2,424 research outputs found

    The Iray Light Transport Simulation and Rendering System

    Full text link
    While ray tracing has become increasingly common and path tracing is well understood by now, a major challenge lies in crafting an easy-to-use and efficient system implementing these technologies. Following a purely physically-based paradigm while still allowing for artistic workflows, the Iray light transport simulation and rendering system allows for rendering complex scenes by the push of a button and thus makes accurate light transport simulation widely available. In this document we discuss the challenges and implementation choices that follow from our primary design decisions, demonstrating that such a rendering system can be made a practical, scalable, and efficient real-world application that has been adopted by various companies across many fields and is in use by many industry professionals today

    Extended Intensity Range Imaging

    Get PDF
    A single composite image with an extended intensive range is generated by combining disjoining regions from different images of the same scene. The set of images is obtained with a charge-couple device (CCD) set for different flux integration times. By limiting differences in the integration times so that the ranges of output pixel values overlap considerably, individual pixels are assigned the value measured at each spatial location that is in the most sensitive range where the values are both below saturation and are most precisely specified. Integration times are lengthened geometrically from a minimum where all pixel values are below saturation until all dark regions emerge from the lowest quantization level. the method is applied to an example scene and the effect the composite images have on traditional low-level imaging methods also is examined

    On Practical Sampling of Bidirectional Reflectance

    Get PDF

    Numerical Methods for the Stochastic Landau-Lifshitz Navier-Stokes Equations

    Get PDF
    The Landau-Lifshitz Navier-Stokes (LLNS) equations incorporate thermal fluctuations into macroscopic hydrodynamics by using stochastic fluxes. This paper examines explicit Eulerian discretizations of the full LLNS equations. Several CFD approaches are considered (including MacCormack's two-step Lax-Wendroff scheme and the Piecewise Parabolic Method) and are found to give good results (about 10% error) for the variances of momentum and energy fluctuations. However, neither of these schemes accurately reproduces the density fluctuations. We introduce a conservative centered scheme with a third-order Runge-Kutta temporal integrator that does accurately produce density fluctuations. A variety of numerical tests, including the random walk of a standing shock wave, are considered and results from the stochastic LLNS PDE solver are compared with theory, when available, and with molecular simulations using a Direct Simulation Monte Carlo (DSMC) algorithm

    Multi-Agent Orbit Design For Perception Enhancement Purpose

    Full text link
    This paper develops a robust optimization based method to design orbits on which the sensory perception of the desired physical quantities are maximized. It also demonstrates how to incorporate various constraints imposed by many spacecraft missions such as collision avoidance, co-orbital configuration, altitude and frozen orbit constraints along with Sun-Synchronous orbit. The paper specifically investigates designing orbits for constrained visual sensor planning applications as the case study. For this purpose, the key elements to form an image in such vision systems are considered and effective factors are taken into account to define a metric for perception quality. The simulation results confirm the effectiveness of the proposed method for several scenarios on low and medium Earth orbits as well as a challenging Space-Based Space Surveillance program application.Comment: 12 pages, 18 figure

    Parallel hierarchical global illumination

    Get PDF
    Solving the global illumination problem is equivalent to determining the intensity of every wavelength of light in all directions at every point in a given scene. The complexity of the problem has led researchers to use approximation methods for solving the problem on serial computers. Rather than using an approximation method, such as backward ray tracing or radiosity, we have chosen to solve the Rendering Equation by direct simulation of light transport from the light sources. This paper presents an algorithm that solves the Rendering Equation to any desired accuracy, and can be run in parallel on distributed memory or shared memory computer systems with excellent scaling properties. It appears superior in both speed and physical correctness to recent published methods involving bidirectional ray tracing or hybrid treatments of diffuse and specular surfaces. Like progressive radiosity methods, it dynamically refines the geometry decomposition where required, but does so without the excessive storage requirements for ray histories. The algorithm, called Photon, produces a scene which converges to the global illumination solution. This amounts to a huge task for a 1997-vintage serial computer, but using the power of a parallel supercomputer significantly reduces the time required to generate a solution. Currently, Photon can be run on most parallel environments from a shared memory multiprocessor to a parallel supercomputer, as well as on clusters of heterogeneous workstations
    • …
    corecore