation of the atrial action potential was modeled using 
the monodomain reaction–diffusion equation:
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where Sv corresponds to the surface‐to‐volume ratio, D is the conductivity tensor, Cm is the 
specific membrane capacitance (50 pF), Iion is the total ionic current that crosses the membrane 
cells, Vm is the membrane potential, and Istim is the stimulus current. The electrophysiological 
model was integrated into the two‐dimensional virtual model. The equation was solved using 
the EMOS software, which is a parallel code that implements the finite element method and 
operator splitting [42, 71] for solving the monodomain model of electrical propagation and 
allows to calculate EGM as postprocess. The time step was fixed to 0.001 ms.

The tissue was considered isotropic. A conductivity of 0.3 S/cm was assigned to obtain a real‐
istic conduction velocity of 60 cm/s.

Rotor was generated by S1–S2 cross‐field stimulation protocol. Stimuli pulses were rectan‐
gular with 2 ms of duration and 6 mA of amplitude. The S1 was a train of five plane stimuli 
applied at the left boundary of the model at a basic cycle length of 1000 ms. The S2 stimulus 
was rectangular (3 × 2 cm) and was applied 40 ms after the last S1 in the inferior left corner of 
the model (Figure 1B).

A 4s stable clockwise spiral wave (rotor) was observed in the two‐dimensional model after 
applying the protocol (Figure 1C). The APD shortening due to the atrial remodeling allowed 
the rotor stability over time. Wijffels et al. [8] in goats demonstrated that maintenance of 
AF by pacing in the normal goat heart resulted in the development of sustained AF within 
1–3 weeks. This observation of tachycardia‐induced electrical remodeling creating a back‐
ground for persistent AF led to the concept that “Atrial Fibrillation Begets Atrial Fibrillation.” 
The longer duration and stability of the AF episodes was explained by a shortening of 
the wavelength of the atrial impulse. The simulated rotor pattern agrees with the “rotor 
 hypothesis” proposed by Jalife [15]. The contour map was implemented to show the core of 
the rotor (circular point in Figure 1D).

Virtual models of cardiac structures are needed in the study of atrial arrhythmias that are 
critically dependent on the spatial organization of cardiac structures and fibers. Some atrial 
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arrhythmias, such as AF, need complete structures to perpetuate them. The validity and enor‐
mous potential of multi‐scale heart models in improving diagnosis, prevention and therapy 
of cardiac pathologies are supported by different scientific results. These virtual models have 
opened new horizons in the study of the complex mechanisms underlying atrial arrhythmias 
and their treatment, either pharmacological or surgical. The earliest complex atrial models 
incorporated parts of the anatomical architecture of the atria [72, 73]. During the last few 
years, a significant number of new models of the animal and human atrial anatomy have been 
published [44, 74–88]. Some of these models included the atrial fiber architecture observed 
in histological sections. Studies developed by Seemann et al. [75] and Aslanidi et al. [79] 
included only the main bundles fiber orientation in their human atrial model. An image‐
based anatomical model of the sheep atrial has been published [80] including realistic fiber 
orientation. The model reproduces the whole atria with highly detailed myofiber architecture. 

Figure 1. (A) Action potential under physiological and permanent AF conditions. (B) S1–S2 cross‐field protocol. The 
plane S1 and rectangular S2 stimulus are shown. (C) Stable rotor under permanent AF conditions. (D) Contour map, the 
circular point indicates the rotor tip location.

Conductance Permanent AF

gIKL Increased by 100%

gIKACh –

gIKuv Decreased by 50%

gIto Decreased by 50%

gICaL Decreased by 70%

Table 1. Conductance (g) changes of currents for permanent AF.
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The three‐dimensional models also allow relating the arrhythmic behaviors as focal activity, 
rotors and multiple wavelet reentries, with their manifestation in the electrograms [44, 81].

A realistic three‐dimensional model of human atria including the main anatomical struc‐
tures (Figure 2A), electrophysiological heterogeneity, anisotropy (conduction velocity in the 
direction of myocardial fibers is usually several times larger than that vertical to them), and 
fiber orientation (Figure 2B) was developed in an earlier work [42]. It includes 52,906 hexa‐
hedral elements (polyhedrons with six faces, eight corners or nodes, topologically equivalent 
to cubes). The mathematical atrial cell model coupled within three‐dimensional (3D) virtual 
atria model was used to simulate AF dynamics. AF episodes were generated by the S1–S2 
stimulation protocol as follows [36]: a train of five stimuli with a basic cycle length of 1000 ms 
was applied in the sinus node area for a period of 5 s to simulate the atrial sinus rhythm (S1). 
Based on the study developed by Haissaguerre et al. [13], a burst pacing of 6 ectopic beats to 
high frequency (S2) at cycle length (CL) of 130 ms was delivered into the right superior pul‐
monary vein after the last S1.

During AF activity initiated by the ectopic activity, it was observed the generation of two 
rotors of stable activity during 5 s of simulation. One was located in the posterior wall of the 
left atrium, near the left pulmonary vein (#2 in Figure 2D), and the other was located in the 
superior vena cava (#1 in Figure 2D). The rotors were generated spontaneously, which is in 
agreement with the rotor hypothesis [27]. Additionally, a block line located over the inferior 
right pulmonary vein has been observed (#3 in Figure 2D).

Figure 2. (A) Frontal view of the three‐dimensional model of human atria. (B) Fiber orientation. (C) AP for different 
atrial areas (CT: crista terminalis, PM: pectinate muscles, APG: appendages, AVR: atrioventricular rings, and AWM: 
atrial working myocardium) under physiological conditions. (D) Activation isochronal maps. Stable rotors located in 
the posterior wall of the left atrium (#2) and A in the superior vena cava (#1) are showed. A block line can be seen at the 
right inferior pulmonary vein (#3).
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3. Simulated atrial electrograms

Several studies [21, 60, 82–84] have investigated the effects of factors such as slow conduction, 
anisotropy, conduction blocks, re‐entries, and wave collisions, on the morphology of unipolar 
and bipolar EGM. However, it is still not entirely clear to what extent these factors contribute 
to temporal and spatial variations in EGM morphology as observed during AF.

Calculating atrial EGM from the virtual models allows the study of EGM morphology and 
their relationship with arrhythmogenic sources.

Unipolar EGM are modeled as the register of the extracellular potential measured by a posi‐
tive polarity electrode whose reference (zero potential) is located at infinity. The distance 
from the electrode to the surface quantifies the influence area of the electrode, so the closer 
it is to the tissue, the greater the field uptake. The extracellular potential (Ф

e
) was computed 

using the large volume conductor approximation [85, 86]:

   φ  
e
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   ), ∇′Vm is the spatial gradient of transmembrane potential Vm, r is the distance from the 

source point (x, y, z) to the measuring point (x′, y′, z′) and dv is the differential volume.

Zlochiver et al. [45] investigated the regularity of EGM in the presence of stable rotors, in 
a two‐dimensional atrial model. Jacquemet et al. [87] in a computer model representing a 
monolayer of atrial cells concluded that microscale obstacles cause significant changes to 
EGM waveforms. Using two‐dimensional computer models and cell cultures, Navoret et al. 
[88] detected CFAE using the criteria of cycle length, number of deflections, and amplitude. 
They established a relationship between the detected CFAE and the presence of rotors and 
shock waves, but they failed to differentiate them. Ashihara et al. [89], using a two‐dimen‐
sional myocardial sheet of size 4.5 × 4.5 cm, studied the role of fibroblasts in CFAE during AF. 
Yun et al. [90] reported that CFAE in a homogeneous two‐dimensional AF model were weakly 
correlated with wave break, phase singularity, and local dominant frequency.

We simulated that in the two‐dimensional atrial model, a total of 22,500 virtual electrodes 
(150 × 150, one for each element of the model), spaced by 0.4 mm at a distance of 0.2 mm above 
the atrial surface, unipolar EGM were calculated with temporal resolution of 1 ms.

The 98.9% of EGM, located away from the rotor tip, present simple morphology (Figure 3A). 
The remaining 1.1% of EGM, located at the rotor tip, exhibits potentials composed by two or 
more deflections (Figure 3B).

The mechanism by which fractionation of unipolar EGM occurs in our simulations can be 
explained as follows: the rotor is a singularity point or phase singularity, when the rotor is 
stable it pivots around a circular trajectory forming the core of the spiral wave, afterwards the 
pivot point is affected by the wavefronts from the rotor tip. When the wavefront passes near 
to the pivot point in each rotation cycle, several electrotonic potentials (nonpropagated local 
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potential) are observed; consequently, irregularity and fractionation arise [36]. Our results are 
consistent with other studies, in which unipolar EGM symmetry was affected by the wave‐
front curvature (convex, concave or amorphous) [44] and fractionated unipolar EGM were 
observed at pivot points (functionally unexcitable core around which the rotor turns) [82]. 
Umapathy et al. [50] reported that CFAE were located in the region of a rotor tip and sites 
where wave breaks, using a murine HL‐1 atrial monolayer model.

Most of the in silico studies using three‐dimensional atrial models have characterized the 
simulated arrhythmias by observing the re‐entrant patterns. Few authors [44] have also calcu‐
lated EGM in a circular region on the free wall of the right atrium, using the 16 unipolar vir‐
tual electrodes on a simplified three‐dimensional model of human atria. They suggested that 
analysis of the amplitude and symmetry of unipolar atrial electrograms can provide informa‐
tion about the electrophysiological substrate maintaining AF. Hwang et al. [81] calculated 
bipolar EGM in a personalized three‐dimensional left atrial model in order to applied virtual 
ablation at CFAE points.

We calculated 42,835 EGM in the whole atrial surface of the three‐dimensional atrial model, 
over a 4‐s window and recorded at 1 kHz. Bipolar EGM were calculated by subtracting two 
1 mm‐spaced adjacent unipolar EGM.

Fractionated atrial EGM were shown to be located in rotor tip areas, when the tip of the rotor 
turned on this point, displaying low voltage and irregular morphology with potentials com‐
posed by two or more deflections (Figure 4A and B). The wavefront of the rotor surrounds 
the pivot point, without depolarizing it completely, which results in multiple low amplitude 
deflections in the EGM.

The EGM corresponding to the block line present fractionation; however, the activation pat‐
terns are visible, and their amplitudes are similar to nonfractionated EGM (Figure 4C). The 
EGM from sites with a plain wavefront are regular with potentials composed by one deflec‐
tion (Figure 4D).

We identified the area in the posterior wall of the left atrium where the rotor spins (shaded 
circle in Figure 5A). EGM signals obtained from this area were used. From the selected region 
of the model, a conversion was made from the three‐dimensional coordinate system to the 
two‐dimensional coordinate system (x, z), taking advantage of the very low dispersion in y. 
EGM were converted to bipolar EGM, and this task was accomplished by creating a virtual 
mesh with 1 mm spacing, and performing a match with the two‐dimensional model surface. 
In this way, the difference between two adjacent signals in the mesh was calculated, obtaining 
a bipolar signal. In the same way, the results show that the rotor vortex area is associated with 

Figure 3. (A) Regular EGM calculated in ‘*’ from Figure 1C. (B) Fractionated EGM calculated in the rotor tip.
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signals presenting high degree of fractionation (Figure 5B). For the contrary, the EGM from 
sites with a plain wavefront are regular with potentials composed by one deflection, similarly 
to the unipolar EGM morphology (Figure 5C).

4. Estimation of nonlinear features for electroanatomical mapping

EGM‐guided ablation has been proposed as a strategy to find critical sites of AF as target sites for 
ablation. Multiple clinical trials have shown that ablation of fractionated electrograms adds no 
benefit to conventional AF ablation with pulmonary vein isolation [91, 92]. This is likely because 
sites of electrogram fractionation, according with CFAE definition, not always correlate with 
sites of arrhythmic drivers and can also represent sites of wavefront collision or slow conduction, 
among others. Although CFAE may be relevant to detect areas that maintain AF, further charac‐
teristics apart from fractionation should be important to identify the atrial sites that maintain AF.

To overcome the limitation of CFAE, nonlinear analysis of EGM signals has been proposed by 
several authors to analyze the signals using further characteristics apart from time intervals 
or number of deflection [93, 94]. Nonlinear features are studied using the raw EGM signals, 
and it is not necessary to detect local activation waves. This is an important property, because 
in fragmented signals detection of activation waves is not always feasible. Nonlinear features 

Figure 5. (A) The area in the posterior wall in the model to obtain bipolar EGM. Samples of two bipolar EGM are shown, 
a fractionated signal from the rotor tip (B) and a regular activation pattern from nonrotor area (C).

Figure 4. EGM calculated in the three‐dimensional atrial model, under simulated AF episode. Fractionated EGM 
corresponding to the rotor in the posterior wall of the left atrium (A) and in the vena cava (B). (C) EGM corresponding 
to a functional block line. (D) Regular EGM corresponding to plain wavefront.
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as entropy estimation and fractal analysis are compute over each single EGM, and its value is 
related to the complexity of the signal.

Nonlinear mathematical tools can be used to quantify the irregularity of a signal. During the last 
years, measures have been developed to estimate the complexity of biomedical signals. Main goal 
of these advancements is to provide new theories about the dynamics of biological systems. Such 
is the case of Kolmogorov‐Sinai entropy, Lempel‐Ziv complexity, and correlation dimension, 
among others [95]. However, most of the complexity indexes require long time series to obtain 
reliable and convergent measures. Pincus [96] proposed the statistic approximate entropy (ApEn), 
which solves the issue of short time series, and it is aimed to measure the complexity degree and 
the presence of similarity patterns. Further developments have followed the ApEn, taking this as 
a starting point, such as the sample entropy [97], the fuzzy entropy [98] or hierarchical entropy 
[99]. Some authors have reported the use of nonlinear features to evaluate their suitable for locat‐
ing critical sites in AF. For instances, Ganesas et al. [47] reported that sites near to the rotor tip 
present high values of Shannon Entropy (ShEn) in EGM signals recorded from cell cultures and 
simulated episodes of fibrillatory conduction in two‐dimensional models of atrial tissue.

4.1. Approximate and Shannon entropy definitions

In general words, entropy has been conceived as a measure of the degree of disorganization or 
irregularity of a process. The most organized the process is, the lower the entropy related to it.

The statistic  ApEn  (  m, r, N )     depends on the length N of the time series  x  (  n )     (where n is), the posi‐
tive integer m (where  m ≤ N ) and the positive real number r. Defining:

   Φ   m (r ) =   
 ∑ 

i=1
  N−m+1    log[  C  

i
  m (r ) ]
  _____________  

N − (m − 1 )    (3)

we have that  ApEn(m, r, N ) =  Φ   m (r ) −  Φ   m+1 (r ) . 

The variable   C  
i
  m (r )  counts the number of segments of length m that are within the boundaries 

defined by r. Thus, ApEn(m, r, N) measures the  logarithmic frequency of the tool measures 
the logarithmic frequency that those segments of length m that are close remain close after 
increasing the length of the segments by one. In such a way, the statistic ApEn provides a 
measure of irregularity of the signal, implying strong regularity when ApEn value is small, 
and irregularity when ApEn value is large [96].

In previous work, we have reported the use of ApEn to evaluate the location of rotors and 
block lines in a three‐dimensional model of human atrial [100]; and the use of multifractal 
analysis as a tool to discriminate between four levels of fractionation according with a modi‐
fied Well’s approach [101]. In this work, we tested several nonlinear features using EGM sig‐
nals recorded from a two‐dimensional model of atrial tissue and a three‐dimensional model 
of human atrial. Additional, we test the used of combination of nonlinear features using clus‐
tering method to study the distribution of different EGM patterns over the atrial surface.

Another index that estimates the entropy value from an N‐point signal  x  (  n )     is Shannon entropy 
(ShE) defined as:
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i=1

  
N

     p  
i
    log  2  ( p  

i
   )  

where p
i
 is the probability of assuming the corresponding x(i) value. Both, ApEn and ShEn, 

consider that a high value of repeated patterns implies order. Thus, they make their respective 
estimations of a signal irregularity by counting repetitive patterns, where the ApEn has a more 
elaborate method of defining and counting these patterns.

4.2. Nonlinear features to complexity estimation for building maps: two‐dimensional 

model case

Nonlinear features such as ShEn and ApEn have been used and tested for locating stables 
rotors in simulated episodes of fibrillatory conduction. We have tested ShEn maps and ApEn 
maps using the EGM signals from the two‐dimensional model. Results of this approach are 
shown in Figure 6A and E. These maps are constructed with high resolution using all the 
 signals  available in the model: 22,500 with spatial resolution of 0.4 mm. However, in the real 
case, the resolution of the electrodes can be lower, so in Ref. [102] was carried out a study 
about the EGM maps analysis reducing their resolution. Figure 6 shows the maps of two‐
dimensional model of AF reconstructed from the entire model with a 75% of reduction of 
the electrodes number (resolution: 37 × 38) and characterized using the features ShEn and 
ApEn of the EGM signals, respectively. A reconstruction of the entire model was developed 
using the interpolation techniques: Inverse distance weighted ‐IDW [103] (Figure 6B and F), 
IDW with Mean Filter–MF [104] (Figure 6C and G), and backpropagation artificial neural 
network—BPANN (Figure 6D and H). The best result is obtained with BPANN algorithm. 
Backpropagation artificial neural network (BPANN) is a type of artificial neural network 
that assumes the function of a common and complex nervous system, and BPANN is widely 
used in machine learning for clinical research [105, 106]. BPANN is trained using Levenberg‐
Marquardt backpropagation algorithm [107]. This technique was applied for predicting the 

Figure 6. (A) Two‐dimensional ShEn map. ShEn map reconstructed 75% using IDW‐MF (B) and BPANN (C). (D) Log 
entropy map. (E) Two‐dimensional ApEn map. ApEn map reconstructed 75% using IDW‐MF (F) and BPANN (G). (H) 
Log entropy map.
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values of unknown points in order to increase the resolution of the two‐dimensional Map. 
BPANN has a structure (layers and neurons—[2 5 4 3 2 1]), which was defined applying a 
heuristic adjustment based on the minimum error for the mean map. The performance was 
assessed using the root mean squared error (RMSE).

5. Approximate entropy for rotor detection: three‐dimensional  

model case

Motivated by the features of the ApEn, as a signal analyzing tool, and its important presence 
in several studies of complex biological systems [108–113]; our group has performed a study 
that relates AF mechanisms, such as rotors, with high degree of irregularity of EGM by means 
of the ApEn. In the following sections, ApEn theoretical definition and its interpretation are 
presented. Moreover, ApEn electroanatomical maps obtained from the virtual models are pre‐
sented, as well as the feasibility of characterize fibrillatory mechanisms in space and time. It 
follows a detailed analysis of our results and their implications.

5.1. Approximate entropy for locating critical sites in AF

As stated earlier, our group has performed numerical experiments to assess the regularity 
of atrial EGM signals by means of the ApEn. Our research is based on three hypotheses: (1) 
Fractionation of EGM increases the ApEn values. (2) High ApEn values can be related to the tip 
of a rotor. (3) Information about spatial and temporal dynamics of a rotor could be obtained 
using moving window ApEn.

In order to calculate the ApEn values from the virtual unipolar EGM, we define the parameters  
m = 2 and r = 0.1 according to the interval of values suggested by Pincus [96], and N = 1000. 
Figure 1 shows three EGM of 1000 points each, corresponding to minimum, intermediate 
and maximum ApEn values. The ApEn corresponds with the morphological complexity of the 
EGM: High values of ApEn mean irregularity or fragmentation of the EGM, and vice versa. 
In Figure 7, the EGM of the bottom present fragmentation of activation waves and baseline 
irregularity. Intermediate values of ApEn represent transitions between nonfragmented and 
fragmented EGM, in which differences between the patterns of activation waves can be seen, 
as can be seen in the EGM of the middle.

Figure 8 (middle) shows the electroanatomical map of ApEn(2, 0.1, 1000) for the first second of 
the episode. The areas of R1 and R2, right inferior pulmonary vein and coronary sinus, have 
high ApEn values (red). The ApEn values (green) increase in the appendix, in pulmonary veins, 
and on the posterior and inferior wall of the left atrium. Rotors are established at the R1 and 
R2 zones. The high ApEn regions in Figure 8 are not specifically related to rotor activity. Some 
authors suggest that the standard ApEn parameters are not suitable for signals of fast dynamics, 
and that to solve these cases, the r and m parameters must be chosen from a larger set than the 
one proposed by Pincus [108, 114]. Following this idea, we designed an optimization process 
for the ApEn parameters obtaining the configuration ApEn(3, 0.38, 1000). Figure 8 (right) shows 
the corresponding ApEn in which the rotors R1 and R2 are highlighted by high ApEn values. 
Moreover, intermediate values of ApEn (green) are related to perturbations in conduction such 
as blockades, at the right inferior pulmonary vein, and shockwaves, at the zone below the coro‐
nary sinus. For additional details of this procedure and the results please refer to Ref. [115].
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The fibrillatory activity presented in Figure 8 includes stable rotors that were characterized 
by the ApEn maps. We move now to the case in which the tip of the rotor meanders. To gain 
in temporal resolution, the parameter N was reduced to 500 points, and a nonoverlapping 
moving window was applied to each EGM of the model to obtain a time‐dependent ApEn 
value (Figure 9). We applied Pincus parameters ApEn(2,0.1,500) and optimized parameters 
ApEn(2,0.3,500). The analysis is performed over window of observation located at the left 
atrial posterior wall, in which a meandering rotor is generated. Figure 10 shows three consec‐
utive frames of the episode (firs two columns) and the ApEn electroanatomical maps for Pincus 
(third column) and optimized (fourth column) parameters. For both parameter configuration, the 
high ApEn region changes as the tip of the rotor meanders through the  observation  window. 
The bottom row shows no rotor within the window that induces a reduction of ApEn for opti‐
mized parameters, while for Pincus parameters, high ApEn values remain.

Under the assumptions of our computational model, we provide evidence that the hypotheses 
stated above: we are able to quantify fragmentation of EGM using the ApEn as a measure of 
regularity and to relate it with the tip of a stable and meandering rotors. Moreover, through 
an optimized version of ApEn parameters setup, other conduction anomalies can be identi‐
fied. There are several works, with similar approach but with different tools of measurement 
of irregularity [54, 26, 88, 116, 50]. The tools used for the fragmentation analysis are mostly 
based on the calculation of the length of the cycle and the amplitude of the EGM, in correspon‐
dence with the definition of Nademanee [46]. Although the concept of CFAE established by 
Nademanee has been an important contribution to the study of AF, it may not describe the wide 
range of EGM fragmentations that occur in different cases. Therefore, we propose to extend the 
concept of fragmentation as a nonstatic and nonlinear phenomenon. The ApEn has already 
been applied in other studies for EGM analysis in AF [117], and in ventricular  fibrillation [118] 

Figure 7. Three degrees of EGM irregularity and the corresponding ApEn value.
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obtaining a single ApEn value for each EGM signal. We applied the Dynamic ApEn using a 
mobile window of 500 and 1000 points. An EGM of 4 s can provide up to 8 ApEn values, aimed 
to gain temporal resolution, and information about the behavior of EGM fragmentation.

The fragmented EGM were characterized by means of the ApEn, using the standard param‐
eters suggested by Pincus and the parameters chosen from the proposed optimization method 
[115]. Both proposals reveal the relationship between CFAE and high values of ApEn, which 
is supported by Novak et al. [94]. Furthermore, EGM fragments with high ApEn values have 
been shown to be related to arrhythmogenic substrates, such as the rotor tip, blocking lines 
and the case of the coronary sinus area influenced by abrupt fiber direction, wave collision 
and passage from a narrow conducting zone to a wide but perpendicular zone. The rela‐
tionship between CFAE and arrhythmogenic substrates has been reported in recent studies  
[61, 82, 87, 50, 49, 119–121]. However, how to differentiate the fragmented EGM according to 
the substrate that generates it? It has been observed that the ApEn maps, calculated from the 
standard parameters (ApEn (2, 0.1, 500) and ApEn (2, 0.1, 1000)), present fragmentation with 
high ApEn levels for the rotors R1 and R2, for the blockade at right inferior pulmonary vein and 
the coronary sinus region; however, they do not present significant numerical differences. This 
has also been observed by Navoret et al. [88], who establish a relationship between detected 

Figure 8. ApEn electroanatomical maps for AF episode. The notations R1 and R2 correspond to the tip of rotors at the 
left atrial posterior wall and superior cava vein.

Figure 9. Nonoverlapping moving window procedure to obtain ApEn values varying in time.
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CFAE and the presence of wave and rotor shock, but they cannot differentiate them, using 
two‐dimensional computational models and cell cultures. They also report the development of 
an algorithm, which extracts five characteristics for the characterization of fragmented EGM. 
The algorithm is tested in two real databases: the first has EGM labeled as fragmented and 
nonfragmented. The algorithm shows good results in the classification. The second has EGM 
labeled as active fragmentation, whose ablation restored sinus rhythm, and fragmentation 
whose ablation did not restore sinus rhythm. The algorithm did not discriminate between both 
classifications [48]. However, the ApEn maps, calculated using the optimized parameters opti‐
mized (ApEn(3, 0.3, 500) and ApEn(3, 0.38, 1000)), assign values by ranges to areas of interest, 
the R1 and R2 rotors being the highest ApEn, followed by the intermediate values of ApEn in  
the zone of the blockade and the coronary sinus, and the smaller values of ApEn to the fibrilla‐
tory EGM of regular morphology. These results suggest that: the ApEn can solve the problem 
described by Navoret et al. [88]. On the other hand, if it is verified that the ablation guided by 
the ApEn maps restores the sinus rhythm, it solves the problem reported in Ref. [28]. Future 
work should focus on evaluating, in computational and experimental models, ablation guided 
by maps of dynamic ApEn.

Some authors have pointed out the disadvantages of ApEn: it is not a stable measure when 
the number of points N varies, and it has an inherent deviation from the real value, due to the 
inclusion of self‐comparison of segments [122, 123]. It has even been proposed a new statisti‐
cal, the sample entropy (SampEn), as an enhancement of the ApEn [97]. However, it has been 
shown that both have a same behavior for time series of fast dynamics [110, 114, 124]. In our 
research, the possible instability that can present the ApEn due to the variation of points does 
not influence the results: specific families of ApEn have been defined, starting from the elec‐
tion of the r y m parameters, using time series of 500 and 1000 points. Although it has been 

Figure 10. Three consecutive frames of propagation (first and second columns) of a meandering rotor and the Pincus 
parameters ApEn map (third column) and optimized parameters ApEn map (fourth column).
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observed that the range of ApEn values varies for each case, the information provided by the 
ApEn is embedded in the continuous scale that it results, given the degrees of irregularity 
that the fibrillatory EGM may present. This feature is important, since it offers adaptability to 
the wide range of EGM morphologies that may present different cases. In addition, it is not 
necessary to define intervals of fixed ApEn values for CFAE identification. It is only necessary 
to define that the ApEn scale, during an AF episode, is proportional to the presence of frag‐
mentation, where the higher values of ApEn suggest the presence of rotors.

5.2. Multifractal analysis of EGM signals

Fluctuations in EGM signals are nonperiodic and exhibit nonlinear behavior. Fractal models 
could be used to describe this behavior through the identification of self‐similarity and scale 
invariance in the statistical properties of the signals. Fractal signals present self‐similarities 
and scale invariance properties that can be described by a single quantity, for example, the 
Hausdorff dimension or the Hurst exponent, and it is represented using a power law relation‐
ship. Fractal properties of physiological signals are not homogeneous, which means that local 
scaling properties change with time, and there is necessary to use different local Hurts expo‐
nent to describe the evolution of the system. Therefore, multifractal analysis could capture 
these changes in the global singularity distributions [101]. Then, the power law for multifractal  
behavior is written as follows:

   N  α   ∼  ϵ   −f(α)   (4)

where   N  
α
    corresponds to the number of balls with a singular exponent equal to some value of  

α , necessary to cover a specific set,  ϵ  is the diameter of the balls that covered the set, and  f  (  α )     
corresponds to the Hausdorff dimension. Note that in fractal analysis, the exponent is a scalar, 
while here the exponent is a function that contain different local Hurts exponent.

To compute the singular spectrum  f  (  α )    , we used a method called multifractal detrended fluc‐
tuation analysis proposed and described in Ref. [125]. Using  f  (  α )    , we calculate the h‐fluctua‐
tion index as is described by Orozco‐Duque et al. [101].

5.3. Location of simulated rotors using multifractal analysis

Multifractal analysis can be used to calculate features such as h‐fluctuation index and to 
build electroanatomical maps to located sites fractal or multifractal activity. This measure is 
related to the complexity of the EGM signals recorded over the atrial surface. In this case, we 
work with signals recorded from a simulated episode of AF in the three‐dimensional model 
described above. Figure 11A shows a color map built with the values obtained by the mul‐
tifractal analysis according with Orozco‐Duque et al. [126]. Here, red dots are locating in 
regions where the rotor tip is presented in the model, and in the neighborhood of the rotor tip 
where the tip is meandering.

On the other hand, h‐fluctuation index was calculated in EGM signals recorded from the 
two‐dimensional simulated episode of fibrillatory conduction. For the sake of comparison, 
ApEn map was computed using the two‐dimensional model and the optimized parameters. 
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These features were calculated for each EGM individually, and values were represented in 
a color map. Figure 11B shows the ApEn map and Figure 5 represented the MF map. ApEn 
map exhibits the behavior of the rotor tip and illustrates the dynamics in the vicinity of the 
pivot point. In the central point of the rotor, there is a blue point representing some organized 
signals; however, in the neighborhood of the tip, there are reds dots that represent signals 
with high fragmented activity. A start‐shaped pattern can be identified, which represents the 
movement of the singularity point.

In Figure 11C, multifractal map exhibits an interesting behavior because it captures the 
dynamic of the whole rotor in the atrial tissue, not only the neighborhood of the tip. One can 
note that the direction of the rotation is illustrated and can be interpreted using this map.

6. Combination of features in the same EA map

EGM signals exhibit different morphologies that have not been enough studied. An inad‐
equate characterization of EGM morphologies has limited the success of EGM‐guide ablation 
strategies. Looking for a better description of different EGM patterns, some authors have pro‐
posed the combination of features to detect critical sites in AF. This approach has the advan‐
tage of use different information from the signals and detects patterns that could be associated 
with wave collisions, conduction block, or pivot points.

Ravelli et al. [127] used a logical digital map to combined two indexes, one based on the detec‐
tion of activation rate, the cycle length; and another based on the analysis of similarities between 

Figure 11. (A) Three‐dimensional electroanatomical map using multifractal analysis. (B) Two‐dimensional electro‐
anatomical map using ApEn. (C) Two‐dimensional electroanatomical map using multifractal analysis.
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activation waves, the similarity (S). Logical operator map can discriminate two morphologies: 
rapidly organized and rapidly fragmented. According with Kalifa et al. rapidly organized, 
EGM could be associated with localized source of AF, while rapidly fragmented could be asso‐
ciated with the neighborhood of a pivot point [52]. One limitation of the approach proposed by 
Ravelli et al. is that the computation of cycle length and S requires the segmentation of EGM 
signals and the detection of local activation waves (LAW). This process is not always feasible 
especially with high‐disorganized patterns.

Schilling et al. proposed an approach based on a classifier called Fuzzy decision tree to com‐
bine features and classify the EGM signals among four classes [128]. Classes are assigned 
according to a modified Well’s criteria, where class 0 corresponds to organized and nonfrag‐
mented signal, class 1 is assigned to signals with fragmented waves but periodic activity, class 
2 corresponds to signals with fragmented waves with periodic and nonperiodic activity, and 
class 3 is assigned to signals with high frequency and continuous activity. A limitation for 
using supervised learning is that the classifier depends on the classes selected by the group 
who collected the training database. This could be critical and bias the results because there is 
not a complete understanding about EGM morphologies.

Unsupervised learning has been proposed to combine features and creates maps to show the 
distribution of EGM cluster according with conduction patterns. We have tested some cluster‐
ing methods based on machine learning such as K‐means and Self‐Organized Maps (SOM) in 
previous work. To locate rotors over simulation in two‐dimensional models, the best perfor‐
mance was obtained using the combination of Shannon Entropy and the mean value of the 
EGM signal as an input of K‐means algorithm with three clusters or the SOM algorithm with 
four clusters. Figure 12B and C shows the result of K‐means and SOM applied to signals from 
the two‐dimensional model. The classifiers performance was calculated using the distance 
between the rotor tip location and the mean of the points grouped by the nearest cluster. 
These results evince the capability of the combination of simple features using unsupervised 
algorithms for rotor tip location.

The issues related to the clustering approach are the selection of clusters number and the clas‐
sification of clusters to identify the set of EGM related to a specific pattern. To overcome these 
limitations, Orozco‐Duque et al. [129] have proposed a semisupervised clustering approach to 
combine features. Semisupervised clustering (SC) is not limited to previously defined classes. 
The method selected was spectral clustering with an automatic detection of cluster number. 
In a previous work, it was tested the performance of SC to discriminated between four classes 
according with the scheme proposed by Schilling et al. [130]. We tested SC and its feasibility 
to located pivot points in simulated episodes of AF. We used unipolar signals acquired in an 
AF simulation using the three‐dimensional model of human atrial. Figure 12A shows a map 
built from the results of SC evaluation. Four clusters were detected; the cluster that represents 
regular signals is displayed in blue, and the cluster with the highest disorganized pattern is 
displayed in red. This cluster is located in the areas where the two rotors meander. The distri‐
bution of yellow and green clusters gives us an idea about cluster rotation.
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7. Concluding remarks

Phase maps are, currently, the accepted tools for rotor characterization [131], by tracking the 
tip through the phase singularity. Although it is widely applied in computational studies 
[132, 133] and in vitro experimentation, such as optical mapping [134, 135], clinical applica‐
tion presents technical limitations: high spatial resolution and EGM require a preprocessing 
stage in which information of activation can be lost [136]. Here, we have presented how 
nonlinear features and clustering approaches provide information about the rotor dynamics 
during AF virtual episodes. Translated to a clinical context, these measures can be extracted 
from real EGM without needing special signal conditioning. However, our simulations 
provide high spatial resolution that places the same limitation as phase maps. In a recent 
report [137], we tested the influence of the spatial resolution over the ApEn electroanatomical  
maps in detecting rotors, using a two‐dimensional atrial fibrillation model. Our results  
indicate that the ApEn maps can identify the rotor tip with spatial resolutions close to those 
available in commercial mapping catheters. We also showed that a minor dependence of the 
ApEn maps on the virtual electrode array position, which implies that there is a transition 
of irregularity starting at the rotor tip and spreading to its surroundings. These findings 
encourage considering nonlinear features for EGM analysis. Although experimental valida‐
tion is needed, further in silico studies are needed to enhance and characterize the behavior 
of these tools.

Nonlinear features such as ApEn and indexes calculated from multifractal analysis allow 
the construction of maps to display the distribution of EGM morphologies and to study the 

Figure 12. (A) Electroanatomical map using semisupervised clustering applied to signals from three‐dimensional model. 
(B) Two‐dimensional electroanatomical map using K‐means. (C) Electroanatomical map using SOM.
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dynamic of fibrillatory conduction in the atrial surface. Additionally, application of clustering 
tools allows us to incorporate the information from different features within the same system 
for study the distribution of EGM clusters in the atrial surface. The use of unsupervised learning 
approach has the vantage that does not depend on a training specific dataset, which is an impor‐
tant feature considering the gaps in the knowledge about EGM morphologies. In AF simulated 
models, rotors were located by the proposed methodology; however, further observations and 
clinical studies are needed to associate marked sites with arrhythmogenic substrates in humans.
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