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1. Introduction 

Tumours are complex ecosystems composed of neoplastic cells, extracellular matrix (ECM) and non-

neoplastic 'accessory' cells, which include mesenchymal cells, endothelial cells and infiltrating 

inflammatory immune cells.  

The interaction between tumour cells and accessory cells drives and influences tumour development 

and leads to functional and compositional changes in the immune system (1). Crosstalk between 

tumour cells and stromal cells significantly determines tumour heterogeneity and antitumour 

immunity. Through continuous dynamic interactions, immune system cells, on the one hand, transmit 

protective anti-tumour immunity by destroying immunogenic tumour variants and, on the other hand, 

promote tumour progression by modelling its immunogenicity. This dynamic process, termed 'cancer 

immunoediting', suggests the dual role of the immune system in inhibition or promotion of tumour, 

integrates the complex interactions between immune system and tumour cells within the tumour 

microenvironment, modulates immunogenicity and antigenicity, and is associated with tumour 

evasion from immune surveillance (2). The immunoediting hypothesis encompasses all stages of 

cancer and is regulated in a complex mechanism that consists of three phases: elimination, 

equilibrium and escape (3) (Figure 1). 

 

 

Figure 1: Cancer Immunoediting (4). 

 



 
 

 

 
 

3 
 

The first phase of immunoediting is the elimination and it represents the time when 

immunosurveillance is active. Cells, which are not repaired by intrinsic genetic DNA repair 

mechanisms, become malignant or potentially malignant and can be initially detected and eliminated 

by innate and adaptive immune systems through immunosurveillance.  Innate immunity is followed 

by adaptive immunity which, through presentation to tumour antigens and dendritic cells, leads to the 

development of tumour-specific CD4+ and CD8+ T cells that allow tumour cell destruction  (4). If 

the developing tumour is destroyed, elimination is the end point of immunoediting. However, if the 

tumour cells are not eliminated, they initially enter a state of equilibrium with the immune system, 

the second stage of immunoediting. In the equilibrium phase, the immune system controls tumour 

growth and the tumour cells, which are unable to progress, enter a dormant state and continue to 

coexist with the immune system (3). The third phase of immunoediting is escape or evasion. During 

the escape phase, tumour cells, which have escaped the control of the immune system, begin to grow 

and proliferate uncontrollably, leading to clinically evident tumours (4). 

In order to escape the immune system's control, cancer cells use different mechanisms, including 

some of the normal immune response control circuits called immune checkpoints (ICs) that, under 

physiological conditions, degrade the activation of T lymphocytes and their effector functions (4).  

T-cell activation is a key step in initiating and regulating the immune response that requires co-

stimulation with "two signals" from antigen presenting cells (APCs). The first signal or "antigen-

specific signal" is the binding of the antigen presenting the major histocompatibility complex (MHC) 

to the T-cell receptor (TCR). If T cells receive only antigen-specific TCR stimulation they will 

become unresponsive to subsequent antigenic challenge (5). The second signal consists of co-

stimulatory and co-inhibitory signals to T cells (5). Among co-inhibitory stimuli, IC proteins provide 

co-inhibitory signals to negatively modulate T-cell activation, contributing to poor anti-tumor T-cell 

efficacy (5). 

ICs are co-inhibitory signaling pathway molecules that act to maintain immune tolerance, but are 

often used by cancer cells to evade immunosurveillance. 

The programmed cell death protein-1/programmed cell death-ligand 1 (PD-1/PD-L1) axis is a vital 

IC signalling pathway that controls the induction and maintenance of immune tolerance in the tumour 

microenvironment and maintains immune homeostasis (6).  

Physiologically, ICs maintain self-tolerance and regulate physiological immune balance by protecting 

healthy tissues from immune system attack. When activated following a stimulus, T cells express PD-

1 which allows them to recognize abnormal and cancerous cells. Conversely, in order to evade 

recognition and elimination by T cells, cancer cells express PD-L1 which binds PD-1 on T cells, 

rendering them inactive (6). Activation of this pathway can lead to tumour immune escape and 
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promote tumour cell growth, as well as cause T-cell depletion and apoptosis and enhancement of 

immunosuppressive Treg cell function (6). (Figure 2) 

 

 

Figure 2: Immune checkpoint inhibitor against cancer cells. Through the interaction between PD-1 expressed 

on the surface of T cells and PD-L1 expressed on the surface of tumor cells, the immunological checkpoint 

prevents the activation of T cells. Through the contact between PD-1 on the surface of T cells and the anti-PD-

1 antibodies, T cell activation and immunological attack are enabled (7) 

 

 

Both PD-1 and PD-L1 are type I transmembrane proteins that belong to the immunoglobulin (Ig) 

superfamily.  

PD-1 is a transmembrane protein expressed on activated T lymphocytes, natural killer (NK) and B 

cells, macrophages, dendritic cells (DC), regulatory T cells (Tregs) and monocytes. It contains one 

Ig-V like extracellular domain, a transmembrane domain, and a cytoplasmic domain with two tyrosine 

signaling motifs. PD-1 expression can be induced by T-cell receptor (TCR)-mediated activation and 

stimulation by cytokines such as interleukin (IL)-2, IL-7, IL-15 and IL-21. In many types of cancers, 

it is expressed on a large proportion of tumor infiltrating lymphocytes (TILs). PD-1 has two ligands, 

PD-L1 and PD-L2, and although the interaction with PD-L2 shows higher affinity, PD-L1 is 

considered the main ligand of PD-1 (8). 

PD-L1 is an inhibitory receptor expressed on the surface of tumor cells and it is commonly 

upregulated in tumor cells. It contains two extracellular domains (Ig-V- and Ig-C-like), a 

transmembrane domain, and a short cytoplasmic tail which lacks known signaling motifs. In cancer 

cells PD-L1 acts as a pro-tumorigenic factor by binding to its receptors and activating proliferative 

and survival signaling pathways (9). It can be expressed constitutively or as a mechanism of resistance  

(9). Oncogenic signals, such as PI3K-AKT, MEK-ERK, and EGFR (10-12), as well as several 

cytokines, such as IL-4, IL-6, IL-10 and IFN-γ (13, 14), have been found to regulate PD-L1 

expression (15). 
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PD-1 limits the functional activation of cytotoxic T lymphocytes and it can induce apoptosis and 

promote the differentiation of CD4+ lymphocytes into Treg.  The PD-L1 ligand is usually expressed 

by tumour cells, macrophages, some activated T-cells and B-cells, DC (9). High expression of PD-

L1 on tumour cell causes T-cell depletion, thus attenuating tumour-specific immunity that promotes 

tumour progression (6).         

Interaction between PD-1 on T cells and PD-L1 on tumor cells or APC inhibits T cell activation and 

its cytolytic effector functions. Overexpression of PD-L1 on tumor cells leads to the formation of an 

immunosuppressive microenvironment that facilitates cancer evasion from the immune system 

through downregulation of cytotoxic T cell activity (6). 

The mechanism by which PD-1 exerts its inhibitory effect has been partially elucidated. Following 

the interaction between PD-L1 and PD-1, phosphatase-1 (SHP-1) and SHP-2 containing the Src 

homology region domain 2 are recruited, which dephosphorylate multiple members of the TCR 

signaling pathway. Dephosphorylation nullifies the downstream effects of T cell activation, including 

cytokine production, cell cycle progression, and survival protein expression (16). 

Inhibition of PD-1 or PD-L1 could restore the cytotoxic capacity of T-cells and induce tumour 

regression, suggesting that use of immune checkpoint inhibitors (ICIs) could serve as therapeutic 

targets (17).  

The introduction of ICIs into clinical practice has become a promising frontier of immuno-oncology 

that has achieved surprising therapeutic effects in a variety of cancers. ICIs aim to reinvigorate anti-

tumor immune responses by disrupting co-inhibitory signaling pathways and promoting immune-

mediated elimination of malignant cells (17). 

The first immunotherapy drug approved for the treatment of patients with metastatic melanoma was 

Ipilimumab, in 2011, a protein that blocks CTLA-4, a key inhibitory control molecule that counter 

acts the co-stimulatory signal of CD28, competitively binding to its ligands (B7.1 and B7.2) on the 

surface of cells presenting the antigen (18). In the United States, the FDA has approved Nivolumab, 

Pembrolizumab, and Cemiplimab as PD-1 inhibitors and Atezolimumab, Durvalumab, and Avelumab 

as PD-L1 inhibitors for the treatment of several solid tumors, including non-small cell lung cancer 

(NSCLC), melanoma, urothelial carcinoma, head and neck squamous cell carcinoma (HNSCC) and 

Merkel cell carcinoma (MCC) (19). 

Immunotherapy, through the use of monoclonal antibodies that bind directly to PD-1 or PD-L1 has 

radically revolutionized the therapeutic approach of cancer by shifting the therapeutic target from the 

neoplastic cell to the T lymphocyte (20). Blockade of the PD1/PD-L1 axis with specific antibody 

inhibitors prevents T-cell suppression and promotes immune killing of tumor cells (20). 
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PD-1/PD-L1 ICIs have been widely used in the treatment of different cancers (21-23) becoming a 

promising frontier for the treatment of numerous solid tumors, such as non-small cell lung cancer 

(NSCLC), melanoma (24-28), renal cell carcinoma (RCC) (29), but also small cell lung carcinoma 

(SCLC) (30) and breast (31), neck (32), bladder (33-35), colorectal (36), stomach (37) and liver (38). 

Despite the efficacy of PD-1/PD-L1 ICIs and the marked improvement in patient outcome, durable 

responses are observed in only a minority of patients and the phenomena of primary and acquired 

resistance to therapy, treatment-related adverse effects and the lack of predictive biomarkers are still 

numerous (39).  

In primary resistance patients do not show a clinical response or stable disease during treatment with 

PD-1/PD-L1 ICIs, due to lack of tumor immunogenicity (40), immunosuppressive factors in the 

tumor microenvironment (41), lack of response to interferon (42), epidermal growth factor receptor 

(EGFR) mutations, and anaplastic lymphoma kinase (ALK) rearrangements (43). In cases of acquired 

resistance, on the other hand, patients show effective and lasting responses only at the beginning of 

the treatment, which subsequently decrease or disappear completely. The mechanisms underlying 

acquired resistance may be related to tumor microenvironment complexity (44), lack of memory T 

cells (45), loss of T cell function (46-48), and upregulation of other ICs (49). 

Furthermore, identifying predictive biomarkers predicting which patient will benefit from ICIs is a 

novel and important issue and would contribute to optimize treatment selection (6).  

The use of PD-1/PD-L1 as the only predictive biomarker for cancer immunotherapy still remains 

problematic. 

Until now, the only predictive biomarker used as a complementary diagnostic test for first-line 

immunotherapy is PD-L1 expression assessed by Immunohistochemistry (IHC) staining in Formalin-

Fixed, Paraffin-Embedded (FFPE) from tissue sections (50). PD-L1 expression has been shown to be 

a potential predictive biomarker for response and outcome of anti-PD-1/PD-L1 immunotherapy (20). 

In patients with PD-L1 positive tumors (≥ 5% staining for PD-L1 on tumor cells) the ORR was 36% 

(9 of 25 patients) whereas in patients with PD-L1 negative tumors there was no objective clinical 

response observed (0 of 17 patients). PD-L1 expression on cancer cells has a high predictive value in 

melanoma and NSCLC (51) and predicts worse outcome in cutaneous angiosarcoma (52). Melanoma 

patients exhibit a response rate of 44%-51% to anti-PD-1-directed therapy while low tissue PD-L1 

expression correlates with response rates of around 6%-17%. Similarly, NSCLC patients with IHC 

PD-L1 overexpression have a response rate of 67%-100% while for PD-L1-negative the response rate 

was around 0%-15% (53, 54). In gastric cancer exhibiting high microsatellite instability (MSI-H), 

PD-L1 expression by immune cells is an important marker of overall survival (OS) (55). Phase 1 

study of pembrolizumab (KEYNOTE-001) in NSCLC patients showed ORRs (ORR) of 45% and 
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11% in patients with PD-L1 positive tumors (defined by immunohistochemistry with ≥50% tumor 

cells) and PD-L1 negative (defined by immunohistochemistry with <1% of tumor cells), respectively 

(56). 

In triple negative breast cancer (TNBC), the KEYNOTE-012 study, which tested pembrolizumab 

monotherapy in PD-L1 positive metastatic TNBC patients, showed a 20% clinical benefit rate with 1 

complete response, 4 partial responses, and 7 cases of stable disease (>10 months) (PMID: 

27138582). Also in the Phase 1 study with an anti-PD-L1 antibody, atezolizumab, the ORR was 19% 

with a variable duration of response (from 0.1 to > 41.6 weeks) (57). Advanced urothelial cancer 

study showed better survival and fewer side effects in patients treated with pembrolizumab (58). 

Additionally, results from the KEYNOTE-048 study in patients with recurrent/metastatic HNSCC 

showed improvement in OS with increasing PD-L1 (59). Significant clinical responses after treatment 

with anti-PD-L1 antibodies were also found in PD-L1 positive bladder cancer patients with an ORR 

of 46% (60). Another study evaluating the antitumor activity of avelumab, an anti-PD-L1, in patients 

with metastatic urothelial bladder cancer showed a PFS of approximately 12 weeks and a median OS 

of approximately 14 months (61). 

However, PD-L1 status on tumor tissue has been shown to be an imperfect predictive biomarker due 

to numerous biological and technical limitations. The detection of PD-L1 on tumor cells and/or 

immune cells by IHC still has many limitations due to the complexity related to the different staining 

performance of immunohistochemical assays, different scoring methods that evaluate various cellular 

compartments within tumors, and intra- and intertumor heterogeneity (62). 

Intratumor heterogeneity represents another obstacle in determining PD-L1 and its predictive value. 

Samples of tumor tissue can be obtained from surgery, core needle biopsies, and fine needle 

aspirations, and for most patients, only one sample is taken from a single lesion, even in the presence 

of multiple metastases (62). 

Furthermore, the expression of ICIs on immune and tumor cells is a dynamic process. Indeed, PD-L1 

and PD-1 are dynamic molecules and their tissue expression, which changes during disease 

progression and treatment, may not provide a comprehensive overview of the disease. Thus, PD-L1 

status may be underestimated in small biopsies (such as bronchial and transthoracic), which are not 

representative of the entire tumor (62). 

To date, there are only three PD-L1 tests approved by the FDA as "complementary" diagnostic tests 

and they are Dako 22C3 for pembrolizumab in patients with a variety of solid tumors; Ventana SP142 

for atezolizumab in patients with urothelial cancer, triple negative breast cancer (TNBC), or NSCLC; 

and Dako 28-8 for the combination of ipilimumab and nivolumab in patients with NSCLC (63). 
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However, PD-L1 expression alone is not sufficient as a predictor for stratification of patients 

responding to immunotherapy (50). 

Other factors may collaborate with PD-L1 as biomarkers to better predict sensitivity to anti-PD-1/PD-

L1 inhibitors, including elevated tumor mutational burden (TMB) expression, microsatellite 

instability (MSI), and lymphocyte infiltration Cytotoxic T (50). 

Recently, a link between PD-L1 expression, TMB, and MSI with ICIs response has been reported in 

several tumor types, including NSCLC and melanoma (64, 65). 

More interestingly, the co-occurence of a high TMB and PD-L1 expression level of at least 50% has 

been suggested as predictor of response to nivolumab in NSCLC since in this subset ORR was 75% 

compared to 16% in that with neither factor (66). 

Furthermore, a considerable immunoregulatory function has been recently demonstrated also for a 

family of transmembrane glycoproteins, named butyrophilins (BTNs), which are part of the 

immunoglobulin (Ig) superfamily (67) that have been shown to play a critical role in modulating γδ 

T-cell development and differentiation (68). Recent clinical studies reported the modified expression 

of molecules belonging to the BTN/BTNL family following IC blockade with anti-PD-1 antibodies 

(69, 70), suggesting their unexplored role in tumor immune escape (71). 

A putative role of butyrophilins is under investigation as a novel mechanism of cancer immune 

evasion. 

PD-1 or PD-L1 expression can also be regulated by non-coding RNAs such as microRNAs (miRNAs) 

and long non-coding RNAs (5, 72). miRNAs are small single-stranded non-coding RNAs containing 

approximately 22 nucleotides playing important roles in the modulation of gene expression. By 

binding with the 3' non-translational region (3' UTR) of target mRNAs, miRNAs can induce mRNA 

degradation and translational repression, downregulating the expression of their target genes (5). 

Numerous studies suggest the role of miRNAs as tumour suppressors, cancer biomarkers, diagnostic 

and prognostic in lung cancer (73), as regulators of cancer cell metabolism and in resistance or 

sensitivity to chemotherapy and radiotherapy (74). 

Some miRNAs have been found to target PD-1 or PD-L1 and regulate their expression levels in 

tumour cells, being implicated in tumour immune escape, leading to the development of 

microenvironments favourable to tumour growth and progression (5, 9). 

For example, miR-28, miR-4717, miR-155, miR-33a, miR-138 and miR-374b modulate PD- 1 

expression, whereas miR-570, miR-513, miR-155, miR-140-3p, miR-152, miR-25-93-106b, miR-

200 and miR-34 regulate PD-L1 expression (72). 

miR-155, overexpressed in some solid tumours, is related to cell growth, invasion, migration, 

stemness and inhibition of apoptosis (75). Recent data also indicate that miR-155 plays a key role in 
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the activation of the immune system, as miR-155 inhibition of tumour-related immune cells may 

promote tumour immune escape and promote tumour growth (76). 

miR-34 possesses tumour suppressive properties, such as inhibition of cell migration, invasion, 

proliferation, survival, EMT and stemness, and drug resistance (77) . A recent study by Cortez et al. 

(78) observed a correlation between overexpression of miR-34b or miR34c and inhibition of PD-L1 

protein expression. 

Literature data demonstrate the role of miR-33a in the regulation of immune marker expression (79). 

In the study by Boldrini et al. (80) in patients with lung adenocarcinoma, analysis of the association 

between miR-33a and PD-1/PD-L1 expression levels exhibited a negative correlation and lower 

levels of miR-33a in patients with higher PD-1, PD-L1 and CTLA4 expression. To investigate the 

association between patient survival, miR-33a and PD-1, patients were divided according to miR-33a 

and PD-1 expression, and differences in survival of the two groups (high miR- 33a/low PD-1 

expression and low miR-33a/high PD-1 expression) were compared. The first group (patients with 

high miR-33a and low PD-1 levels) had a better prognosis, suggesting that miR-33a is a good 

prognostic marker as a result of PD-1 regulation (80). 

miR-21 is one of the most abundant miRNAs in mammals, comprises about 10% of total miRNAs in 

several tumour cell types and it is a critical factor involved in immune responses (9, 81). It was shown 

that PD-1 is a negative regulator of miR-21 and that PD-1 inhibition increased miR-21 expression, 

reducing Treg cells and increasing Th17 cells in patients undergoing gastric cancer resection (82).  

miRNAs can also indirectly modulate PD-1/PD-L1 expression through their upstream or downstream 

pathways. For example, miR-197 and miR-3127-5p target STAT3, a regulator of PD-L1 expression, 

to indirectly modulate PD-L1 levels (83, 84).  

miR-21 subregulates JAK2 and STAT1 to inhibit IFN-γ-induced STAT1 signalling. In this way, miR-

21 decreases PD-1 expression in macrophages (85). MiR-20b, miR-21 and miR-130b inhibiting 

phosphatase and PTEN enhance PD-L1 expression (86). 

Several components such as proteins, exosomes and other circulating vesicles can be analysed using 

liquid biopsy (87). Among these, the role of exosomes in the immunomodulatory response is under 

investigation. Exosomes are biologically active lipid bilayer vesicles about 30-100 nm in size that 

play an important role in intercellular communication and influence the extracellular environment 

and the immune system (88). These vesicles, released from different normal or tumour cell types, are 

secreted into the extracellular space via endosomal pathways and transport various bioactive 

molecules to target cells. The composition of the exosomal cargo is highly varied and includes a wide 

range of immunosuppressive and immunostimulatory proteins, chemokines, cytokines, cellular 

receptors, lipids, as well as various nucleic acids such as micro-RNAs and circular RNAs (88). 
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Tumour cells can produce and release large levels of exosomes enriched with cellular contents that 

promote cancer, such as immunosuppressive proteins like PD-L1, mRNAs and micro-RNAs, which 

participate in cancer development and metastasis, through dysregulation of anti-tumour or pro-tumour 

immune responses and by promoting drug resistance (89-91). Tumour cells can produce and release 

large levels of exosomes enriched with cellular contents that promote cancer, such as 

immunosuppressive proteins like PD-L1, mRNAs and micro-RNAs, which participate in cancer 

development and metastasis, through dysregulation of anti-tumour or pro-tumour immune responses 

and by promoting drug resistance (89-91). Several data reveal a significant association between 

circulating exosomal PD-L1 levels and the response rate to anti-PD-1/PD-L1 antibody therapy (88). 

Higher concentrations of exosomal PD-L1 prior to anti-PD-1 therapy are associated with a worse 

prognosis in melanoma patients. This could consequently be a more robust approach than soluble PD-

1/PD-L1 levels (92). Tumour-secreted exosomes contain PD-L1 presented either on the surface or 

within exosomal particles and can transport it to other cells with low or absent PD-L1 expression, 

with the possibility of binding to PD-1 (93). Plasma/serum levels of PD-L1 expressed on exosomes 

are associated with tumour progression and clinicopathological features in patients with HNSCC and 

NSCLC (94), acting as an important biomarker (95). Tumour-derived exosomes containing PD-L1 

can reverse the effect of PD-L1 on the cell surface, and are able to induce tumour progression by 

allowing tumour cells to escape anti-tumour immunity through inhibition of T-cell activation (88). In 

patients with HNSCC, low or high levels of exosomal PD-L1 suppressed CD4+ T-cell proliferation, 

induced apoptosis in CD8+ T-cells and enhanced the suppressor activity of Treg cells, depending on 

the level of PD-L1 in exosomes (94). 

Based on this evidence, we investigated the potential role of the levels of sICs, including sPD-1, sPD-

L1 and sBTN (pan-sBTN3A, sBTN3A1 and sBTN2A1), microRNAs and exosomes as predictive 

biomarkers of response to immunotherapy treatment in certain solid tumours. 
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2. Background  

The introduction and evolution of immuno-oncology, and in particular of ICIs, has become a 

promising frontier for treatment of various tumours, strengthening and increasing the capacity of the 

immune system against the tumour (92). 

However, although a clinically relevant median duration of response has been reported, treatment 

efficacy is variable and poorly predictable in daily clinical practice. Thus, the variability of clinical 

response to immunotherapy requires the discovery of predictive biomarkers for patient selection. 

Although it has been shown that PD-1/PD-L1 expression may have a predictive and prognostic role, 

the value of assessing PD-L1 expression by IHC staining in paraffin-embedded and formalin-fixed 

tissue samples is currently debated and challenged. (50). IHC technical methods and biological 

heterogeneity within the tumor sample represent the major limitation to the use of PD-L1 expression 

as a predictive biomarker to identify patients likely to benefit from immunotherapy. Furthermore, the 

expression of ICs on immune and tumor cells is a dynamic process, and PD-L1 expression during 

cancer evolution and treatment is heterogeneous; therefore, evaluation at a single time point may be 

suboptimal due to several limitations (92). 

Consequently, the current effort is to identify peripheral blood biomarkers that reveal the dynamic 

and complex nature of the immune response and the interaction of multiple elements and aid in 

therapeutic decisions in the clinic. 

Several components, using the liquid biopsy, are being studied as predictive biomarkers of response 

or resistance to immunotherapy, such as circulating tumor cells (CTC), cell-free DNA (cfDNA) and 

exosomes, but also T lymphocytes (the T cell receptor), cytokines, soluble forms of ICs and other 

circulating proteins (92). Among the various peripheral blood biomarkers studied, the plasma soluble 

forms of PD-1 and PD-L1 (sPD-1; sPD-L1) represent the areas with the most encouraging data. The 

prognostic and predictive role of sPD-1 and sPD-L1 appears to depend on the type of tumor, leading 

to good or bad clinical outcomes (96). sPD-1 and sPD-L1 have been shown to be negatively correlated 

with survival in NSCLC; clinical outcome of nivolumab treatment was significantly associated with 

baseline sPD-L1 plasma levels. In patients with metastatic melanoma, the level of circulating 

exosomal PD-L1 changes during treatment with the anti-PD-1 pembrolizumab. A higher level before 

treatment has been associated with worse clinical outcomes, while increasing levels during the early 

stages of therapy identifies clinically responding patients (96). 

The prognostic and predictive role of sPD-1 and sPD-L1 appears to depend on tumor type, leading to 

different clinical response. sPD-1 and sPD-L1 have been shown to negatively correlate with survival 

in NSCLC. The clinical outcome of nivolumab treatment was significantly associated with baseline 

plasma sPD-L1 levels (27). In patients with metastatic melanoma, the level of circulating exosomal 
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PD-L1 changes during treatment with the anti-PD-1 pembrolizumab ; therefore, plasma PD-1 appears 

to predict the presence and efficiency of tumor-infiltrating lymphocytes in metastatic melanoma (24). 

Higher levels before treatment are associated with worse clinical outcomes, while higher levels during 

the early stages of therapy identify clinical responders. Elevated plasma levels of specific ICs have 

been shown to correlate with dramatically negative outcome and may be used as prognostic factors 

in unresectable pancreatic adenocarcinoma (PDAC) (97).  

A study by Zheng et al. (98) demonstrated that adenocarcinoma patients with higher levels of sPD-

L1 had a better prognosis than patients with low levels. 

In a study of NSCLC patients, approximately 40% of erlotinib-treated patients with elevated sPD-1 

levels while on treatment had prolonged progression-free survival (PFS) and OS (OS) compared to 

patients without elevated sPD-1 (99). NSCLC patients with increased or stable sPD-1 after anti-PD-

1 therapy also showed favorable outcomes (100). 

In a retrospective study of patients with hepatocellular carcinoma (HCC) undergoing radical 

resection, a correlation was observed between increases in sPD-1 and longer survival (101). 

Conversely, high levels of sPD-1 in untreated cancer patients have been related to poor survival 

outcomes (102). In general, elevated sPD-L1 levels are indicative of poor prognosis or resistance to 

treatment (103). Higher levels of sPD-L1 were observed in patients with metastatic than in non-

metastatic clear cell renal cell carcinoma (104) and in patients with muscle invasive and metastatic 

urinary bladder cancer (105). 

Elevated pretreatment sPD-L1 concentration may be a marker of poor prognosis in patients with 

locally advanced or metastatic esophageal squamous cell carcinoma treated with chemotherapy (106). 

Higher baseline sPD-L1 levels in glioma patients treated with radiotherapy were associated with 

lower PFS and OS (107), and elevated sPD-L1 levels were considered a biomarker of poor prognosis 

in HCC patients undergoing curative treatment (108). In melanoma, high pretreatment sPD-L1 was 

associated with a higher likelihood of disease progression (109). Furthermore, elevated sPD-L1 levels 

were significantly associated with lower OS and PFS in ICI-treated lung cancer patients (110). 

Therefore, the current effort is to identify peripheral blood biomarkers that reveal the dynamic and 

complex nature of the immune response to correctly select patients who will benefit from 

immunotherapy. In a new era of liquid biopsy, all of these data are interesting findings that provide a 

rationale for applying more precise and dynamic predictive biomarkers for checkpoint blockages. 
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3. Patients and methods 

3.1 Study Population 

A prospective study was carried out at the ‘Sicilian Regional Center for the Prevention, Diagnosis 

and Treatment of Rare and Heredo-Familial Tumors’ of the Section of Medical Oncology of 

University Hospital Policlinico ‘P. Giaccone’ of Palermo.  

The study included 4 patient cohorts:  

- a cohort of 30 metastatic gastrointestinal cancer (mGIST) patients (cohort number 1); 

- a cphort of 56 metastatic clear cell renal cell carcinoma (mccRCC) patients (cohort number 2); 

- a cohort of 23 mccRCC patients (cohort number 3); 

- a cohort of 41 melanoma patients (cohort number 3). 

For all patients enrolled in the study, who provided written informed consent, all clinical information 

was collected and recorded anonymously. 

Clinical and pathological information included gender, age of cancer diagnosis, histological tumor 

subtype, molecular phenotype and disease stages (I-IV), site of origin of primary tumors, site of active 

disease, site and number of metastasis, surgery, treatment type, treatment response, tumor response 

[disease in progression (PD), stable disease (SD), partial response (PR), complete response (CR)] 

assessed according to response evaluation criteria in solid tumors (RECIST version 1.1.) and 

progression-free survival (PFS), ORR (ORR), and OS (OS). 

Additional clinical data including neutrophil-lymphocyte ratio (NLR) and body mass index (BMI) 

were collected in melanoma patients in the cohort 3.The NLR was recorded from the routinely 

performed blood cell count, as the absolute count of neutrophils divided by the absolute count of 

lymphocytes from peripheral blood samples collected at baseline. BMI was calculated as weight in 

kilograms divided by height in meters squared. Normal weight (BMI = 18.5–24.9), overweight 

(BMI = 25–29.9), and obesity (BMI ⩾ 30) were classified based on the World Health Organization 

recommendations. 

The study (Protocol 'G-Land 2017') was approved by ethical committee (Comitato Etico Palermo 1; 

approval number: 0103-2017) of the University-affiliated Hospital AOUP 'Paolo Giaccone’ of 

Palermo. 

 

3.2 Sample Collection and Lymphocytes Isolation 

All samples were collected at baseline (T0) before treatment initiation. In the mccRCC patients of 

cohort number 2 and 3, the sampling was also carried out at 4 weeks (T1), after two drug 

administration cycles. 
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The peripheral blood samples, obtained by venipuncture, were processed within 2 h of collection, by 

centrifugation at 2.200 g for 15 min at 4°C in presence of ethylenediaminetetraacetic acid (EDTA). 

The isolated supernatants (plasma fractions) were aliquoted in cryotubes and stored at −80°C until 

their use for subsequent analysis. 

After plasma isolation and separation, the 4 blood tubes, to which 3 mL of Lympholyte (Lympholyte-

H cell separation media, CL5020, Cederlane) were added, were centrifuged at 800 r.c.f. for 20 min at 

18 °C. After centrifugation, a white colored ring containing lymphocytes can be isolated in the 

interface. The isolated lymphocytes were aliquoted in cryotubes and stored at −80 °C until their use 

for subsequent analysis. 

 

 3.3 Determination of soluble ICs concentrations in plasma 

The plasma sPD-1, sPD-L1, and pan-sBTN3A, sBTN3A1, and sBTN2A1 levels have been measured 

using specific homemade enzyme-linked immunosorbent assays (ELISAs) assays not yet 

commercially available. Because some discrepancies were observed in monitoring the three other 

proteins when using commercial kits obtained from different sources, we decided to have ELISAs of 

the 5 markers produced by DYNABIO S.A. (Parc de Luminy, Marseille France) according to our 

specifications. These specifications included (i) verification by tandem mass spectrometry of the 

antigen sequence, (ii) optimization of the assay by testing all combinations of available monoclonal 

antibodies in capture and detection, targeting maximal signal/background ratio and sensitivity. 

Combinations of two or more antibodies in coating and/or detection were also tested to improve 

performances, (iii) checking sample compatibility (serum vs plasma, interference of the matrix), (iv) 

ensure that assay can be run at room temperature for easy handling and robustness. The mAbs were 

made in D. Olive laboratory immunizing mice with recombinant PD-1, PD-L-1, BTN3A1, BTN3A 

and BTLA molecules. The hybridomas were screened for the ability to bind to recombinant PD-1, 

PD-L1, BTN3A1, BTN3A and BTLA molecules. They are all of IgG1 isotype. 

All five ELISAs follow the same schedule: All steps are run at room temperature. Plates are coated 

overnight with the antibody selected for capture then washed. Remaining binding sites are blocked to 

minimize background. All next steps end with plate washing. For the PD-L1 assay, all steps are 

conducted under shaking. Samples to be tested are incubated for 3 h. Then, the biotinylated antibody 

selected for detection is incubated for 30 min, followed by incubation for 15 min with the avidin–

peroxidase conjugate. Finally, the substrate TMB is incubated for 15 min, the reaction stopped with 

H2SO4 and the OD read at 450 nm. Concentrations are established by comparison with a range 

obtained with known concentrations of the recombinant antigen. All recombinant antigens except PD-

L1 (obtained from R&D, cat# 156 B7) were home-synthesized. 
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The five ELISA tests used showed good linearity and a high specificity. The linearity for sPD-1 

measurement in the test ranges from 0.05 to 5.00 ng/mL, for sPD-L1 from 0.02 to 2.00 ng/mL, for 

sPan-BTN3As from 0.10 to 8.00 ng/mL, for sBTN3A1 from 0.10 to 8.00 ng/mL, and for sBTN2A1 

is from 0.06 to 2.00 ng/mL. Also, we tested the cross reactivity between these five recombinant 

proteins and, as expected, no signal was detected when the antibodies used did not correspond to the 

antigen. 

Studies comparing concentrations of all 5 markers measured in serum and plasma from the same 

blood collection showed that apparent concentrations in serum were at least three to five times less 

than in plasma as shown in supplementary Figure 1. This observation shows that clotting results in 

the apparent loss of a large part of the assayed proteins. Because the mechanism of such loss is 

unknown, determination of protein concentrations in serum might be affected by factors other than 

the clinical status of the patient. As consequence, use of serum samples could be misleading and 

should be avoided. All samples assayed in this study were plasmas. We also observed in all 5 ELISAs 

an interference of the plasma matrix, which becomes negligible when plasma samples are diluted at 

least 1/5. In the present study, all plasma samples were at least diluted 1/5 before assay. 

Details on the five ELISAs are summarized in Table 1. 

 

Table 1. Characteristics of ELISAs for sPDL-1, sPD-1, sPan-BTN3A, sBTN3A1 and BTLA. 

 

 

*Three isoforms of BTN3A are identified (A1, A2, A3). Among available monoclonal antibodies (Ab) to BTN3A, one is 

specific for A1 (α-BTN3A1 S240). Coating with α-BTN3A1 S240 allows specific assay of the A1 isoform, whereas the 

couple of antibodies α-BTN3A S148 and α-BTN3A 103.2 allows simultaneous detection of all three forms (Pan-BTN3A 

assay). It is however noteworthy that BTN3A concentrations obtained with the Pan-BTN3A assay are only indicative 

since the range used in the assay is pure BTN3A1. BTN3A concentrations should, therefore, be expressed as pg/ml « 

equivalent BTN3A1 ». 
 

 

3.4 miRNA Expression Profile Analysis 

Total cellular RNA and miRNAs have been isolated using the miRNeasy Mini Kit (Qiagen Inc, 

Valencia, CA, USA). The quality of the samples have been controlled through RNA 6000 Nano Assay 

 PD-L1 PD-1 Pan-BTN3A* BTN3A1* BTLA 

Coating Ab 
α-PD-L1 1.8 + 

α PD-L1 2.1 
α-PD-1 6.4 α-BTN3A S148 

α-BTN3A1 

S240 

α-BTLA 

75.2 

Detection Ab (biotinylated) Α-PD-L1 1.3.1 α-PD-1 3.1 
α-BTN3A 

103.2 

α-BTN3A 

103.2 

α-BTLA 7.1 

+ 

α-BTLA 8.2 

Detection limit (pg/ml) 20 50 100 100 200 
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(Agilent Technologies, Palo Alto, CA, USA) using 2100 Bioanalyzer (Agilent Technologies, Santa 

Clara, CA, USA) and quantified through the spectrophotometer NanoDrop ND-1000 (CELBIO). To 

study miRNA expression profile, we used TaqMan® Low Density Array A Human MicroRNA v2.0 

(Life Technologies, Carlsbad, CA, USA).  

The arrays were processed and analyzed in accordance to manufacturer's protocols.  

Briefly, 600 ng of miRNA-enriched total RNA were reverse transcribed using Megaplex™ RT 

Primers Human Pool A (Life Technologies, Carlsbad, CA, USA) according to manufacturer’s 

instructions. Conditions for the reverse transcription reaction were as follows: 16°C for 2 minutes, 

42°C for 1 minute, 50°C for 1 second for 40 cycles, 85°C for 5 minutes then hold at 4°C. Obtained 

cDNA was diluted, mixed with TaqMan Gene Expression Master Mix, and loaded into each of the 

eight fill ports on the TaqMan® Human MicroRNA Array A (Life Technologies, Carlsbad, California, 

U.S.). The TaqMan Human MicroRNA Array is a 384-well microfluidics card containing 377 primer-

probe sets for individual miRNAs as well as three carefully selected candidate endogenous small 

nucleolar RNAs control assay and one negative control assay. The array was centrifuged at 1.200 rpm 

twice for 1 minute each, then run on ABI-PRISM 7900 HT Sequence Detection System (Applied 

Biosystems). Two biological replicates were performed for each experimental condition. The data 

were quantified using the SDS 2.4 software and normalized using the RNU48 as endogenous control. 

The cycle threshold (Ct) value, which was calculated relatively to the endogenous control, was used 

for our analysis (ΔCt). The 2−ΔΔCT (delta-delta-Ct algorithm) method was used to calculate the relative 

changes in miRNA expression. A miRNA was defined differentially expressed when estimated P-

value was < 0.05. As regards the differentially expressed miRNAs we established a cut off of fold 

change > 1.5 for up-regulated miRNAs and < 0.5 for down-regulated miRNAs. 

 

3.5 Quantitative real-time PCR analysis 

Quantitative real-time PCR was used to measure miRNA expression levels. Ten nanograms of total 

RNA were reverse transcribed using TaqMan MicroRNA Reverse Transcription Kit (Applied 

Biosystems, Foster City, CA, USA) according to manufacturer's instructions. RT reactions contained 

10 ng of RNA sample, 100 nmol/l stem–loop RT primer, 100 mmol/l deoxynucleoside 5-

triphosphates, 50 units/μl MultiscribeTM RT, 20 units/μl RNase inhibitor, 1·5 μl 10 × RT buffer (all 

from Applied Biosystems) and nuclease-free water. The 15-μl reactions were incubated in a 

Thermocycler (Eppendorf, North Ryde, New South Wales, Australia) for 30 min at 16°C, 30 min at 

42°C, 5 min at 85°C and then held at 4°C. 
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The obtained cDNA was amplified using the following Taqman MicroRNA assays: hsa-miR-22, hsa-

miR-24, hsa-miR-99a, hsa-miR-194, hsa-miR-214, hsa-miR-335, hsa-miR-339, hsa-miR-708 (Life 

Technologies, Carlsbad, CA, USA). 

To normalize quantitative Real-Time PCR reactions, parallel reactions were run on each sample for 

RNU48 snRNA. The reactions were performed in triplicate and changes in the target miRNA content 

relative to RNU48 were determined using the comparative Ct method to calculate changes in Ct, and, 

ultimately, fold and percent change. An average Ct value for each RNA was obtained for replicate 

reactions. 

 

3.6 miRNA Data Analysis 

Hierarchical cluster and heat map analyses were performed using the MultiExperiment Viewer (MeV 

v4.8) program of TM4 Microarray Software Suite. Heat maps of miRNAs versus pathways were 

generated using miRPath v3.0 database, where the user can choose between in silico predicted 

miRNA gene targets and a large set of experimentally validated targets, or both (69). Information 

concerning MiRNA, mRNA target and related pathways was obtained from the literature and 

miRBase and Targetscan databases (111). 

DIANA-miRPath v3.0 is based on a new relational schema, specifically designed to accommodate 

this as well as future miRPath updates. miRNA and pathway-related information was obtained from 

miRBase 18 (112) and Kyoto Encyclopedia of Genes and Genomes (KEGG) v58.1 (113). 

Hierarchical clustering of targeted pathways and miRNAs was realized using DIANA-miRPath v3.0. 

The software created a clustering of the selected miRNAs based on their influence on molecular 

pathways (69). 

 

3.7 Statistical analysis 

The receiver operating characteristic (ROC) curves analysis were used to determine the optimal cut-

off for each marker, in order to classify short-term versus long-term responders. The areas under the 

curves (AUC) were assessed to evaluate each marker performance for discriminating short from long-

term survivors. 

The analysis of PFS, defined as the time between blood sample collection and progression or death 

from any cause, was performed using the Kaplan-Meier method and log-rank test.  

Univariate and multivariate Cox proportional hazard regression models were built in order to identify 

significant prognostic factors for PFS. 
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Data were generated using the MedCalc software for Windows, version 18.2.1 (MedCalc Software, 

Ostend, Belgium) and GraphPad Prism software v. 9.0.0 (GraphPad Software, San Diego, CA, USA).  

p-values < 0.05 were considered statistically significant. 

One-way analysis of variance (ANOVA) test were used to perform analyses of correlation between 

pre-treatment (T0) ICs plasmatic levels in metastatic ccRCC patients of cohort number 2. 

Fisher’s exact test was used to evaluate the immunotherapy response based on the plasma PD-1, PD-

L1, pan-BTN3As, BTN3A1, and BTN2A1 levels, respectively, and the correlation with the IMDC 

Prognostic Risk Group and number of metastatic sites. Wilcoxon test was used to evaluate paired 

samples. Pearson’s chi-square test was used for association of sIC with best overall response by 

RECIST (BOR) and OR of >20%. 
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4. Results 

4.1 Cohort Number 1 

4.1.1 Clinico-Pathological Features of Metastatic GIST Patients 

The study cohort includes 30 patients with a pathological diagnosis of advanced GIST, based on 

morphological characteristics and IHC for CD117 (KIT), carrying c-KIT exon 11 mutations who are 

candidates for first-line imatinib 400 mg/day in order to discover if soluble forms of 

immunomodulatory molecules, such as PD-1, PD-L1, BTN3A1, and pan-BTN3As, may be helpful 

in predicting the survival of metastatic GIST (mGIST) patients and to obtain significant information 

about the clinical evolution of disease.. 

We focused on c-KIT exon 11-mutated patients, because they represent the most common molecular 

subgroup in GISTs and, at the same time, show a wide variability in PFS to imatinib. Sixteen patients 

(53.3%) harbored c-KIT exon 11 deletion or delection/insertion, and 14 (46.7%) carried other PV 

types (duplication, insertion, or single nucleotide variant). The patients were mainly male (63%) and 

the median age at diagnosis was 58 years (mean 57; range 33–77 years). The most frequent site of 

primitive tumors was the stomach (14 patients; 46.7%), followed by the small bowel (11 patients; 

36.6%) and, rarely, the GIST originated from other gastrointestinal sites (5 patients; 16.7%). The 

patients showed mainly larger primitive tumor (diameter > 5 cm) (18 patients; 60%) and higher 

mitotic index (mitoses > 5/50 HPF) (n = 17; 56.7%). 

Regarding the metastatic site, 11 out of 30 patients (36.3%) had only hepatic metastases, 13 patients 

showed peritoneal metastases (43.4%), and 6 patients (20%) had both hepatic and peritoneal 

involvement. The clinical features and pathological parameters are shown in Table 2. 

 

Table 2. Clinico-pathological characteristics of metastatic GIST patients. 
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4.1.2 Correlation between sICs and PFS 

In order to establish for each soluble biomarker the optimal concentration threshold able to 

discriminate short-term survivors (STS) (≤36 months) versus long-term survivors (LTS) (>36 

months) mGIST we performed the ROC curve. ROC curve analysis showed that the best cutoff 

concentration was 8.1 ng/mL for sPD-1 (AUC = 0.968, p < 0.001), 0.7 ng/mL for sPD-L1 (AUC = 1, 

0, p < 0.001), 7.0 ng/mL for sBTN3A1 (AUC = 0.915, p < 0.001), and 5.0 ng/mL for pan-sBTN3As 

(AUC = 0.944, p < 0.001) (Figure 3)  

Sex 
Male                                   19 (63.3) 

Female                                11 (36.7) 

Age at Diagnosis 

Median                                58 

Mean                                   57 

Range                                  33-77 

Age groups 

≤40                                      2 (6.6) 

41-50                                   7 (23.4) 

51-60                                   9 (30) 

>60                                      12 (40) 

Type of KIT exon 11 PV 
Deletion/Delins                   16 (53.3) 

Dupl/Inse/SNV                  14 (46.7) 

Site of origin 

Gastric                                14 (46.7) 

Small bowel                       11 (36.6) 

Other GI                               5 (16.7) 

Primitive tumor diameter 
≤5 cm                                 12 (40) 

>5 cm                                 18 (60) 

Mitosis 
≤5/50 HPF                          13 (43.3) 

>5/50 HPF                          17 (56.7) 

Site of metastasis 

Liver                                   11 (36.6) 

Peritoneum                         13 (43.4) 

Liver and peritoneum          6 (20) 

PFS 
≤36 months                        20 (66.7) 

<36 months                        10 (33.3) 
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Figure 3: Analysis by ROC curves of circulating levels of sPD-1, sPD-L1, sBTN3A1, and pan-sBTN3As. The 

figure shows, for each circulating immune checkpoint, the best values of sensitivity and specificity to calculate 

the optimal concentration cut-offs (Youden index associated criterion). AUC, Area Under the Curve ROC. p < 

0.001. 

 

These values were found to be similar to the mean concentration values calculated for each soluble 

form of immune checkpoint tested, except for sBTN3A1. Indeed, the median concentration values 

were 8.91 ng/mL for sPD-1 (range 2.29 to 24.22 ng/mL), 1.06 ng/mL for sPD-L1 (range 0.30 to 2.22 

ng/mL), 9.07 ng/mL for sBTN3A1 (range 0.70 to 13.53 ng/mL), and 5.66 ng/mL for pan-sBTN3A 

(range 0 to 9.36 ng /mL). 

Most patients with LTS mGIST showed lower plasma levels for each soluble biomarker (sPD-1, sPD-

L1, sBTN3A1 and pan-sBTN3As), than patients with STS, highlighting the high predictive power of 

all soluble forms. (Figure 4) 
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Figure 4: Scatter plot by group discriminating STS and LTS mGIST patients. The plasma concentrations of 

each soluble protein were graphically represented for short-term survival (STS) and long-term survival (LTS) 

patients. For each circulating immune checkpoint, the red dotted lines point out the best concentration threshold 

previously determined through ROC analysis. The concentrations are shown in ng/mL. * p < 0.05; ** p = 

0.007; *** p = 0.0001. 

 

In order to understand the potential prognostic value of plasma PD-1, PD-L1, BTN3A1 and pan-

BTN3A in patients with advanced GIST, we classified mGIST patients based on the plasma 

concentrations for each tested biomarker obtained by ROC analysis and subsequently we calculated 

PFS using Kaplan-Meier curves (Figure 5) 
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Figure 5: PFS analysis by Kaplan–Meier curves in 30 mGIST patients with baseline high and low plasma 

concentrations of sPD-1 (a), sPD-L1 (b), sBTN3A1 (c), and pan-sBTN3As (d). 

 

 

For each tested protein, patients with plasma concentrations above and under thresholds showed 

statistically significant differences in PFS. Particularly, plasma concentration cut-offs associated with 

unfavorable prognosis and shorter survival were determined for sPD-1 (>8.1 ng/mL), sPD-L1 (>0.7 

ng/mL), sBTN3A1 (>7.0 ng/mL), and pan-sBTN3As (>5.0 ng/mL) while individuals with plasma 

concentrations below the thresholds had a median PFS that was approximately 20 months longer. 

Specifically, patients with an elevated baseline level of sPD-1 (>8.1 ng/mL), sPD-L1 (>0.7 ng/mL), 

and sBTN3A1 (>7.0 ng/mL) showed a Median PFS of 22 months versus 41 months for subjects who 

had lower levels of sPD-1 (log-rank p value = 0.0001, value < 0.0001) and sBTN3A1 (log-rank p 

value = 0, 0001). The same association was observed for pan-sBTN3A (22 months vs. 39 months; 

log-rank p-value = 0.0009) (Figure 4). Thus, the soluble forms of all ICs studied in this work have 

been shown to be potential survival factors in patients with mGIST. 

 

4.1.3  Multivariate Analysis of Prognostic Factors for PFS 
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We performed a multivariate analysis for PFS in order to correlate the type of KIT exon 11 mutation 

detected in our population cohort, plasma immune checkpoint levels, and other clinical factors, based 

on literature data demonstrating the correlation between type of mutations and response to imatinib. 

In particular, the presence of deletions at codons 557/558 was found to be linked to significantly 

shorter PFS than point mutations (PMID: 33673554). 

The results of this multivariate analysis are reported in Table 3. 

Univariate analysis showed that plasma sPD-1, sPD-L1, sBTN3A1 and pan-sBTN3A levels, age at 

diagnosis, and KIT exon 11 PV type were statistically significantly associated with PFS , whereas in 

the final multivariable Cox regression model only plasma sPD-L1 levels ≤ 0.7 ng/mL (HR: 0.01; 95% 

CI: 0.001 to 0.18; p = 0.001), pan- sBTN3As ≤ 5.0 ng/mL (HR: 4.45; 95% CI: 0.96 to 20.5; p = 0.05) 

and the absence of KIT exon 11 Del or Delins at codons 557 and/or 558 (HR: 0.05; 95% CI: 0.007 to 

0.31; p = 0.003) were statistically significant. 

 

Table 3: Univariate and multivariate analysis of prognostic factors for PFS in KIT exon 11-mutated 

mGIST patients treated with first-line imatinib. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore, our analysis highlighted that the absence of KIT exon 11 deletions or delins at codons 557 

and/or 558 and expression levels of sPD-L1 ≤ 0.7 ng/mL and pan-sBTN3As ≤ 5.0 ng/mL were 

independent prognostic factors associated with a longer PFS in mGIST patients harboring a KIT exon 

11 PV prior to imatinib therapy (Figure 6). 
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Figure 6: PFS analysis in mGIST patients harboring KIT exon 11 deletions or delins at codons 557 and/or 558. 

 

 

4.2 Cohort Number 2 

4.2.1 Clinico-Pathological Features of metastatic clear cell renal cell carcinoma (mccRCC) 

patients  

The study included fifty-six (56) patients with ccRCC. Of these, twenty-one (21) were metastatic 

patients from the learning cohort treated with second-line nivolumab, twenty (20) were patients from 

an independent validation cohort of mccRCC patients receiving nivolumab to confirm levels of 

correlation among each sIC tested, fifteen (15) were ccRCC patients with localized disease included 

in the exploratory analysis. The clinicopathological characteristics of the population are summarized 

in Table 4. 

We investigated the potential role of sPD-1, sPD-L1, and sBTNs (pan-sBTN3A, sBTN3A1, and 

sBTN2A1) levels as predictive biomarkers of response to nivolumab treatment in mccRCC patients 

 

Table 4: Clinical and pathological features of metastatic and localized RCC patients 
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4.2.2 Baseline plasma ICs levels as predictive biomarkers of anti-PD-1 treatment outcome in 

mRCC patients 

Plasma sPD1 and sPD-L1 levels were analyzed in blood samples from 21 mRCC patients from the 

learning cohort before nivolumab treatment (T0). The mean sPD1 and sPD-L1 levels were 2.79 ng/ml 

(range 0.52-25.00) and 0.62 ng/ml (range 0.26-1.31), respectively. 



 
 

 

 
 

27 
 

The same analysis was performed on soluble butyrophylline-like receptors, such as sBTN3global, 

sBTN3A1 and sBTN2A1. Mean plasma levels were 12.65 ng/ml (range 3.32–28.18), 7.00 ng/ml 

(range 2.03–24.76), and 8.66 ng/ml (range 5,67–16,93), respectively. 

To investigate the predictive role of plasma ICs levels in response to immunotherapy, sICs levels prior 

to nivolumab treatment (T0) were correlated with PFS and best overall response by RECIST.  

Based on the PFS compared to nivolumab treatment we divided the patients into 3 groups: 

- 2 patients showed a PFS <6 months; 

- 10 patients showed a PFS between 6 and 18 months; 

- 9 patients showed a PFS>18 months. 

Comparing the mean pre-treatment (T0) levels of plasma ICs of all patients with the long-responder 

group (>18 months), sPD1, sPD-L1, and sBTN3A1 were higher in long-responder patients: 13.25 

ng/ml (range 1.22–25.0), 1.09 ng/ml (range 0.47–2.41), and 11.03 (9.32–24.76) for sPD-1, sPD-L1, 

and sBTN3A1, respectively. These difference were statistically significant (p = 0.01; p = 0.02; p = 

0.03) (Figure 7). 

 

 

Figure 7: PFS (months) to nivolumab treatment in mccRCC patients (a); mean value of plasmatic ICs levels 

in all nivolumab patients versus long-responders patients (>18 months) (b, c–f). 

 

 

For butyrophyllines, The mean plasma levels of sBTN3 global and sBTN2A1 in patients with PFS>18 

months were 12.32 ng/ml (range 7.79–27.77) and 7.71 (range 4.91–10.00) ng/ml, respectively (Figure 

2(d,f)), but the difference for these three ICs, if compared with all nivolumab patients, was not 

statistically significant. For this reason, they were not included in the further survival analyses. 
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Using specific cut-offs determined from the ROC curves, we divided patients based on low and high 

plasma levels for each ICs analyzed and calculated PFS using Kaplan-Meier curves. (Figure 8) 

 

Figure 8: Kaplan-Meier analysis of progression free survival in patients from learning cohort with high and 

low plasma levels of sPD-1 (a), sPD-L1 (b), and sBTN3A1 (c) 

 

 

For sPD-1, sPD-L1, and sBTN3A1 we observed strong significant differences in median PFS between 

patients with plasma concentrations above and under thresholds. Patients with high levels of sPD-1 

(>2.11 ng/ml) have a median PFS of 20.7 months compared to 6.9 months for patients with low levels 

of sPD-1 (p value < 0.0001). Patients with high levels of sPD-L1 (>0.66 ng/ml) have a median PFS 

of 19 months compared to 9 months for patients with low levels of sPD-L1 (p value < 0.0001), and 

patients with high levels of sBTN3A1 (>6.84 ng/ml) have a median PFS of 17.5 months compared to 

8.4 months for patients with low levels of BTN3A1 (p value = 0.002). The strongest difference in 

PFS was observed using sPD-1 as biomarker. 

The association of sIC with best overall response by RECIST (BOR) and objective response of >20% 

(OR) were also analyzed. High sPD-1 (>2.11 ng/ml) and sBTN3A1 (>6.84 ng/ml) levels were 

associated with BOR, but also with favorable OR (objective response of >20%). 

We investigated the correlation between baseline plasma levels of ICs and some clinical factors, 

including the location of distant metastases (lung vs other sites), the number of metastatic sites (≤2 

or ≥3) and the IMDC prognostic risk group. Regarding the location of distant metastases and the 

number of metastatic sites, the levels of sPD-L1 and sBTN2A1 were increased in patients with non-

pulmonary metastases compared with lung-only (sPD-L1 p = 0.003; sBTN2A1 p = 0.01) and were 

significantly higher in patients with ≥3 sites of disease (sPD-L1 p = 0.03; sBTN2A1 p = 0.003). 

The association between higher sPD-L1 levels and the IMDC intermediate risk group was also found 

(p = 0.003). 
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4.2.3 Comparison T0-T1 of ICs levels in the plasma of mccRCC long responders patients 

treated with nivolumab 

In long responders patients (PFS>18 months), after a 4-weeks period (T1) with nivolumab treatment 

(2 cycles of nivolumab administration), plasma levels of sPD1 and sPD-L1 were lower than baseline, 

with a mean of 1.23 ng/ml (range 1.06–1.93) for sPD-1 and 0.73 ng/ml (range 0.56–1.39) for sPD-

L1 while plasma levels of sBTN2A1 were higher at the 4-weeks period (T1; 9.99 ng/ml; range 7.94–

19.13) than baseline (T0; mean 7.71 ng/ml; range 4.91–10.0).  

Wilcoxon test for paired samples showed a statistically significant difference between T0 and T1 for 

both sPD1 and sBTN2A1 (sPD1: T0 vs T1 p = .0078; sBTN2A1 T0 vs T1 p = 0.0007), probably the 

small number of analyzed samples did not allow us to demonstrate a statistically significant difference 

in T0-T1 sPD-L1 levels (p = 0.097). The paired-sample Wilcoxon test showed a statistically 

significant difference between T0 and T1 for both sPD1 and sBTN2A1 (sPD1: T0 vs T1 p = 0.0078; 

sBTN2A1 T0 vs T1 p = 0.0007), although perhaps the small number of analyzed samples did not 

allow to demonstrate a statistically significant difference in T0-T1 sPD-L1 levels (p = 0.097). 

Changes in plasma levels are showed also for sBTN3A1 and sBTN3 global, but these difference T0-

T1 did not reach statistical significance.  

 

4.2.4 Exploratory analysis: comparison of plasma ICs levels in metastatic versus localized 

ccRCC patients 

Plasma levels of ICs were analyzed in 15 patients with localized RCC before surgery and were 

compared with the metastatic cohort. The concentrations of sPD-1, sPD-L1, sBTN2A1 e sBTN3A1 

were statistically higher in the plasma of metastatic patients than in patients with localized RCC. 

Mean sPD-1 in localized group was 1.54 ng/ml (range 0.55–3.91) vs mean sPD-1 in metastatic group 

2.79 ng/ml (range 0.52–25.00). Mean sPD-L1 in localized group was 0.49 ng/ml (range 0.25–0.69) 

vs mean sPD-L1 in metastatic group 0.62 ng/ml (range 0.26–2.41) (sPD-1 p = 0.003; sPD-L1 p = 

0.03). 

Mean values of sBTN2A1 e sBTN3A1 were higher in the group of metastatic compared to the group 

of localized patients, but the difference between the two groups is not statistically significant 

(BTN2A1: 8.33 vs 8.66 ng/ml; BTN3A1: 6.47 vs 7.01 ng/ml). (Figure 9) 
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Figure 9: ICs in RCC patients: localized vs metastatic disease at baseline (pretreatment)  

4.2.5 Analysis in the validation cohort 

To confirm the predictive value of the tested ICs, we used 20 independent blood samples from 

mccRCC patients. In this cohort, the optimal cut-off was 1.31 ng/ml (AUC = 1.0, p value < 0.001) 

for sPD-1, 0.73 ng/ml for sPD-L1 (AUC = 0.944, p value < 0.001), 3.8 ng/ml for sBTN3A1 (AUC = 

0.806, p value < 0.03), 5.11 ng/ml for sBTN3 global (AUC = 0.833, p value < 0.01), and 9.12 ng/ml 

for sBTN2A1 (AUC = 0.708, p value 0.23). 

Subsequently, applying to the validation cohort the threshold levels previously determined in the 

learning cohort from the ROC curves, we found a significant correlation between PFS and anti-PD-1 

treatment and high baseline expression levels in plasma for sPD-1, sPD- L1 and sBTN3A1. These 

data confirmed our previous results in the learning cohort and allowed to discriminate short versus 

long-responders to nivolumab therapy in the validation cohort. Patients with high levels of sPD-1 

(>2.11 ng/ml) had a median PFS of 16.6 months compared to 9.7 months for patients with low levels 

of sPD-1 (p value = 0.002); patients with high levels of sPD-L1 (>0.66 ng/ml) had a median PFS of 

15.7 months compared to 8.6 months for patients with low levels of sPD-L1 (p value < 0.003). 
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Concerning patients with high levels of sBTN3A1 (>6.84 ng/ml), they had a median PFS of 16.9 

months compared to 7.8 months for patients with low levels of BTN3A1 (p value < 0.001). 

 

4.3 Cohort Number 3 

4.3.1 Clinico-Pathological Features of metastatic clear cell renal cell carcinoma (mccRCC) 

patients  

The study included twenty-three metastatic ccRCC patients treated with second-line nivolumab in 

order to investigate the association between the plasma levels of sPD-1/sPD-L1 and expression of 

lymphocyte miRNAs. The clinical and pathological characteristics of the study population are 

summarized in the Table 5. 

 

Table 5: Clinical and pathological features of metastatic renal cell carcinoma (mRCC) patients. 
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4.3.2 Expression Profile of Lymphocyte miRNAs as Predictive Biomarkers of Anti-PD-1 

Treatment Outcome 

In order to study the effect of nivolumab treatment on the miRNA expression profile in lymphocytes 

we performed a large-scale analysis of 377 miRNAs on peripheral blood samples before nivolumab 

treatment (T0) and after a 4-week period (T1) with nivolumab treatment (2 cycles of nivolumab 

administration). 
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Among all 377 analyzed miRNAs, microarray analysis showed 66 differentially expressed miRNAs 

in peripheral lymphocytes between T0 and T1. Sixty-four miRNAs were upregulated, and only 2 

miRNAs were downregulated at T1 versus T0. 

To investigate the predictive role of lymphocyte miRNA expression profile in response to 

immunotherapy, we divided patients into 3 groups based on PFS to nivolumab treatment and best 

overall response by RECIST (complete response, CR; partial response, PR ; stable disease response, 

SD; disease progression, PD): 

- group A: 2/23 patients with PFS <6 months; 

- group B: 11/23 patients with PFS between 6-18 months; 

- group C: 9/23 patients with PFS>18 months. 

We compared the lymphocyte miRNA expression profile between three groups and in order to 

highlight significantly expressed miRNAs, we established a fold change (FC) cutoff >2 for 

upregulated miRNAs and FC<0.3 for downregulated miRNAs ( p < 0.05). 

After 4 weeks of nivolumab treatment (T1), patients with SD, PR, or CR as best responders showed 

28 lymphocyte miRNAs specifically induced by nivolumab treatment, which were silenced at T0, of 

which 21 were related to the of clear cell renal cancer signaling (analysis conducted using the 

DIANA-mirPath v.3.0 tool). (Table 6) 

 

Table 6 : microRNAs induced by Nivolumab treatment 

 

 

Subsequently, a statistical analysis, performed by assessing only the intersection of targeted genes 

(hypothetical genes targeted by all selected miRNAs), revealed the involvement of 26 out of the 28 

miRNAs and 183 miRNA-targeted genes involved in the PI3K-Akt signaling pathway, one of the 

most significant pathways in cancer biology (Table 7).  

 

Table 7: Cellular pathways modulated by 28 specific miRNAs induced by Nivolumab. 
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Other miRNA-related molecular pathways were MAPK signaling (130 genes, 24 miRNAs), T-cell 

receptor (55 genes, 24 miRNAs), Hippo signaling (87 genes, 22 miRNAs), FOXO signaling (75 

genes, 22 miRNAs). 22 miRNAs) miRNA), HIF-1 signaling pathway (56 genes, 22 miRNA), mTOR 

signaling (35 genes, 20 miRNA) (Table 3). Our analysis showed that miRNAs are potential molecular 

mediators through which nivolumab can exert its antitumor activity. 

In order to investigate the predictive role of deregulated lymphocyte miRNAs, we evaluated the 

expression of some specific miRNAs induced exclusively after nivolumab treatment in long-

responder patients. A subset of 8 specific miRNAs strongly induced by nivolumab treatment was 

identified in this subset of patients. These 8 miRNAs, which included miR-22, miR-24, miR-99a, 

miR-194, miR-214, miR-335, miR-339, miR-708, were found only in peripheral lymphocytes of 

long-responder patients (>18 months) and were found to be specifically and highly induced by 

nivolumab treatment (Table 8) 

 

Table 8: microRNAs induced by nivolumab treatment. 

 

 

These results were confirmed through quantitative real-time PCR analysis in an independent 

validation cohort of 8 mccRCC patients.  
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An enrichment analysis carried out using online tools available from The Database for Annotation, 

Visualization and Integrated Discovery (DAVID) allowed us to identify 41 KEGG pathways 

modulated by the “lymphocyte signature” of 8 miRNAs, including several signaling pathways related 

to renal cell carcinoma. 

 

4.3.3  Association Between Lymphocyte miRNA Expression and Plasma Levels of Soluble PD-

1/PD-L1 in Long-Responders Patients 

In 9 patients long-responders to treatment with nivolumab we studied the association between plasma 

sPD-1/sPD-L1 levels and lymphocyte miRNA expression profile, in order to investigate the 

translational potential of miRNAs in regulating ICs expression. In this patient cohort, we showed that 

miR-22 and miR-24 levels were inversely correlated with plasma PD-1 levels. At baseline (T0), high 

sPD-1 levels were observed (median 13.15 ng/mL; range: 1.12–25.00), whereas the expression of 

lymphocyte miR-22/miR-24 was silenced (Ct > 40). Conversely, after 4 weeks from starting 

nivolumab (T1), sPD-1 levels were strongly reduced (median 1.25 ng/mL; range: 1.06–1.97) and the 

expression of miR-22/miR-24 was restored (mean Ct: 12.86 and 7.80, respectively) only in patients 

with PR/CR/SD to nivolumab >18 months (p = 0.007), suggesting that a miRNA network could 

inhibit sPD-1 expression mainly via miR-20 family. In the same way, an inverse correlation between 

sPD-L1 and lymphocyte miR-22 and miR-24 was showed (T0, median value: 1.1 ng/mL; range 0.46–

2.41; T1, median value: 0.71 ng/mL; range 0.55–1.39), but, probably, the small number of analyzed 

samples did not allow us to demonstrate a statistically significant difference between T0 and T1 (p = 

0.09). (Figure 10) 

 



 
 

 

 
 

36 
 

Figure 10: Correlation between expression of miRNAs 22/24 and plasma levels of soluble PD-1/PD-L1 in a 

group of 9 long-responder patients. 

 

 

4.4 Cohort Number 4 

4.4.1 Clinico-Pathological Features of metastatic melanoma patients  

This study included a cohort of 41 patients with a histologically confirmed diagnosis of melanoma, 

harboring no BRAF, NRAS, or KIT mutations, candidates for first-line treatment based on anti-PD-

1 nivolumab or pembrolizumab. 

The purpose of the study was to investigate the role of BMI and baseline plasma levels of sPD-1, 

sPD-L1, sBTN2A1 and sBTN3A1 as predictive biomarkers of immunotherapy response in metastatic 

melanoma patients treated with anti-PD-1 nivolumab or pembrolizumab as first-line treatment. 

Clinical features of metastatic melanoma patients are summarized in Table 9. 

 

Table 9 : Clinical features of metastatic melanoma patients. 
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4.4.2 Outcome analysis 

In order to evaluate the role of the soluble form of sPD-1, sPD-L1, sBTN3A1 and sBTN2A1 as 

predictive markers of response to immunotherapy,  we classified the plasma levels of each biomarker 

tested as "low" or "high" concentrations based on the thresholds calculated through the ROC analysis. 

The primary clinical outcome of the study was TTF, defined as the time from immunotherapy 

initiation to discontinuation for any reason excluding remission, i.e. disease progression, treatment 

toxicity, patient preference, or death. 

Overall median TTF was 36 months [95% confidence interval (CI): 14.3–57.7]. At the time of data 

analyses, a total of 26 events (progression or death) occurred (63.4%). Notably, the presence of 

plasma levels of sPD-1 < 11.24 ng/ml and sBTN2A1 ⩾ 4.0 ng/ml was significantly associated with 

longer TTF (Figure 2(h) and ((l)).l)). Regarding the outcome data according to plasma levels of sPD-

1, 7 events were observed in the group of 20 patients with sPD-1 low levels (35%), and 19 events in 

the group of 21 patients with sPD-1 high levels (90.4%). Regarding the outcome data according to 

plasma levels of sBTN2A1, 16 events were observed in the group of 20 patients with sBTN2A1 low 

levels (80%), and 10 events in the group of 21 patients with sBTN2A1 high levels (47.6%). Median 

TTF was not reached (NR) for the low sPD-1 group, and 17 months (95% CI: 5.0, 28.9) for the high 

sPD-1 group (p < 0.002). 

In contrast, pre-treatment PD-1 levels were higher in patients who did not respond to immunotherapy 

treatment, whereas pre-treatment levels of circulating BTN2A1 were significantly lower in patients 

who did not respond to treatment. No significant differences were observed for circulating PD-L1 

and BTN3A1. 

The next goal was the calculation of the OS. Overall median OS was 107 months (95% CI: 88.7, 

125.3). In all, 23 total events (deaths) were observed (56.1%). The distribution of events according 

to sPD-1 concentrations was: 10 in 20 patients with low sPD-1 levels (50%) and 13 in 21 patients 

with high sPD-1 levels (61.9%). Median OS was 108 months (95% CI: 21.1, 194.8) and 88 months 

(95% CI: 45.6, 130.3) for the low and high sPD-1 groups, respectively (p = 0.03) (Figure 3(h)). The 

difference was not significant for the other sICs (Figure 11) 
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Figure 11: TTF according to prognostic factors. 

 

4.4.3 ORR 

We evaluated the association between ORR and pretreatment levels of sPD-1 and sBTN2A1, which 

were previously significant in survival analyses. 
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After first-line anti-PD-1 treatment, patients showed the following best response: 16 PR/CR patients 

(39%), 12 SD patients (29%) and 13 PD patients (32%). 

Patients with low sPD-1 levels before treatment had a significantly higher ORR (ORR 65%; n = 13/20 

patients) than patients with high sPD-1 levels (ORR: 14.3%, 3/ 21 patients) (p =0.001) (Figure 4(b)), 

while patients with high sBTN2A1 levels at baseline had a significantly higher ORR (ORR 60%; 

n = 12/20 patients) than patients with low levels of sBTN2A1 (ORR 19%, 4/21 patients) (p = 0.01). 

Next, we assessed the level of sPD-L1 and sBTN2A1 in "long" and "short" responder patients using 

the previously calculated median TTF to anti-PD-1 therapy. In long-responders patients we observed 

significantly lower sPD-1 levels (10.3 ng/ml, range: 1.7–16.1) and significantly higher sBTN2A1 

levels (4.4 ng/ml, range: 3.0–9.4) (p = 0.001 and p = 0.004, respectively) compared with short-

responders (sPD-1: 16.6 ng/ml, range: 8.3–25.0; sBTN2A: 3.77 ng/ml, range: 1.7–5.7).  

Therefore, higher levels of sPD-1 and lower levels of sBTN2A1 before the treatment were associated 

with poorer clinical outcomes and ORR (Figure 12) 

 

 

Figure 12: ORR in the groups of patients showing high and low sPD-1 and sBTN2A1 pretreatment plasma 

levels. 

 

ORR, objective response rate; sBTN, soluble butyrophilin; sPD-1, soluble programmed cell death protein 1. 

 

 

4.4.4 Multivariable analysis 

Variables included in the univariate analysis were as follows: (1) gender (male or female); (2) age at 

first-line start (⩽45 or >45 years); (3) TILs in primary melanoma (absent/non-brisk or present brisk); 

(4) BMI at first-line start (<25 or ⩾25); (5) NLR at first-line start (⩽2.6 or >2.6); (6) serum 

pretreatment level of LDH (⩽300 or >300); (7) baseline plasma levels of sPD-L1 (<1.17 or 

⩾1.17 ng/ml); (8) baseline plasma levels of sPD-1 (<11.24 or ⩾11.24 ng/ml); (9) baseline plasma 

levels of sBTN3A1 (<9.7 or ⩾9.7 ng/ml); and (10) baseline plasma levels of sBTN2A1 (<4.0 or 

⩾4.0 ng/ml). 
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Univariate analyzes showed that age, BMI, NLR, sPD-1 and sBTN2A1 are statistically significantly 

associated with TTF, whereas in the final multivariable Cox regression model, only BMI [p = 0.02, 

hazard ratio (HR): 0.37] and sPD-1 (p = 0.002, HR: 4 ,5) were significant. 

Regarding OS, LDH and sPD-1 were statistically significantly associated with univariate analyses. 

In the final multivariable model, no prognostic factor considered remains statistically significant. 

These results demonstrate that in metastatic melanoma patients treated with first-line PD-1 inhibitors, 

BMI ⩾ 25 and sPD-1 < 11.24 ng/ml were significant independent prognostic factors for longer TTF. 

The association between BMI and ORR showed that BMI ⩾ 25 is related to higher response rates 

compared to patients of normal weight [48% (12 of 25) vs. 25% (4 of 16)] (p = 0.001). Specifically, 

patients with a BMI of 25 or higher and sPD-1 < 11.24 ng/ml had improved TTF (median TTF NR) 

following ICI treatment than patients with a BMI of less than 25 and sPD-1 ⩾ 11.24 ng/ml (median 

TTF 4 months, 95% CI, 2.8–5.2). (Figure 13) 

 

 

 

 

Figure 13: ORRs according to the BMI (a), BMI and age at diagnosis (b), and TTF analyses of melanoma 

patients stratified by BMI and sPD-1 (c). 

 

BMI, body mass index; ORRs, objective response rates; sPD-1, soluble programmed cell death protein 1; TTF, 

time to treatment failure. 

 

 

Results on the potential role of exosomes in mccRCC and melanoma patients undergoing 

immunotherapy treatment and their correlation with PD-1/PD-L1 are still ongoing. However, the 

preliminary data obtained appear in line with literature data which highlight their potential role as 

important players in the immunomodulatory response mediated by PD-1/PD-L1. 
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The first analyzes carried out show a correlation between high levels of PD-L1 and a shorter PFS in 

both cohorts of patients analyzed. Therefore, further investigations will be needed to obtain more 

accurate results 
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5. Discussion 

In recent years, inhibition of the PD-1/PD-L1 immune regulatory complex through the development 

of targeted monoclonal antibodies has resulted in interesting results in phase II and III clinical trials 

for the clinical management of various solid tumours with consequent improvements in the prognosis 

of patients with advanced disease (114, 115). 

This evidence showed that effective blockade of PD-1 attachment to PD-L1 can activate the 

antitumour immune response and increase patient survival in a variety of cancers, making 

immunotherapy a clinically validated and effective therapeutic option for some cancers such as 

NSCLC, melanoma and RCC (116). 

Despite significant clinical benefit and durable responses, the percentage of patients who can benefit 

is rather low due to resistance mechanisms (117, 118). Therefore, identifying precise and dynamic 

biomarkers capable of guiding the selective treatment of patients who could benefit from 

immunotherapy is a need that is not yet completely fulfilled. 

Until now, the only predictive biomarker used as a companion diagnostic test for first-line 

immunotherapy is PD-L1 expression assessed by IHC from tissue sections, although it has several 

technical and biological limitations, as well as heterogeneous intra- and inter-tumour expression (92). 

In several cancer types, high tumour expression of PD-L1 in tissue is associated with a poor prognosis 

(119, 120). PD-L1 expression in tumours is strongly correlated with a poor prognosis in gastric 

carcinoma, hepatocellular carcinoma, RCC, esophageal cancer, pancreatic cancer and ovarian 

carcinoma (121-123). 

Opposite results were observed in breast carcinoma and Merkel cell carcinoma, where tumour PD-

L1 expression correlates with a better prognosis (124).  

Since PD-L1 and PD-1 are dynamic molecules and their tissue expression in the tumour cannot 

provide an overview of the tumour disease and its evolution, the study of soluble forms of ICs, 

detected in plasma or serum, could be a valuable prognostic factor in several types of solid tumours  

(109, 124, 125).  

To this end, our study assessed plasma concentrations of sPD-1, sPD-L1, sBTN3A1 and pan-sBTN3A 

in mGISTs and their relationship with PFS showed a negative correlation, demonstrating for the first 

time that the assessment of plasma concentrations of certain ICs could help predict survival in 

advanced GIST patients. Plasma levels of sPD-L1 ≤ 0.7 ng/mL and pan-sBTN3As ≤ 5.0 ng/mL, and 

the absence of KIT exon 11 deletions or delins at codons 557 and/or 558 were significant prognostic 

factors for a longer PFS in mGIST patients. 
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In RCC the role of sICs has not been well investigated. An early study by Frigola et al. (doi: 

10.1158/1078-0432.ccr-10-0250) showed for the first time that an elevated preoperative serum level 

of sPD-L1 was associated with an increased risk of death in patients with ccRCC. Several studies, 

including KEYNOTE-427 and CheckMate 214, observed an increased PFS and response rate in PD-

L1+ tumours (doi: 10.1200/jco.2014.59.0703; doi: 10.1016/s1470-2045(19)30413-9). Also in our 

study, we observed that baseline levels of sPD-1, sPD-L1 and sBTN3A1 were associated with longer 

PFS, best overall response according to RECIST and >20% objective response, demonstrating the 

role of sPD-1, sPD-L1 and sBTN3A1 in predicting response to therapy. 

The treatment paradigm for mRCC continues to evolve with new insights into the molecular biology 

and immunological background of renal tumours (126). In particular, epigenetic modifications, such 

as aberrant DNA methylation or abnormal expression of miRNAs, are emerging as central features 

of renal tumours (127). 

Based on this evidence, we hypothesised that an expression profile of miRNAs directly identified in 

peripheral lymphocytes of patients before and after immunotherapy administration could be useful to 

assess the dynamic molecular changes underlying nivolumab therapy and predict treatment response. 

Our study revealed several differentially expressed miRNAs in peripheral lymphocytes of long-

responder patients, most of which are implicated in major RCC signalling pathways involving VHL-

HIF, PI3K/Akt, MAPK cascade, mTOR, FOXO and receptor T cells. In particular, we found a specific 

subset of miRNAs (miR-22, miR-24, miR-99a, miR-194, miR-214, miR-335, miR-339, miR-708), 

which we termed "lymphocyte miRNA signature", specifically and exclusively induced in long-

responders recognised as patients with CR, PR or SD to nivolumab > 18 months.  This mechanism of 

miRNA restoration in responder patients could be useful to identify potential biomarkers predictive 

of therapy efficacy and response to nivolumab. 

Among the miRNAs specifically induced by nivolumab, miR-22, also in other studies has been found 

to be downregulated in both serum and tissues of ccRCC patients and thus could act as a tumour 

suppressor, as its loss of expression could contribute to the development of RCC through PTEN-

mediated induction of cell proliferation, migration and invasion (128). These data suggest that the 

miR-22/PTEN axis could be considered new potential therapeutic targets useful for the development 

of effective therapeutic strategies against RCC (129). 

Opposite results were instead reported by Gong et al. (130) showing a correlation between miR-22 

and cell proliferation and invasion in primary in vitro cultures of ccRCC. 

Contrasting data were also reported for miR-24, which in our analysis showed high and specific 

induction after immunotherapy treatment (131, 132). 
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A potential tumour-suppressive role mediated by the mTOR pathway has been attributed to miR-99a, 

as it has been observed that this miRNA is downregulated in RCC tissues, correlating with poor 

survival in RCC patients, and that its overexpression induces G-phase cell cycle arrest, inhibiting cell 

growth and tumorigenicity (133), supporting our results. However, a more recent study by Oliveira 

et al. (134) showed increased expression of miR-99a and downregulation of its target gene mTOR in 

ccRCC tissue samples, hypothesising a potential oncogenic role for this miRNA. 

In support of our findings, other literature data show miR-194 as a favourable prognostic biomarker 

implicated in the inhibition of tumour progression and therapy resistance in RCC (135, 136). 

Furthermore, miR-214 has been shown to inhibit RCC cell proliferation through downregulation of 

insulin-like growth factor-1 (IGF-1) receptor expression levels and inhibition of downstream 

mTORC1 signalling, independent of VHL status (137). In contrast, low expression levels of miR-214 

were associated with increased cell growth and reduced drug sensitivity in RCC cells (138). 

It was also observed that upregulation of miR-335 suppresses the proliferation and invasion of ccRCC 

cells through direct repression of the BCL-W gene, whereas its downregulation is significantly 

associated with the occurrence of lymph node metastases and increased tumour size (139). 

Further evidence supporting our results is the potential association between downregulation of miR-

339 and increased tumour PD-L1 expression, resulting in attenuation of the antitumour immune 

response in RCC patients. Therefore, the induction of miR-339 expression after nivolumab treatment 

is congruent with the longer PFS observed in our cohort of long response patients. Finally, miR-708 

has been shown to induce apoptosis and inhibit cell growth, invasion, migration and tumorigenicity 

in renal cancer cells and in murine xenograft models of human RCC (140). 

Furthermore, we evaluated the correlation between the signature of lymphocyte miRNAs identified 

in RCC long-responders and plasma levels of sPD-1/sPD-L1 in order to assess the clinical 

translational potential of miRNAs in modulating immune checkpoint expression (141). 

Previous studies have shown that miR-200 expression negatively correlates with PD-L1 expression 

(142), that baseline levels of sPD-1 and sPD-L1 were associated with longer PFS treatment, and that 

high levels of sPD-1 was also associated with better overall response according to RECIST and 

objective response of >20% (143, 144). In our study, the inverse correlation between miR-22 and 

miR-24 levels and plasma PD-1 levels in long-responder patients suggests that a miRNA network 

might inhibit immune checkpoint expression, mainly through the miR-20 family. 

In our cohort of patients with metastatic melanoma stratified by BMI, we observed that patients with 

metastatic melanoma with BMI>25 and low plasma PD-1 levels (sPD-1 <11.24 ng/ml) assessed at 

baseline, had nivolumab or pembrolizumab first-line with TTF and ORR. One possible reason why 

low plasma sPD-1 is more strongly associated with TTF is that sPD-1 might represent a direct target 
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of anti-PD-1 immunotherapy and therefore a high plasma concentration of sPD-1 may compromise 

the efficacy of ICIs by neutralising the PD-1 inhibitors pembrolizumab and nivolumab, resulting in 

treatment resistance and shorter TTF (145).  

Although this hypothesis is interesting, it does not explain the better clinical results obtained in 

overweight melanoma patients showing low sPD-1 levels, which could instead be explained by PD-

1-mediated T-cell dysfunction induced by excess adiposity (146). 

Obesity promotes a systemic and chronic inflammatory state (145), which can induce 

immunosuppression as a result of a protective mechanism against possible autoreactive responses of 

the immune system (PMID: 35241833), alters the adipose tissue microenvironment, stimulates the 

production of pro-inflammatory cytokines and elevated levels of insulin, glucose, fatty acids and 

leptin (147, 148). 

A recent study suggests the role of leptin signalling in increasing PD-1 expression and promoting T-

cell depletion, resulting in an immunosuppressed phenotype and obesity-related T-cell ageing (146). 

Therefore, our data showing lower sPD-1 concentrations in overweight patients responding to anti-

PD-1 antibodies could be indicative of a lower state of CD8+ T-cell depletion and dysfunction. 
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6. Conclusions 

Recent studies have shown that the PD-1/PD-L1 axis is responsible for less than half of the 

dysfunctional anti-tumor immunity in cancers, suggesting that other mechanisms are involved in 

tumor immune evasion. 

Butyrophilins and butyrophilin-like family of proteins, such as BTN2A1, BTN3A1, and BTNL2, 

have been shown to play a critical role in modulating γδ T cell development and differentiation. 

Recent clinical studies reported the modified expression of molecules belonging to the BTN/BTNL 

family and PD1/PD-L1 axis following immune checkpoint blockade with anti-PD-1 antibodies, 

suggesting their unexplored role in tumor immune evasion. 

Furthermore, the new and evolving role of patients’ metabolic state and systemic inflammation is now 

highlighted, in complex symbiotic and metabolic interactions between tumor cell and 

dysfunctional/suppressive immune cells in the TME. Since several clinical data showed that obesity 

is paradoxically associated with improved outcomes in cancer patients treated with immune 

checkpoint blockade, tumor metabolic dependencies are emerging as key tumor vulnerabilities, and 

patient-associated features, such as body mass index, are under investigation as factors to profoundly 

impact the cancer immune responses. Although the mechanistic link between metabolic state and 

immunotherapy benefit was not elucidated, an impact of excess adiposity/obesity on the PD-1/PD-

L1 pathway seems to exist. 

Our study on the role of plasma levels of soluble PD-1, PD-L1, BTN2A1 and BTN3A1, as prognostic 

and/or predictive biomarkers of treatment response in metastatic melanoma, renal cancer and GIST 

patients, suggest that circulating ICs detection, could be an useful tool to predict the response to 

specific treatment, discriminating responders from non-responders already at therapy baseline, with 

the advantages of non-invasive sample collection and real-time monitoring that allow to assess the 

dynamic changes during cancer evolution and treatment. Future studies in a larger patient cohort 

should be encouraged to validate these preliminary results. 
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