338 research outputs found

    Adaptive visualization of research communities

    Get PDF
    Adaptive visualization approaches attempt to tune the content and the topology of information visualization to various user characteristics. While adapting visualization to user cognitive traits, goals, or knowledge has been relatively well explored, some other user characteristics have received no attention. This paper presents a methodology to adapt a traditional cluster-based visualization of communities to user individual model of community organization. This class of user-adapted visualization is not only achievable, but expected due to real world situation where users cannot be segmented into heterogeneous communities since many users have affinity to more than one group. An interactive clustering and visualization approach presented in the paper allows the user communicate their personal mental models of overlapping communities to the clustering algorithm itself and obtain a community visualization image that more realistically fits their prospects

    Adaptive Visualization for Focused Personalized Information Retrieval

    Get PDF
    The new trend on the Web has totally changed todays information access environment. The traditional information overload problem has evolved into the qualitative level beyond the quantitative growth. The mode of producing and consuming information is changing and we need a new paradigm for accessing information.Personalized search is one of the most promising answers to this problem. However, it still follows the old interaction model and representation method of classic information retrieval approaches. This limitation can harm the potential of personalized search, with which users are intended to interact with the system, learn and investigate the problem, and collaborate with the system to reach the final goal.This dissertation proposes to incorporate interactive visualization into personalized search in order to overcome the limitation. By combining the personalized search and the interac- tive visualization, we expect our approach will be able to help users to better explore the information space and locate relevant information more efficiently.We extended a well-known visualization framework called VIBE (Visual Information Browsing Environment) and implemented Adaptive VIBE, so that it can fit into the per- sonalized searching environment. We tested the effectiveness of this adaptive visualization method and investigated its strengths and weaknesses by conducting a full-scale user study.We also tried to enrich the user models with named-entities considering the possibility that the traditional keyword-based user models could harm the effectiveness of the system in the context of interactive information retrieval.The results of the user study showed that the Adaptive VIBE could improve the precision of the personalized search system and could help the users to find out more diverse set of information. The named-entity based user model integrated into Adaptive VIBE showed improvements of precision of user annotations while maintaining the level of diverse discovery of information

    Программная реализация алгоритмов визуализации графов

    Get PDF
    This article describes some algorithms of graph visualization such as circle-based, arc-based and forcebased visualization. There is an overview of their advantages and disadvantages. Article contains examples of visualization and gives an explanation about using metrics for adaptive visualization

    Adaptive visualization of gas distribution using augmented reality glasses

    Full text link
    L. Duan, H. Matsukura, P. Punpongsanon, T. Hiraki, D. Iwai and K. Sato, "Adaptive Visualization of Gas Distribution Using Augmented Reality Glasses," 2020 IEEE 9th Global Conference on Consumer Electronics (GCCE), 2020, pp. 658-659, doi: 10.1109/GCCE50665.2020.9291811

    Analyzing User Behavior Patterns in Adaptive Exploratory Search Systems with LifeFlow

    Get PDF
    Adaptive exploratory search is a method that can provide user-centered personalized search results by incorporating interactive user interfaces. Analyzing the user behavior pat- terns of these systems can be complicated when they sup- port transparent and controllable open user models. This paper suggests to use a visualization tool to address the problem, as a complement to the typical statistical analy- sis. By adopting an event sequence visualization tool called LifeFlow, we were able to easily find out user interesting behavior patterns, especially regarding the open user model exploration

    Volume visualization of time-varying data using parallel, multiresolution and adaptive-resolution techniques

    Get PDF
    This paper presents a parallel rendering approach that allows high-quality visualization of large time-varying volume datasets. Multiresolution and adaptive-resolution techniques are also incorporated to improve the efficiency of the rendering. Three basic steps are needed to implement this kind of an application. First we divide the task through decomposition of data. This decomposition can be either temporal or spatial or a mix of both. After data has been divided, each of the data portions is rendered by a separate processor to create sub-images or frames. Finally these sub-images or frames are assembled together into a final image or animation. After developing this application, several experiments were performed to show that this approach indeed saves time when a reasonable number of processors are used. Also, we conclude that the optimal number of processors is dependent on the size of the dataset used

    GUASOM: An Adaptive Visualization Tool for Unsupervised Clustering in Spectrophotometric Astronomical Surveys

    Get PDF
    Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG[Abstract] We present an adaptive visualization tool for unsupervised classification of astronomical objects in a Big Data context such as the one found in the increasingly popular large spectrophotometric sky surveys. This tool is based on an artificial intelligence technique, Kohonen’s self-organizing maps, and our goal is to facilitate the analysis work of the experts by means of oriented domain visualizations, which is impossible to achieve by using a generic tool. We designed a client-server that handles the data treatment and computational tasks to give responses as quickly as possible, and we used JavaScript Object Notation to pack the data between server and client. We optimized, parallelized, and evenly distributed the necessary calculations in a cluster of machines. By applying our clustering tool to several databases, we demonstrated the main advantages of an unsupervised approach: the classification is not based on pre-established models, thus allowing the “natural classes” present in the sample to be discovered, and it is suited to isolate atypical cases, with the important potential for discovery that this entails. Gaia Utility for the Analysis of self-organizing maps is an analysis tool that has been developed in the context of the Data Processing and Analysis Consortium, which processes and analyzes the observations made by ESA’s Gaia satellite (European Space Agency) and prepares the mission archive that is presented to the international community in sequential periodic publications. Our tool is useful not only in the context of the Gaia mission, but also allows segmenting the information present in any other massive spectroscopic or spectrophotometric database.This work made use of the infrastructures acquired with grants provided by the State Research Agency (AEI) of the Spanish Government and the European Regional Development Fund (FEDER), RTI2018-095076-B-C22. We acknowledge support from CIGUS-CITIC, funded by Xunta de Galicia and the European Union (FEDER Galicia 2014-2020 Program) through grant ED431G 2019/01 and research consolidation grant ED431B 2021/36. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC), https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions. SDSS-IV acknowledges support and resources from the Center for High Performance Computing at the University of Utah. The SDSS website is www.sdss.org. SDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration. We also want to acknowledge Alhambra survey funded by the Spanish Goverment under Grant AYA2006-14056. Open Access funding provided thanks to the Universidade da Coruña/CISUG agreement with Springer NatureXunta de Galicia; ED431G 2019/01Xunta de Galicia; ED431B 2021/3
    corecore