350 research outputs found

    Autonomous Systems, Robotics, and Computing Systems Capability Roadmap: NRC Dialogue

    Get PDF
    Contents include the following: Introduction. Process, Mission Drivers, Deliverables, and Interfaces. Autonomy. Crew-Centered and Remote Operations. Integrated Systems Health Management. Autonomous Vehicle Control. Autonomous Process Control. Robotics. Robotics for Solar System Exploration. Robotics for Lunar and Planetary Habitation. Robotics for In-Space Operations. Computing Systems. Conclusion

    Human-robot collaborative multi-agent path planning using Monte Carlo tree search and social reward sources

    Get PDF
    © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThe collaboration between humans and robots in an object search task requires the achievement of shared plans obtained from communicating and negotiating. In this work, we assume that the robot computes, as a first step, a multiagent plan for both itself and the human. Then, both plans are submitted to human scrutiny, who either agrees or modifies it forcing the robot to adapt its own restrictions or preferences. This process is repeated along the search task as many times as required by the human. Our planner is based on a decentralized variant of Monte Carlo Tree Search (MCTS), with one robot and one human as agents. Moreover, our algorithm allows the robot and the human to optimize their own actions by maintaining a probability distribution over the plans in a joint action space. The method allows an objective function definition over action sequences, it assumes intermittent communication, it is anytime and suitable for on-line replanning. To test it, we have developed a human-robot communication mobile phone interface. Validation is provided by real-life search experiments of a Parcheesi token in an urban space, including also an acceptability study.Work supported under the Spanish State Research Agency through the Maria de Maeztu Seal of Excellence to IRI (MDM-2016- 0656), ROCOTRANSP project (PID2019-106702RB-C21 / AEI / 10.13039/501100011033), TERRINet (H2020-INFRAIA-2017-1-two-stage730994) and AI4EU (H2020-ICT-2018-2-825619)Peer ReviewedPostprint (published version

    Combining motion planning with social reward sources for collaborative human-robot navigation task design

    Get PDF
    Across the human history, teamwork is one of the main pillars sustaining civilizations and technology development. In consequence, as the world embraces omatization, human-robot collaboration arises naturally as a cornerstone. This applies to a huge spectrum of tasks, most of them involving navigation. As a result, tackling pure collaborative navigation tasks can be a good first foothold for roboticists in this enterprise. In this thesis, we define a useful framework for knowledge representation in human-robot collaborative navigation tasks and propose a first solution to the human-robot collaborative search task. After validating the model, two derived projects tackling its main weakness are introduced: the compilation of a human search dataset and the implementation of a multi-agent planner for human-robot navigatio

    REACTIVE MOTION REPLANNING FOR HUMAN-ROBOT COLLABORATION

    Get PDF
    Negli ultimi anni si è assistito a un incremento significativo di robot che condividono lo spazio di lavoro con operatori umani, per combinare la rapidità e la precisione proprie dei robot con l'adattabilità e l'intelligenza umana. Tuttavia, questa integrazione ha introdotto nuove sfide in termini di sicurezza ed efficienza della collaborazione. I robot devono essere in grado di adattarsi prontamente ai cambiamenti nell'ambiente circostante, come i movimenti degli operatori, adeguando in tempo reale il loro percorso per evitare collisioni, preferibilmente senza interruzioni. Inoltre, nelle operazioni di collaborazione tra uomo e robot, le traiettorie ripianificate devono rispettare i protocolli di sicurezza, al fine di evitare rallentamenti e fermate dovute alla prossimità eccessiva del robot all'operatore. In questo contesto è fondamentale fornire soluzioni di alta qualità in tempi rapidi per garantire la reattività del robot. Le tecniche di ripianificazione tradizionali tendono a faticare in ambienti complessi, soprattutto quando si tratta di robot con molti gradi di libertà e numerosi ostacoli di dimensioni considerevoli. La presente tesi affronta queste sfide proponendo un nuovo algoritmo sampling-based di ripianificazione del percorso per manipolatori robotici. Questo approccio sfrutta percorsi pre-calcolati per generare rapidamente nuove soluzioni in poche centinaia di millisecondi. Inoltre, incorpora una funzione di costo che guida l'algoritmo verso soluzioni che rispettano lo standard di sicurezza ISO/TS 15066, riducendo così gli interventi di sicurezza e promuovendo una cooperazione efficiente tra uomo e robot. Viene inoltre presentata un'architettura per gestire il processo di ripianificazione durante l'esecuzione del percorso del robot. Infine, viene introdotto uno strumento software che semplifica l'implementazione e il testing degli algoritmi di ripianificazione del percorso. Simulazioni ed esperimenti condotti su robot reali dimostrano le prestazioni superiori del metodo proposto rispetto ad altre tecniche popolari.In recent years, there has been a significant increase in robots sharing workspace with human operators, combining the speed and precision inherent to robots with human adaptability and intelligence. However, this integration has introduced new challenges in terms of safety and collaborative efficiency. Robots now need to swiftly adjust to dynamic changes in their environment, such as the movements of operators, altering their path in real-time to avoid collisions, ideally without any disruptions. Moreover, in human-robot collaborations, replanned trajectories should adhere to safety protocols, preventing safety-induced slowdowns or stops caused by the robot's proximity to the operator. In this context, quickly providing high-quality solutions is crucial for ensuring the robot's responsiveness. Conventional replanning techniques often fall short in complex environments, especially for robots with numerous degrees of freedom contending with sizable obstacles. This thesis tackles these challenges by introducing a novel sampling-based path replanning algorithm tailored for robotic manipulators. This approach exploits pre-computed paths to generate new solutions in a few hundred milliseconds. Additionally, it integrates a cost function that steers the algorithm towards solutions that strictly adhere to the ISO/TS 15066 safety standard, thereby minimizing the need for safety interventions and fostering efficient cooperation between humans and robots. Furthermore, an architecture for managing the replanning process during the execution of the robot's path is introduced. Finally, a software tool is presented to streamline the implementation and testing of path replanning algorithms. Simulations and experiments conducted on real robots demonstrate the superior performance of the proposed method compared to other popular techniques

    Generalized Assignment for Multi-Robot Systems via Distributed Branch-And-Price

    Get PDF
    In this paper, we consider a network of agents that has to self-assign a set of tasks while respecting resource constraints. One possible formulation is the Generalized Assignment Problem, where the goal is to find a maximum payoff while satisfying capability constraints. We propose a purely distributed branch-and-price algorithm to solve this problem in a cooperative fashion. Inspired by classical (centralized) branch-and-price schemes, in the proposed algorithm each agent locally solves small linear programs, generates columns by solving simple knapsack problems, and communicates to its neighbors a fixed number of basic columns. We prove finite-time convergence of the algorithm to an optimal solution of the problem. Then, we apply the proposed scheme to a generalized assignment scenario in which a team of robots has to serve a set of tasks. We implement the proposed algorithm in a ROS testbed and provide experiments for a team of heterogeneous robots solving the assignment problem

    Operator Objective Function Guidance for a Real-time Unmanned Vehicle Scheduling Algorithm

    Get PDF
    Advances in autonomy have made it possible to invert the typical operator-to-unmanned-vehicle ratio so that asingle operator can now control multiple heterogeneous unmanned vehicles. Algorithms used in unmanned-vehicle path planning and task allocation typically have an objective function that only takes into account variables initially identified by designers with set weightings. This can make the algorithm seemingly opaque to an operator and brittle under changing mission priorities. To address these issues, it is proposed that allowing operators to dynamically modify objective function weightings of an automated planner during a mission can have performance benefits. A multiple-unmanned-vehicle simulation test bed was modified so that operators could either choose one variable or choose any combination of equally weighted variables for the automated planner to use in evaluating mission plans. Results from a human-participant experiment showed that operators rated their performance and confidence highest when using the dynamic objective function with multiple objectives. Allowing operators to adjust multiple objectives resulted in enhanced situational awareness, increased spare mental capacity, fewer interventions to modify the objective function, and no significant differences in mission performance. Adding this form of flexibility and transparency to automation in future unmanned vehicle systems could improve performance, engender operator trust, and reduce errors.Aurora Flight Sciences, U.S. Office of Naval Researc

    Towards full-scale autonomy for multi-vehicle systems planning and acting in extreme environments

    Get PDF
    Currently, robotic technology offers flexible platforms for addressing many challenging problems that arise in extreme environments. These problems’ nature enhances the use of heterogeneous multi-vehicle systems which can coordinate and collaborate to achieve a common set of goals. While such applications have previously been explored in limited contexts, long-term deployments in such settings often require an advanced level of autonomy to maintain operability. The success of planning and acting approaches for multi-robot systems are conditioned by including reasoning regarding temporal, resource and knowledge requirements, and world dynamics. Automated planning provides the tools to enable intelligent behaviours in robotic systems. However, whilst many planning approaches and plan execution techniques have been proposed, these solutions highlight an inability to consistently build and execute high-quality plans. Motivated by these challenges, this thesis presents developments advancing state-of-the-art temporal planning and acting to address multi-robot problems. We propose a set of advanced techniques, methods and tools to build a high-level temporal planning and execution system that can devise, execute and monitor plans suitable for long-term missions in extreme environments. We introduce a new task allocation strategy, called HRTA, that optimises the task distribution amongst the heterogeneous fleet, relaxes the planning problem and boosts the plan search. We implement the TraCE planner that enforces contingent planning considering propositional temporal and numeric constraints to deal with partial observability about the initial state. Our developments regarding robust plan execution and mission adaptability include the HLMA, which efficiently optimises the task allocation and refines the planning model considering the experience from robots’ previous mission executions. We introduce the SEA failure solver that, combined with online planning, overcomes unexpected situations during mission execution, deals with joint goals implementation, and enhances mission operability in long-term deployments. Finally, we demonstrate the efficiency of our approaches with a series of experiments using a new set of real-world planning domains.Engineering and Physical Sciences Research Council (EPSRC) grant EP/R026173/

    Safe navigation and human-robot interaction in assistant robotic applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    • …
    corecore