5,853 research outputs found

    Ancestral genome estimation reveals the history of ecological diversification in Agrobacterium

    Get PDF
    Horizontal gene transfer (HGT) is considered as a major source of innovation in bacteria, and as such is expected to drive adaptation to new ecological niches. However, among the many genes acquired through HGT along the diversification history of genomes, only a fraction may have actively contributed to sustained ecological adaptation. We used a phylogenetic approach accounting for the transfer of genes (or groups of genes) to estimate the history of genomes in Agrobacterium biovar 1, a diverse group of soil and plant-dwelling bacterial species. We identified clade-specific blocks of cotransferred genes encoding coherent biochemical pathways that may have contributed to the evolutionary success of key Agrobacterium clades. This pattern of gene coevolution rejects a neutral model of transfer, in which neighboring genes would be transferred independently of their function and rather suggests purifying selection on collectively coded acquired pathways. The acquisition of these synapomorphic blocks of cofunctioning genes probably drove the ecological diversification of Agrobacterium and defined features of ancestral ecological niches, which consistently hint at a strong selective role of host plant rhizospheres

    Pointwise Convolutional Neural Networks

    Full text link
    Deep learning with 3D data such as reconstructed point clouds and CAD models has received great research interests recently. However, the capability of using point clouds with convolutional neural network has been so far not fully explored. In this paper, we present a convolutional neural network for semantic segmentation and object recognition with 3D point clouds. At the core of our network is pointwise convolution, a new convolution operator that can be applied at each point of a point cloud. Our fully convolutional network design, while being surprisingly simple to implement, can yield competitive accuracy in both semantic segmentation and object recognition task.Comment: 10 pages, 6 figures, 10 tables. Paper accepted to CVPR 201

    Non Linear Modelling of Financial Data Using Topologically Evolved Neural Network Committees

    No full text
    Most of artificial neural network modelling methods are difficult to use as maximising or minimising an objective function in a non-linear context involves complex optimisation algorithms. Problems related to the efficiency of these algorithms are often mixed with the difficulty of the a priori estimation of a network's fixed topology for a specific problem making it even harder to appreciate the real power of neural networks. In this thesis, we propose a method that overcomes these issues by using genetic algorithms to optimise a network's weights and topology, simultaneously. The proposed method searches for virtually any kind of network whether it is a simple feed forward, recurrent, or even an adaptive network. When the data is high dimensional, modelling its often sophisticated behaviour is a very complex task that requires the optimisation of thousands of parameters. To enable optimisation techniques to overpass their limitations or failure, practitioners use methods to reduce the dimensionality of the data space. However, some of these methods are forced to make unrealistic assumptions when applied to non-linear data while others are very complex and require a priori knowledge of the intrinsic dimension of the system which is usually unknown and very difficult to estimate. The proposed method is non-linear and reduces the dimensionality of the input space without any information on the system's intrinsic dimension. This is achieved by first searching in a low dimensional space of simple networks, and gradually making them more complex as the search progresses by elaborating on existing solutions. The high dimensional space of the final solution is only encountered at the very end of the search. This increases the system's efficiency by guaranteeing that the network becomes no more complex than necessary. The modelling performance of the system is further improved by searching not only for one network as the ideal solution to a specific problem, but a combination of networks. These committces of networks are formed by combining a diverse selection of network species from a population of networks derived by the proposed method. This approach automatically exploits the strengths and weaknesses of each member of the committee while avoiding having all members giving the same bad judgements at the same time. In this thesis, the proposed method is used in the context of non-linear modelling of high-dimensional financial data. Experimental results are'encouraging as both robustness and complexity are concerned.Imperial Users onl

    Aeronautical Engineering. A continuing bibliography with indexes, supplement 156

    Get PDF
    This bibliography lists 288 reports, articles and other documents introduced into the NASA scientific and technical information system in December 1982

    Influence of PVT variation and threshold selection on OBT and OBIST fault detection in RFCMOS amplifiers

    Get PDF
    Please read abstract in the article.The NRF/F.RS.-FNRS South Africa–Wallonia Joint Science and Technology Research Collaboration.https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8784029hj2024Electrical, Electronic and Computer EngineeringSDG-09: Industry, innovation and infrastructur

    Autonomous Systems, Robotics, and Computing Systems Capability Roadmap: NRC Dialogue

    Get PDF
    Contents include the following: Introduction. Process, Mission Drivers, Deliverables, and Interfaces. Autonomy. Crew-Centered and Remote Operations. Integrated Systems Health Management. Autonomous Vehicle Control. Autonomous Process Control. Robotics. Robotics for Solar System Exploration. Robotics for Lunar and Planetary Habitation. Robotics for In-Space Operations. Computing Systems. Conclusion

    On Energy Efficient Computing Platforms

    Get PDF
    In accordance with the Moore's law, the increasing number of on-chip integrated transistors has enabled modern computing platforms with not only higher processing power but also more affordable prices. As a result, these platforms, including portable devices, work stations and data centres, are becoming an inevitable part of the human society. However, with the demand for portability and raising cost of power, energy efficiency has emerged to be a major concern for modern computing platforms. As the complexity of on-chip systems increases, Network-on-Chip (NoC) has been proved as an efficient communication architecture which can further improve system performances and scalability while reducing the design cost. Therefore, in this thesis, we study and propose energy optimization approaches based on NoC architecture, with special focuses on the following aspects. As the architectural trend of future computing platforms, 3D systems have many bene ts including higher integration density, smaller footprint, heterogeneous integration, etc. Moreover, 3D technology can signi cantly improve the network communication and effectively avoid long wirings, and therefore, provide higher system performance and energy efficiency. With the dynamic nature of on-chip communication in large scale NoC based systems, run-time system optimization is of crucial importance in order to achieve higher system reliability and essentially energy efficiency. In this thesis, we propose an agent based system design approach where agents are on-chip components which monitor and control system parameters such as supply voltage, operating frequency, etc. With this approach, we have analysed the implementation alternatives for dynamic voltage and frequency scaling and power gating techniques at different granularity, which reduce both dynamic and leakage energy consumption. Topologies, being one of the key factors for NoCs, are also explored for energy saving purpose. A Honeycomb NoC architecture is proposed in this thesis with turn-model based deadlock-free routing algorithms. Our analysis and simulation based evaluation show that Honeycomb NoCs outperform their Mesh based counterparts in terms of network cost, system performance as well as energy efficiency.Siirretty Doriast
    corecore