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Numerical methods for the stochastic Landau-Lifshitz Navier-Stokes equations 

John B. Bell,1 Alejandro L. Garcia,2 and Sarah A. Williams3,* 
1Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
 

2Department of Physics, San Jose State University, San Jose, California 95192, USA
 
3Department of Mathematics, University of California, Davis, Davis, California 95616, USA
 

(Received 30 December 2006; published 26 July 2007) 

The Landau-Lifshitz Navier-Stokes (LLNS) equations incorporate thermal fluctuations into macroscopic 
hydrodynamics by using stochastic fluxes. This paper examines explicit Eulerian discretizations of the full 
LLNS equations. Several computational fluid dynamics approaches are considered (including MacCormack’s 
two-step Lax-Wendroff scheme and the piecewise parabolic method) and are found to give good results for the 
variance of momentum fluctuations. However, neither of these schemes accurately reproduces the fluctuations 
in energy or density. We introduce a conservative centered scheme with a third-order Runge-Kutta temporal 
integrator that does accurately produce fluctuations in density, energy, and momentum. A variety of numerical 
tests, including the random walk of a standing shock wave, are considered and results from the stochastic 
LLNS solver are compared with theory, when available, and with molecular simulations using a direct simu­
lation Monte Carlo algorithm. 

DOI: 10.1103/PhysRevE.76.016708	 PACS number(s): 47.11.-j, 47.10.ad, 47.61.Cb 

I. INTRODUCTION	 using [9] so-called “Brownian motors.” Another application 
is in micro-total-analytical systems (fTAS) or “lab-on-a-

Thermal fluctuations have long been a central topic of chip” systems that promise single-molecule detection and 
statistical mechanics, dating back to the light scattering pre- analysis [10]. Specifically, the Brownian ratchet mechanism 
dictions of Rayleigh (i.e., why the sky is blue) and the theory has been demonstrated to be useful for biomolecular separa­
of Brownian motion of Einstein and Smoluchowski [1]. tion [11,12] and simple mechanisms for creating heat engines 
More recently, the study of fluctuations is an important topic driven by nonequilibrium fluctuations have been proposed 
in fluid mechanics due to the current interest in nanoscale [13,14].
flows, with applications ranging from microengineering The study of fluctuations in nanoscale fluids is particu­
[2–4] to molecular biology [5–7]. larly interesting when the fluid is under extreme conditions 

Microscopic fluctuations constantly drive a fluid from its or near a hydrodynamic instability. Examples include the 
mean state, making it possible to probe the transport proper- breakup of droplets in nanojets [15–17] and fluid mixing in 
ties by fluctuation dissipation. This is the basis for light scat- the Rayleigh-Taylor instability [18,19]. Finally, exothermic 
tering in physical experiments and Green-Kubo analysis in reactions, such as in combustion and explosive detonation, 
molecular simulations. Fluctuations are dynamically impor­ can depend strongly on the nature of thermal fluctuations 
tant for fluids undergoing phase transitions, nucleation, hy­ [20,21].
drodynamic instabilities, combustive ignition, etc., since the To incorporate thermal fluctuations into macroscopic hy­
nonlinearities can exponentially amplify the effect of the drodynamics, Landau and Lifshitz introduced an extended 
fluctuations. form of the Navier-Stokes equations by adding stochastic 

In molecular biology, the importance of fluctuations can flux terms [22]. The Landau-Lifshitz Navier-Stokes (LLNS)
be appreciated by noting that a typical molecular motor pro- equations may be written as 
tein consumes adenosine triphosphate (ATP) at a power of 
roughly 10−16 W while operating in a background of 10−8 W Ut +  · F =  · D +  · S , (1) 
of thermal noise power, which is likened to be “as difficult as 
walking in a hurricane is for us” [6]. While the randomizing where 
property of fluctuations would seem to be unfavorable for the 
self-organization of living organisms, Nature has found a 
way to exploit these fluctuations at the molecular level. The U = J(: )second law of thermodynamics does not allow motor pro- E 
teins to extract work from equilibrium fluctuations, yet the 
thermal noise actually assists the directed motion of the pro- is the vector of conserved quantities (density of mass, 
tein by providing the mechanism for overcoming potential momentum, and energy). The hyperbolic flux is given by 
barriers. 

Following Nature’s example, there is interest in the fabri­
cation of nanoscale devices powered by [8] or constructed F = ( :v 

:vv + PI 

vE + Pv 
) 

*Electronic address: sawilliams@math.ucdavis.edu and the diffusive flux is given by 
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0 (s(x,t)s(x',t')) 
D =  , 1(

 · v + K  T 
) = 

c2 I dy I dy' I dz I dz'(Sxx(r,t)Sxx(r',t')) 

where v is the fluid velocity, P is the pressure, T is the 
temperature, and  =7( v+ vT − 3 

2 I · v) is the stress tensor. 
Here 7 and K are coefficients of viscosity and thermal con­
ductivity, respectively, where we have assumed the bulk vis­
cosity is zero. 

The mass flux is microscopically exact but the other two 
flux components are not; for example, at molecular scales 
heat may spontaneously flow from cold to hot, in violation of 
the macroscopic Fourier law. To account for such spontane­
ous fluctuations, the LLNS equations include a stochastic 
flux 

S = S ,( 0 )Q + v · S 

where the stochastic stress tensor S and heat flux Q have 
zero mean and covariances given by 

KoK − 
2 KoK(Sij(r,t)Ske(r',t')) = 2kB7T( KoK 

je ie oij  k )oik + o jk 3 e

xo(r − r')o(t − t') , 

(Qi(r,t)Q j(r',t')) = 2kBKT2oij  
Ko(r − r')o(t − t') , 

and 

(Sij(r,t)Qk(r',t')) = 0  ,  

where kB is Boltzmann’s constant. The LLNS equations have 
been derived by a variety of approaches (see [22–25]) and 
have even been extended to relativistic hydrodynamics [26]. 
While they were originally developed for equilibrium fluc­
tuations (see Appendix A), specifically the Rayleigh and 
Brillouin spectral lines in light scattering, the validity of the 
LLNS equations for nonequilibrium systems has been de­
rived [27] and verified in molecular simulations [28–30]. 

In this paper we investigate a variety of numerical 
schemes for solving the LLNS equations. For simplicity, we 
restrict our attention to one-dimensional systems, so Eq. (1) 
simplifies to 

: :u 4 
a a a 7axu 

J = −  :u2 + P + 3 
at ax ax( ) ( ) ( 

0 

)E (E + P)u 4 
7uaxu + KaxT 

3 

a 
+ s , (2)
ax( 0 )

q + us 

8kB7T 
= o(x − x')o(t − t')

3c 

and 

(q(x,t)q(x',t')) 

1
= I dy I dy' I dz I dz'(Qx(r,t)Qx(r',t'))2c

2kBKT2 

= o(x − x')o(t − t')
c 

with c being the surface area of the system in the yz plane. 
Furthermore, we take the fluid to be a dilute gas with 

equation of state P=:RT and energy density E=cv:T 
+ 2 

1:u2. The transport coefficients are only functions of tem­
perature; for example, for a hard sphere gas 7=7 fT and0
K=K0

fT, where 7 and K0 are constants. The numerical 
schemes developed in this paper may readily be formulated 
for other fluids. Our choice is motivated by a desire to com­
pare with molecular simulations (see Appendix B) of a mon­
atomic, hard sphere gas (for which R=kB /m and cv = y

R 
−1 

where m is the mass of a particle and the ratio of specific 
heats is y= 5 ). 

0 

3 
Several numerical approaches for the Landau-Lifshitz 

Navier-Stokes (LLNS) equations, and related stochastic hy­
drodynamic equations, have been proposed. The most suc­
cessful is a stochastic lattice-Boltzmann model developed by 
Ladd for simulating solid-fluid suspensions [31]. This ap­
proach for modeling the Brownian motion of particles was 
adopted by Sharma and Patankar [32] using a finite differ­
ence scheme that incorporates a stochastic momentum flux 
into the incompressible Navier-Stokes equations. By includ­
ing the stochastic stress tensor of the LLNS equations into 
the lubrication equations Moseler and Landman [15] obtain 
good agreement with their molecular dynamics simulation in 
modeling the breakup of nanojets; recent extensions of this 
work confirm the important role of fluctuations and the util­
ity of the stochastic hydrodynamic description [16,17]. An  
alternative mesoscopic approach to computational fluid dy­
namics, based on a stochastic description defined by a dis­
crete master equation, is proposed by Breuer and Petruccione 
[33,34]. They show that the structure of the resulting system 
recovers the fluctuations of LLNS. 

Serrano and Español [35] describe a finite volume La­
grangian discretization of the continuum equations of hydro­
dynamics using Voronoi tessellation. Casting their model 
into the GENERIC structure [36] allows for the introduction of 
thermal fluctuations yielding a consistent discrete model for 
Lagrangian fluctuating hydrodynamics. De Fabritiis and co­
workers [37,38] derive a similar mesoscopic, Voronoi-based 
algorithm using the dissipative particle dynamics (DPD) 
method. The dissipative particles follow the dynamics of ex­
tended objects subject to hydrodynamic forces, with stresses 

where and heat fluxes given by the LLNS equations. 

016708-2 
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In earlier work Garcia et al. [39] developed a simple finite 
difference scheme for the linearized LLNS equations. 
Though successful, that scheme was custom-designed to 
solve a specific problem; it cannot be extended readily, since 
it relies on special assumptions of zero net flow and constant 
heat flux and would be unstable in the more general case. 
Related finite difference schemes have been demonstrated 
for the diffusion equation [40], the “train” model [41], and 
the stochastic Burgers’ equation [42], specifically in the con­
text of adaptive mesh and algorithm refinement hybrids that 
couple particle and continuum algorithms. De Fabritiis and 
co-workers [43,44] present a related approach of using algo­
rithm refinement to couple molecular dynamics simulations 
to numerical algorithms for the stochastic hydrodynamic 
equations. Their formulation assumes isothermal conditions 
and uses a simple Euler scheme for the stochastic partial 
differential equations (PDEs). 

In the next section we develop three stochastic PDE 
schemes based on standard computational fluid dynamics 
(CFD) schemes for compressible flow. The schemes are 
tested in a variety of scenarios in Secs. III and IV, measuring 
spatial and time correlations at equilibrium and away from 
equilibrium. Results are compared to theoretically derived 
values, and also to results from direct simulation Monte 
Carlo (DSMC) particle simulations (see Appendix B). We  
also examine the influence of fluctuations on shock drift, 
comparing results from the LLNS solver with DSMC simu­
lations. The concluding section summarizes the results and 
discusses future work, with an emphasis on the issues related 
to using the resulting methodology as the foundation for a 
hybrid algorithm. 

II. NUMERICAL METHODS 

The goal here is to develop an Eulerian discretization of 
the full LLNS equations, representing an extension of the 
approach discussed in [42] to compressible flow. We restrict 
consideration here to finite-volume schemes in which all of 
the variables are collocated, so that the resulting method can 
form the basis of a hybrid method in which a particle de­
scription (e.g., DSMC) is coupled to the LLNS discretiza­
tion. Within this class of discretizations, our aim is to recover 
the correct fluctuating statistics. In this section we first de­
velop two methods based on CFD schemes that are com­
monly used for the Navier-Stokes equations. These schemes 
turn out not to produce the correct fluctuation intensities, 
leading us to introduce a specialized centered Runge-Kutta 
scheme. 

A. MacCormack scheme 

Based on the success of the simple second-order scheme 
in [39], we first consider MacCormack’s variant of two-step 
Lax-Wendroff for solving fluctuating LLNS. (A standard ver­
sion of two-step Lax-Wendroff was also considered with 
similar but slightly poorer results.) The MacCormack method 
is applied in the following way: 

 t  t* n n nU j = Un 
j − (Fn 

j − F j−1) + (D j+1/2 − D j−1/2)
 x  x 

 t ˜n ˜n+ (S j+1/2 − S j−1/2) ,
 x 

 t  t** * * *U j = U* 
j −  x

(F j+1 − F*
j ) +  x

(D j+1/2 − D j−1/2) 

 t ˜* ˜* + (S j+1/2 − S j−1/2) ,
 x 

n+1 1 n **) .U j = (U j + U j2 
nHere D j+1/2 is a simple finite difference approximation to D 

and 

S̃ j+1/2 = f2S j+1/2 = f2 sj+1/2 .( 0 )
qj+1/2 + uj+1/2sj+1/2 

The approximation to the stochastic stress tensor, sj+1/2, is  
computed as 

(3)sj+1/2 = f 4kB (7 j+1Tj+1 + 7 jTj) R j+1/23 tVc 

where Vc is the volume of a cell and the R’s are independent, 
Gaussian distributed random values with zero mean and unit 
variance. The approximation to the discretized stochastic 
heat flux, qj+1/2, is evaluated as 

qj+1/2 = f kB [K j+1(Tj+1)2 + K j(Tj)2] R j+1/2. (4)
 tVc 

These same stochastic flux approximations are used in all 
three continuum methods presented here. 

For a predictor-corrector type scheme, such as two-step 
MacCormack, the variance in the stochastic flux at j +1/2  is  
given by 

2\˜ ˜n ˜*((S )2) = I(1 

2 
S + 

1 

2 
S )j+1/2 j+1/2 j+1/2 

2 2 
˜n ˜* = (

2 

1) ((S )2) + (
2 

1) ((S )2) .j+1/2 j+1/2 

Neglecting for the moment the multiplicity of the noise (i.e., 
taking Tn =T*) then 

 1 n n((S̃ j+1/2)2) = 
2

((S̃ j+1/2)2) = ((S j+1/2)2) 

which is the correct result. Note that later we will find that 
the multiplicity of the noise is generally weak for the LLNS 
equations (see Sec. III A). 

B. Piecewise parabolic method 

In [42] a piecewise linear second-order Godunov scheme 
was shown to be effective for solving the fluctuating Bur­
gers’ equation. We considered two versions of higher-order 
Godunov methods for the LLNS, a piecewise linear version 
[45], and the piecewise parabolic method (PPM) introduced 
in [46]. The PPM algorithm, based on the direct Eulerian 
version presented in [47], produced considerably better re­
sults than the piecewise linear scheme. Since our goal is to 
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preserve fluctuations, we do not limit slopes and we do not 
include discontinuity detection in the algorithm. 

For this scheme the hyperbolic terms of the LLNS equa­
tions are considered in terms of hydrodynamic and local 
characteristic variables. In hydrodynamic variables we have 

a a 
V + A V = 0  ,  

at ax 

where 

V j = uj .(
P 

: j 

j 
)

The local characteristic variables are interpolated via a 
fourth-order scheme to the left (-) and right (+) edges of 
each cell: 

7 1n =W j,± (L jV j + L jV j±1) − (L jV j 1 + L jV j±2) ,
12 12 

where L j is the matrix whose rows are the left eigenvectors 
of A evaluated at Vj. 

nThese values, together with the cell-centered value W j 
= L jV j, are used to construct a parabolic profile W j,k(e) for 
each characteristic variable k in each cell, 

W(e) = W j,− + e W j + e(1 −  e)W j6, 

where 

x − (j − 1/2) x 
e = , 

x 

n n n ,W j = W j,+ − W j,− 

and 

1n n n= 6(W j )) .W j6 
n − 

2
(W j,+ + W j,− 

Time-centered updates are based on the sign of each local 
characteristic wave speed, A j,k: 

{ 
±1/21 I W j,k(e)de , ±A j,k > 0 n+1/2W j,±,k = v j,k ±1/2−vj,k , 

nW j,±,k otherwise. 

twhere v j,k =A j,k .x 
Finally, the time-centered values are transformed back 

into primitive variables and used as inputs to a Riemann 
problem at each cell edge. We use the approximate Riemann 
solver discussed in [48]. This approach iterates the phase-
space solution in the u-p plane, approximating the rarefac­
tion curves by the Hugoniot locus. The overall approach is 
able to handle strong discontinuities and is second-order in 
wave strength. 

Approximations to the viscous and stochastic flux terms 
are discussed in Sec. II A. For our PPM algorithm we center 
the viscous update in time, so that the complete update is as 
follows: 

t t* n − n n ˜n) ,U j = U j F j + (D j + S jx x 

t 1 tn+1 n − n n ˜n * ˜+ + S + S*) .U j = U j F j ( )(D j j + D j jx 2 x 

As discussed in Sec. II A, for the PPM scheme we use the 
˜stochastic flux approximation S j =f2S j, since the averaging 

in the time-centering reduces the variance in the flux by half. 

C. Variance-preserving third-order Runge-Kutta method 

Equilibrium tests, presented in detail in Sec. III A, show 
that neither of the traditional numerical methods with sto­
chastic flux discussed above accurately represents the fluc­
tuations in the LLNS equations. The principal difficulty 
arises because there is no stochastic forcing term in the mass 
conservation equation. Accurately capturing density fluctua­
tions requires that the fluctuations be preserved in computing 
the mass flux. Another key observation is that the represen­
tation of fluctuations in the above schemes is also sensitive 
to the time step, with extremely small time steps leading to 
improved results. This suggests that temporal accuracy also 
plays a significant role in capturing fluctuations. Based on 
these observations we have developed a discretization aimed 
specifically at capturing fluctuations in the LLNS equations. 
The method is based on a third-order, total variation dimin­
ishing (TVD) Runge-Kutta temporal integrator (RK3) 
[49,50] combined with a centered discretization of hyper­
bolic and diffusive fluxes. The rationale for selecting an RK3 
temporal integration scheme is not based on higher-order ac­
curacy considerations; in fact, we expect significant limita­
tion in the order of accuracy for any scheme applied to a 
stochastic differential equation [51]. Instead the motivation 
here is one of robustness. A simple forward Euler scheme 
would be unstable because there is no dissipation term in the 
continuity equation. Similarly, since the optimal second-
order TVD RK method (Heun’s method) is unstable for op­
erators with pure imaginary spectra, it is also an unsuitable 
choice for the system considered here. 

The RK3 discretizaton can be written in the following 
three-stage form: 

t n nn+1/3U j = Un 
j − (F j+1/2 − F j−1/2) , 

x 

3 1n+2/3 n 1 n+1/3 − 
t n+1/3 n+1/3

= + ) ,U j U j U j ( )(F j+1/2 − F j−1/24 4 4 x 

n+1 1 n 2 n+2/3 − 
2 t n+2/3 n+2/3

= + ) ,U j U j U j ( )(F j+1/2 − F j−1/23 3 3 x 

˜where F=−F+D+S. Combining the three stages, we can 
write 
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n+1 n − 
t 1 n n 1 n+1/3 n+1/3( ) + )U j = U j (F j+1/2 − F j−1/2 (F j+1/2 − F j−1/2x 6 6 

2 n+2/3 n+2/3 )
+ 
3 

(F j+1/2 − F j−1/2 ) . 

The variance in the stochastic flux at j +1/2  is  given by 

1 1 2I( (S̃0 ) + (S̃1/3 ) + (S̃2/3 ))2\((S j+1/2)2) = j+1/2 j+1/2 j+1/26 6 3 
2 21 ˜0 1 ˜1/3 )2)= ( ) ((S )2) + ( ) ((Sj+1/2 j+1/26 6 

22 ˜2/3 )2) .+ (
3
) ((S j+1/2 

Again, neglecting the multiplicity in the noise we obtain the 

desired result that ((S )2)= 1 ((S̃)2)= ((S)2), that is, taking S̃2 
= f2S corrects for the reduction of the stochastic flux vari­
ance due to the three-stage averaging of the fluxes. However, 
this treatment does not directly affect the fluctuations in den­
sity, since the component of S is zero in the continuity equa­
tion. To compensate for the suppression of density fluctua­
tions due to the temporal averaging we interpolate the 
momentum J (and the other conserved quantities) from cell-
centered values: 

Jj+1/2 =  1(Jj + Jj+1) −  2(Jj−1 + Jj+2) , (5) 

where

 1 = (f7 + 1)/4 and  2 = (f7 − 1)/4 . (6) 

Then in the case of constant J we have exactly Jj+1/2 =J and 
2(oJj+1/2)=2(oJ2), as desired; the interpolation is consistent 

and compensates for the variance-reducing effect of the mul­
tistage Runge-Kutta algorithm. The interpolation formula is 
similar to the PPM spatial construction except in the PPM 
construction  1 =7/12  and  2 = 1 / 12. Tests based on these 
alternative weights produced results intermediate to the RK3 
scheme and the PPM scheme. We also considered interpola­
tion of primitive variables but found that interpolation based 
on primitive variables led to stable but undamped oscillatory 
behavior. Finally, the diffusive terms D are discretized with 
standard second-order finite difference approximations. 

D. Boundary conditions 

In Secs. III and IV we consider test problems for the 
various PDE algorithms on either a periodic computational 
domain, a computational domain bounded by thermal walls, 
or a computational domain bounded by infinite reservoirs. 
Boundary conditions are implemented using ghost cells. For 
the periodic and reservoir boundaries, it is straightforward to 
determine the ghost cell data. 

For thermal wall boundaries, the treatment of the hyper­
bolic flux at the thermal wall varies by method. In MacCor­
mack, conserved quantities are reflected across the bound­
aries of the domain. The temperature in the ghost cells is 
determined by linear extrapolation, and the no-flow condi­
tion is enforced by setting the velocity terms of the hyper­
bolic flux to zero within the ghost cells. 

For thermal wall boundaries in PPM, ghost cells are popu­
lated by reflecting primitive variable values across the do­
main boundaries, and the temperature in the ghost cells is 
determined by linear extrapolation. The PPM routine takes as 
input the cell-centered primitive variable data and returns a 
Riemann solution at each cell edge. On the domain bound­
aries, we modify these Riemann solutions by enforcing fixed 
wall temperature (i.e., the pressure at the wall is taken to be 
a function of the fixed wall temperature) before computing 
the hyperbolic flux across each edge. 

In RK3 we also employ a Riemann solver at thermal wall 
boundaries, which ensures that characteristic compatibility 
relations are respected at the physical boundaries. The Rie­
mann solver requires primitive variable inputs from the inte­
rior and exterior of each physical boundary. Mass density at 
the interior of the boundary is estimated by populating ghost 
cells (by reflection of : across the boundary of the domain), 
then interpolating onto the domain boundary [as in Eq. (5)]. 
The no-flow condition is enforced across the boundary, and 
pressure at the boundary is a function of the fixed wall tem­
perature, TL or TR. The interior Riemann solver input for the 
left-hand domain boundary is therefore given by 

:int 2 1:1 − 2 2:2 

uint = 0 ,r 1 r 1

Pint RTL:int 

where  1,2 are the interpolation coefficients given in Eq. (6), 
and R is the gas constant. The data for the right-hand bound­
ary is similar. The input to the Riemann solver on the exte­
rior side of the boundary is the reflection of the interior input 
data: 

:ext :int 

uext = − uint .r 1 r 1

Pext Pint 

The treatment of reservoir boundaries is similar. However, 
ghost cells are populated with reservoir data and the input to 
the Riemann problem on the exterior side of the boundary is 
the reservoir data. 

For all the methods, to calculate the diffusive flux at the 
domain boundaries in the case of thermal walls we use a 
one-sided finite difference formulation to approximate ux and 
Tx. These finite difference approximations use data at the 
domain boundaries (L and R) and at the centers of the first 
two interior cells on either side of the domain: 

9T1 − T2 − 8TLTx L = + O( x2) ,
3 x 

9Tn − Tn−1 − 8TRTx R = −  + O( x2) ,
3 x 

and 

9u1 − u2 − 8uL ux L = + O( x2) ,
3 x 
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TABLE I. System parameters (in cgs units) for simulations of a 
dilute gas in a periodic domain. 

Molecular diameter (argon) 3.66x10−8 

Molecular mass (argon) 6.63x10−23 

Reference mass density 1.78x10−3 

Reference temperature 273 

Sound speed 30 781 

Specific heat cv 3.12x106 

System length 1.25x10−4 

Reference mean free path 6.26x10−6 

System volume 1.96x10−16 

Time step 1.0x 10−12 

Number of cells 40 

Number of samples 107 

Number of particles 5265 

Collision grid size 3.13x10−6 

9un − un−1 − 8uR ux R = −  + O( x2) . 
3 x 

III. NUMERICAL TESTS—EQUILIBRIUM 

This section presents results from a variety of scenarios in 
which the three schemes described above were tested. The 
physical domain is chosen to be compatible with DSMC par­
ticle simulations; see Table I for the system’s parameters and 
Appendix B for a description of DSMC. The domain is par­
titioned into 40 cells of equal size x and hyperbolic and 
diffusive stability constraints determine the maximum time 
step t: 

t
( u + cs)  1,  

x

¯ ¯4 7 K t 1 
max( , ) 2  ,

3 ̄: :̄cv x 2 

where the sound speed cs =f ¯ /: ¯ ¯ ), and K=K(TyP ¯ , 7=7(T ¯ ¯ ); 
the overline indicates reference values (e.g., equilibrium val­
ues around which the system fluctuates). For the reference 
state (argon at STP) and a cell width of x=10−6 cm the 
time step used was t=10−12 s. Note that for these param­
eters the number of molecules per cell is approximately 100 
so the thermal fluctuations will be of significant magnitude. 

A. Variances at equilibrium 

The first benchmark for our numerical schemes is recov­
ering the correct variance of fluctuations for a system at equi­
librium. For this initial test problem, we take a periodic do­
main with zero net flow and constant average density and 
temperature. Similar results, not presented here, were ob­
tained for the case of constant nonzero net flow. The vari­
ances are computed in 40 spatial cells from 107 samples and 
then averaged over the cells. 

TABLE II. Variance in conserved quantities at equilibrium 
(computed values are accurate to approximately 0.1%). 

(o:2) Exact value: 2.35 x 10−8 

Computed value Pct. error 

MacCormack scheme 2.01x 10−8 −14.3% 

Piecewise parabolic method 1.97x 10−8 −16.0% 

Third-order Runge-Kutta 2.32x 10−8 −1.3% 

Molecular simulation (DSMC) 2.35x 10−8 0.0% 

(oJ2) Exact value: 13.34 

Computed value Pct. error 

MacCormack scheme 13.31 −0.3% 

Piecewise parabolic method 13.27 −0.5% 

Third-order Runge-Kutta 13.65 2.3% 

Molecular simulation (DSMC) 13.21 −1.0% 

(oE2) Exact value: 2.84 x 1010 

Computed value Pct. error 

MacCormack scheme 2.61x1010 −8.4% 

Piecewise parabolic method 2.58x1010 −9.4% 

Third-order Runge-Kutta 2.87x1010 0.9% 

Molecular simulation (DSMC) 2.78x1010 −2.1% 

Table II compares the theoretical variances (see Appendix 
A) with those measured in the three stochastic PDE schemes 
and the DSMC particle simulation. The MacCormack and 
PPM schemes do a relatively poor job (8–16 % error) for the 
variances of density and energy. Better results can be ob­
tained with PPM and MacCormack by dramatically decreas­
ing the value of t. However, it is not desirable to run simu­
lations at extremely small time step. Only the third-order 
Runge-Kutta integrator generates the correct variance of den­
sity and energy while advancing with time steps near the 
stability limit. 

The stochastic flux in our numerical schemes for the 
LLNS equations is a multiplicative noise since we take vari­
ance to be a function of instantaneous temperature [see Eqs. 
(3) and (4)]. We tested the importance of the multiplicity of 
the noise by repeating the equilibrium runs with the tempera­
ture fixed in the stochastic fluxes and found no difference in 
the results. Earlier work [39] also showed that the multiplic­
ity of the noise is quite weak. While this might not be the 
case for extreme conditions (e.g., extremely small cell vol­
umes) at that point the hydrodynamic assumptions implicit in 
the construction LLNS PDEs would also break down. Note 
that since the fluxes are time-centered the scheme reproduces 
the representation of the Stratonovich integral [51,52]. 

B. Spatial correlations at equilibrium 

Figures 1–3 depict the spatial correlation of conserved 
variables, that is, (o: jo: j*), (oJjoJj*), and (oEjoEj*), where j* 

is located at the center of the domain. 
These figures show results computed by the MacCor­

mack, PPM, and RK3 schemes, along with the theoretical 
values of the correlations (see Appendix A) and molecular 

016708-6 



 

 

NUMERICAL METHODS FOR THE STOCHASTIC LANDAU-…	 PHYSICAL REVIEW E 76, 016708 (2007) 

−8	 10 
x 10 	 x 10

3 
Theory 
DSMC 

2.5 MacCormack 
PPM 
RK3 

2 

E
(x

*)
>

 

1.5 

 
E

(x
) 

∂

1  ∂
<

0.5 

0 

−0.5 
0	 0.2 0.4 0.6 0.8 1 

x/L 

2 

Theory 
DSMC 
MacCormack 
PPM 
RK3 

<
∂ 

ρ(
x)

 ∂
 ρ

(x
*)

>
 

1 

0 

0	 0.2 0.4 0.6 0.8 1 
x/L 

FIG. 1. (Color online) Spatial correlation of density fluctuations. 
KSolid line is (o:io: j) = (o:2)oi,j [see Eqs. (A2) and (A3)]. 

simulation data (see Appendix B). For the MacCormack and 
PPM schemes the spatial correlations of density fluctuations 
and energy fluctuations have significant spurious oscillations 
near the correlation point (see Figs. 1 and 3). All three 
schemes do well in reproducing the expected correlations of 
momentum fluctuations. Figure 4 depicts (o: joJj*), which 
has a theoretical value of zero since the net flow is zero; all 
three schemes correctly reproduce this result. 

Detailed studies of the RK3 scheme show that the method 
is first-order accurate in t for predicting variances in mo­
mentum and energy. The density fluctuations do not appear 
to improve under temporal refinement; however, the mea­
sured errors are only slightly larger than the estimated error 
bar from the sampling. Spatial accuracy, tested by measuring 
L1 norms of (o: jo: j*) at various resolutions, showed first 
order convergence in x. 

C. Time correlations at equilibrium 

The time correlation of density fluctuations is of interest 
because its temporal Fourier transform gives the spectral 
density, which is measured experimentally from light scatter­

FIG. 3. (Color online) Spatial correlation of energy fluctuations. 
KSolid line is (oEioEj)= (oE2)oi,j [see Eqs. (A5) and (A7)]. 

ing spectra [53,54]. From the LLNS equations, this time cor­
relation can be written as 

(o:(w,t)o:(w,t + T)) 1 
= ( ) 2DTT}1 −  exp{− w

(o:2(w,t)) y

+ 
1 

exp{− w2fT}cos(cswT) 
y 

3f − Dv+ w exp{− w2fT}sin(cswT) ,2y cs 

(7) 

where w=2mn /L is the wave number, y=cp /cv is the ratio of 
specific heats, DT =K / :̄cv is the thermal diffusivity, Dv 

= 3
47 / :̄ is the longitudinal kinematic viscosity, cs is the sound 

speed, and f= 1 [Dv + (y−1)DT] is the sound attenuation co­2 
efficient. 

In our numerical calculations the density is represented by 
cell averages :i , i=1,  . . .  ,  Mc, and the time correlation is es­
timated from the mean of N samples, 

x 10
−6 

10 

−5 

Theory 
DSMC 
MacCormack 
PPM 
RK3 

0 0.2 0.4 0.6 0.8 1 
x/L 

<
∂ 

ρ(
x)

 ∂
 J

(x
*)

> 5 

0 

2
 

0
 

−2
 

Theory 
DSMC 
MacCormack 
PPM 
RK3	 

0	 0.2 0.4 0.6 0.8 1 
x/L 

14 

12 

10 

<
∂ 

J(
x)

 ∂
 J

(x
*)

>
 

8 

6 

4 

FIG. 2. (Color online) Spatial correlation of momentum fluctua- FIG. 4. (Color online) Spatial correlation of density-momentum 
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merical PDE schemes and DSMC molecular simulation is 
good. 

The right-hand panel of Fig. 5 shows time correlation 

(o:(w,t)o:(w,t + T))N = 
1 

N 
M 

samples 

N 

R(t)R(t + T) 

with 

R(t) = 
1 

Mc 
M 
i=1 

Mc 

:i sin(2mnxi/L) . 

We have 

(o:(w,t)o:(w,t + T)) = lim 
N→o 

(o:(w,t)o:(w,t + T))N. 

From the above we find the normalization of the theoretical 
result may be expressed as 

(o:2(w,t)) = (R(t)2) 

= 
1 

Mc 
2 M 

i=1 

Mc 

M 
j=1 

Mc 

(o:io: j)sin(2mnxi 

L 
)sin(2mnxj 

L 
) 

= 
(o:2) 
2Mc 

. 

We restrict our attention to the lowest wave number (i.e., n 
=1) because for the system sizes we consider the theoretical 
result, Eq. (7), is not accurate at short wavelengths due to 
nonhydrodynamic (mean free path scale) corrections. 

In the left-hand panel of Fig. 5, we present time correla­
tion results from our equilibrium problem on a periodic do­
main. We compare results from the MacCormack, PPM, and 
RK3 methods with the theoretical time correlation, Eq. (7), 
and with molecular simulation data (see Appendix A). We  
find reasonable agreement among all the results, up to the 
time when a sound wave has crossed the system 
(=4x10−9 s). Due to finite size effects the theory is only 

accurate for short times but the agreement among the nu-

results for the equilibrium problem on a domain with thermal 

sound crossing time. For later times, the time correlation is 

x10−8 

RK3 scheme captures the temporal correlation better than 
either of the other two PDE schemes. 
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FIG. 5. (Color online) Time correlation of density fluctuations 
for equilibrium problem, on a periodic domain (left panel) and a 
domain with specular wall boundaries (right panel). 
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walls rather than periodic boundaries; we find good agree­
ment for this problem as well, at least for times less than the 

sensitive to the acoustic impedance of the thermal wall. For 
this case, MacCormack underpredicts the correlation at early 
time while PPM shows significant deviation near t=5  

. Both MacCormack and the RK3 scheme deviate 
somewhat from DSMC at late time. Overall, however, the 

IV. NUMERICAL TESTS—NONEQUILIBRIUM 

The results from the section above indicate that of the 
three stochastic PDE schemes, the third-order Runge-Kutta 
method (RK3) consistently outperforms the other two 
schemes. In this section we consider two more numerical 
tests, spatial correlations in a temperature gradient and diffu­
sion of a standing shock wave, but restrict our attention to 
the RK3 scheme, comparing it with DSMC molecular simu­
lations. 

A. Spatial correlations in a temperature gradient 

In the early 1980s, a variety of statistical mechanics cal­
culations predicted that a fluid under a nonequilibrium con­
straint, such as a temperature gradient, would exhibit long-
range correlations of fluctuations [55,56]. Furthermore, 
quantities that are independent at equilibrium, such as den­
sity and momentum fluctuations, also have long-ranged cor­
relations. These predictions were qualitatively confirmed by 
light scattering experiments [57], yet the effects are subtle 
and difficult to measure accurately in the laboratory. Molecu­
lar simulations confirm the predicted correlations of nonequi­
librium fluctuations for a fluid subjected to a temperature 
gradient [29,58] and to a shear [59]. 

We consider a system similar to that of Sec. III C but with 
a temperature gradient. Specifically, the boundary conditions 
are thermal walls at 273 and 819 K. This nonequilibrium 
state is extreme, with a temperature gradient of millions of 
degrees per centimeter, yet it is accurately modeled by 
DSMC, which was originally developed to simulate strong 
shock waves. 

Figure 6 shows the correlation of density and momentum 
fluctuations measured in an RK3 culation and by DSMC 
simulations. The two sets of data are in good agreement and 
are in agreement with earlier work on this problem [29,58]. 
The major discrepancy is the underprediction of the negative 
peak correlation near j*. Extensive tests suggest that this ef­
fect is hard to capture with a continuum solver because of the 
tension between variance reduction and spatial correlations 
in computing the mass flux at cell edges from cell-centered 
data. 
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FIG. 6. Spatial correlation of density and momentum fluctua­
tions for a system subjected to a temperature gradient. Compare 
with Fig. 4. 

B. Random walk of a standing shock 

In our final numerical study we consider the random walk 
of a standing shock wave due to spontaneous fluctuations. 
Shock diffusion is well-known in other particle simulations, 
such as shock tube modeling by DSMC, which must correct 
for the drift when measuring profiles for steady shocks [60]. 
The general problem has been also been analyzed for simple 
lattice gas models [42,61–64]. 

Mass density and temperature on the right-hand side 
(RHS) of the shock are given the same values as in our 
equilibrium problem; values of density and temperature on 
the left-hand side (LHS) are derived from the Rankine-
Hugoniot relations. The velocity on both sides of the shock 
are specified to satisfy the Rankine-Hugoniot conditions and 
to make the unperturbed shock wave stationary in the com­
putational domain. We consider shocks of three different 
strengths, Mach number (Ma) Ma 2, Ma 1.4, and Ma 1.2 (see 
Table III). The boundary treatment consists of infinite reser­
voirs with the same states as the initial conditions. For this 

TABLE III. System parameters (in cgs units) for simulations of 
a standing shock, Ma 2.0. 

System length 5x10−4 

Reference mean free path 6.26x10−6 

System volume 7.84x10−16 

Time step 1.0x10−12 

Number of cells 160 

Mach number 2.0 

RHS mass density 1.78x10−3 

LHS mass density 4.07x10−3 

RHS velocity −61 562 

LHS velocity −26 933 

RHS temperature 273 

LHS temperature 567 

RHS sound speed 30 781 

LHS sound speed 44 373 

L/2where :̄=L−1J−L/2:(x , t)dx is the instantaneous average den­
sity. The shock location for pressure, cP, is analogously de­
fined. We estimate c:(t) and cp(t) as functions of time from 
ensembles of 4000 simulations. For the PDE simulations, we 
initialize with discontinuous shock profiles. One would ex­
pect the shock location to fluctuate with a diffusion similar to 
that of a simple random walk [63], so averaging over en­
sembles from the same initial state we would expect to find 

(oc: 
2) = 2D:t and (oc2

p) = 2Dpt 

with shock diffusion coefficients D: and Dp that depend on 
shock strength. Note that this expression for the variance is 
not accurate at very short times (due to transient relaxation 
from the initial state) or at very long times (due to finite 
system size). 

Figure 7 shows results for the variance in the shock posi­
tion from an ensemble of runs versus time. After the initial 
transients, the slopes are constant with the strongest shocks 
exhibiting the least drift [D�(Ma − 1)−1] and with c: and cP 

giving similar diffusion coefficients. DSMC data is initially 
noisy so it has different initial transients and “diffuses” far­
ther than the PDE. However, after the transients, the DSMC 
and the RK3 simulations have essentially the same slope, as 
a function of Mach number. This indicates that the third-
order Runge-Kutta scheme is accurately capturing the shock-
drift random walk. 

V. SUMMARY AND CONCLUDING REMARKS 

In this paper we develop and analyze several finite-
volume schemes for solving the fluctuating Landau-Lifshitz 
compressible Navier-Stokes equations in one spatial dimen­
sion. Methods based on standard CFD discretizations were 
found not to accurately represent fluctuations in an equilib­
rium flow. We have introduced a centered scheme based on 
interpolation schemes designed to preserve fluctuations com­
bined with a third-order Runge-Kutta (RK3) temporal inte­
grator that was able to capture the equilibrium fluctuations. 
Further tests for nonequilibrium systems confirm that the 
RK3 scheme correctly reproduces long-ranged correlations 
of fluctuations and stochastic drift of shock waves, as veri­
fied by comparison with molecular simulations. It is worth 
emphasizing that the ability of continuum methods to accu­
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rately capture fluctuations is fairly sensitive to the construc­
tion of the numerical scheme. Minor variations in the numer­
ics can lead to significant changes in stability, accuracy, and 
behavior. 

The work discussed here suggests a number of additional 
studies. Further analysis is needed on the treatment of ther­
mal and reservoir boundary conditions. The methods here 
can also be extended to three dimensions (for which the sto­
chastic stress tensor is more complex) and we can include 
concentration as a hydrodynamic variable to allow the meth­
odology to be applied to a number of other flow problems. 
Finally, we are embedding our new stochastic PDE solver 
into our existing adaptive mesh and algorithm refinement 
(AMAR) programs [65]. A stochastic AMAR simulation will 
not only model hydrodynamic fluctuations at multiple grid 
scales but will, by incorporating DSMC simulations at the 
finest level of algorithm refinement, also capture molecular-
level physics. 
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APPENDIX A: EQUILIBRIUM FLUCTUATIONS 

At equilibrium the variances of thermodynamic quantities 
are well known from equilibrium statistical mechanics (Sec. 
112 of Ref. [66]). For infinite systems, both conserved and 
hydrodynamic variables are spatially uncorrelated at equal 
times. For example, 

K(o:i(t)o: j(t)) = (o:2)oi,j . (A1) 

For conserved variables there is a finite size correction, spe­
cifically, 

1 1
(o:i(t)o: j(t)) = (1 −  )(o:2)oK − (o:2)(1 −  oK )i,j i,jMc Mc 

(A2) 

for i , j=1,  . . .  ,  Mc, where Mc is the number of cells in the 
system. This correction may be derived by observing that (i) 
at equilibrium the system is homogeneous so (o:io: j)=Aoij  

+B where A, B are constants; (ii) since density is conserved 
Mi(o:io: j)=0  so  A+ McB=0;  (iii) in the limit Mc→o we 
recover the appropriate variance, Eq. (A1). An alternative 
way to obtain Eq. (A2) is to identify the distribution of par­
ticles with the variance and covariance of the multinomial 
distribution (Sec. 14.5 of Ref. [67]). 

The variance of mass density depends on the compress­
ibility (i.e., the equation of state) of the fluid. In general, 

(oN2)c(o:2) = ̄:2 , (A3)
2N̄ c 

¯where N and (oN2) are the mean and variance of the number c c 
¯of particles in a cell. We calculate Nc = :̄Vc /m, where Vc is 

the volume of a cell and m is the mass of a particle. For an 

ideal gas Nc is Poisson distributed so (oN2)= N̄ and (o:2)c c 

= :̄2 / N̄ c. The more general result is (oN2)= T:kBT̄N̄ /mc c

where T is the isothermal compressibility. 
The variances of fluid velocity and temperature in a cell 

are 

kBT CT 
2¯ 

(ou2) = = ,
:̄Vc N̄c 

¯2 2T̄kBT CT(oT2) = = , 
cv:̄Vc N̄ cv c 

where CT =fkBT̄ /m is the thermal speed (and the standard 
deviation of the Maxwell-Boltzmann distribution). The cova­
riances are (o:ou)= (o:oT)= (ouoT)=0.  
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The variances and covariances of the mechanical densities 
at equilibrium are 

¯(o:oJ) = ̄:J :, 

¯(o:oE) = ̄:E :, 

2(oJ2) = ̄J2 
: + ̄:2CT u , (A4) 

(oJoE) = ̄JĒ : + ̄J:C2 
T u , 

E2) = Ē2 ¯2CT 
2 2¯2T̄2(o : + J u + c : T, (A5)v 

¯2 

¯ ¯ 
where : = (o:2) /: , u = (ou2) /C2 

T, and T = (oT2) / T̄2. For a 

dilute gas : = u =1/Nc, and T =2/ (3Nc). Again, correc­
tions must be made for conserved quantities in the case of a 
finite domain: 

1 1
(oJi(t)oJj(t)) = (1 −  )(oJ2)oK − (oJ2)(1 −  oK ) ,i,j i,jMc Mc 

(A6) 

1 K − 
1 K ) .(oEi(t)oEj(t)) = (1 −  )(oE2)o (oE2)(1 −  oi,j i,jMc Mc 

(A7) 
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APPENDIX B: DSMC SIMULATIONS 

The algorithms presented here for the stochastic LLNS 
equations were validated by comparison with molecular 
simulations. Specifically, we used the direct simulation 
Monte Carlo (DSMC) algorithm, a well-known method for 
computing gas dynamics at the molecular scale; see [68,69] 
for pedagogical expositions on DSMC, [60] for a complete 
reference, and [70] for a proof of the method’s equivalence 
to the Boltzmann equation. As in molecular dynamics, the 
state of the system in DSMC is given by the positions and 
velocities of particles. In each time step, the particles are first 
moved as if they did not interact with each other. After mov­
ing the particles and imposing any boundary conditions, col­
lisions are evaluated by a stochastic process, conserving mo­
mentum and energy and selecting the post-collision angles 
from their kinetic theory distributions. DSMC is a stochastic 
algorithm but the statistical variation of the physical quanti­
ties has nothing to do with the “Monte Carlo” portion of the 
method. For both equilibrium and nonequilibrium problems 
DSMC yields the physical spectra of spontaneous thermal 
fluctuations, as confirmed by excellent agreement with fluc­
tuating hydrodynamic theory [28,29,39] and molecular dy­
namics simulations [30,71]. 

In this paper the simulated physical system is a dilute 
monatomic hard-sphere gas in a rectangular volume with pe­
riodic boundary conditions in the y and z directions. The 
boundary conditions in the x direction are either periodic, 
specular (i.e., elastic reflection of particles), or a pair of par­
allel thermal walls. The physical parameters used are pre­
sented in Table I. Samples are taken in 40 rectangular cells 
perpendicular to the x direction. 

[1] R. K. Pathria, Statistical Mechanics (Butterworth-Heinemann, 
Oxford, 1996). 

[2] G. Karniadakis, A. Beskok, and N. Aluru, Microflows and 
Nanoflows: Fundamentals and Simulation (Springer, New 
York, 2005). 

[3] C. M. Ho and Y. C. Tai, Annu. Rev. Fluid Mech. 30, 579 
(1998). 

[4] M. Gad-el-Hak, J. Fluids Eng. 121, 5  (1999). 
[5] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. 

Walter, Molecular Biology of the Cell, 4th edition (Garland, 
New York, 2002). 

[6] R. D. Astumian and P. Hanggi, Phys. Today 55 (11), 33  
(2002). 

[7] G. Oster, Nature (London) 417, 25  (2002). 
[8] R. K. Soong, G. D. Bachand, H. P. Neves, A. G. Olkhovets, H. 

G. Craighead, and C. D. Montemagno, Science 290, 1555 
(2000). 

[9] T. Y. Tsong, J. Biol. Phys. 28, 309 (2002). 
[10] H. G. Craighead, Science 290, 1532 (2000). 
[11] A. van Oudenaarden and S. G. Boxer, Science 285, 1046 

(1999). 
[12] J. Bader, R. Hammond, S. Henck, M. Deem, G. McDermott, J. 

Bustillo, J. Simpson, G. Mulhern, and J. Rothberg, Proc. Natl. 
Acad. Sci. U.S.A. 96, 13165 (1999). 

[13] C. Van den Broeck, R. Kawai, and P. Meurs, Phys. Rev. Lett. 
93, 090601 (2004). 

[14] P. Meurs, C. Van den Broeck, and A. L. Garcia, Phys. Rev. E 
70, 051109 (2004). 

[15] M. Moseler and U. Landman, Science 289, 1165 (2000). 
[16] J. Eggers, Phys. Rev. Lett. 89, 084502 (2002). 
[17] W. Kang and U. Landman, Phys. Rev. Lett. 98, 064504 

(2007). 
[18] K. Kadau, T. C. Germann, N. G. Hadjiconstantinou, P. S. Lom­

dahl, G. Dimonte, B. L. Holian, and B. J. Alder, Proc. Natl. 
Acad. Sci. U.S.A. 101, 5851 (2004). 

[19] K. Kadau, C. Rosenblatt, J. L. Barber, T. C. Germann, Z. 
Huang, P. Carls, and B. J. Alder, Proc. Natl. Acad. Sci. U.S.A. 
104, 7941 (2007). 

[20] B. Nowakowski and A. Lemarchand, Phys. Rev. E 68, 031105 
(2003). 

[21] A. Lemarchand and B. Nowakowski, Mol. Simul. 30, 773 
(2004). 

[22] L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Course of 
Theoretical Physics Vol. 6 (Addison-Wesley, Reading, 1959). 

[23] M. Bixon and R. Zwanzig, Phys. Rev. 187, 267 (1969). 
[24] R. F. Fox and G. E. Uhlenbeck, Phys. Fluids 13, 1893 (1970). 
[25] G. E. Kelly and M. B. Lewis, Phys. Fluids 14, 1925 (1971). 
[26] E. Calzetta, Class. Quantum Grav. 15, 653 (1998). 

016708-11 



BELL, GARCIA, AND WILLIAMS PHYSICAL REVIEW E 76, 016708 (2007) 

[27] P. Español, Physica A 248, 77  (1998). 
[28] A. L. Garcia and C. Penland, J. Stat. Phys. 64, 1121 (1991). 
[29] M. Malek-Mansour, A. L. Garcia, G. C. Lie, and E. Clementi, 

Phys. Rev. Lett. 58, 874 (1987). 
[30] M. Mareschal, M. Malek-Mansour, G. Sonnino, and E. Keste­

mont, Phys. Rev. A 45, 7180 (1992). 
[31] A. J. C. Ladd, Phys. Rev. Lett. 70, 1339 (1993). 
[32] N. Sharma and N. A. Patankar, J. Comput. Phys. 201, 466 

(2004). 
[33] H. P. Breuer and F. Petruccione, Physica A 192, 569 (1993). 
[34] H. P. Breuer and F. Petruccione, Phys. Lett. A 185, 385 

(1994). 
[35] M. Serrano and P. Español, Phys. Rev. E 64, 046115 (2001). 
[36] M. Grmela and H. C. Öttinger, Phys. Rev. E 56, 6620 (1997). 
[37] G. De Fabritiis, P. V. Coveney, and E. G. Flekky, Philos. Trans. 

R. Soc. London, Ser. A 360, 317 (2002). 
[38] M. Serrano, G. De Fabritiis, P. Español, E. G. Flekkøy, and P. 

V. Coveney, J. Phys. A 35, 1605 (2002). 
[39] A. L. Garcia, M. Malek-Mansour, G. Lie, and E. Clementi, J. 

Stat. Phys. 47, 209 (1987). 
[40] F. J. Alexander, A. L. Garcia, and D. M. Tartakovsky, J. Com­

put. Phys. 182, 47  (2002). 
[41] F. J. Alexander, A. L. Garcia, and D. M. Tartakovsky, J. Com­

put. Phys. 207, 769 (2005). 
[42] J. B. Bell, J. Foo, and A. L. Garcia, J. Comput. Phys. 223, 451 

(2007). 
[43] G. De Fabritiis, R. Delgado-Buscalioni, and P. V. Coveney, 

Phys. Rev. Lett. 97, 134501 (2006). 
[44] G. De Fabritiis, M. Serrano, R. Delgado-Buscalioni, and P. V. 

Coveney, Phys. Rev. E 75, 026307 (2007). 
[45] P. Colella, SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput. 

6, 104 (1985). 
[46] P. Colella and P. R. Woodward, J. Comput. Phys. 54, 174 

(1984). 
[47] R. E. Miller and E. B. Tadmor, J. Comput.-Aided Mater. Des. 

9, 203 (2002). 
[48] P. Colella and H. M. Glaz, J. Comput. Phys. 59, 264 (1985). 
[49] S. Gottleib and C. Shu, Math. Comput. 67, 73  (1998). 
[50] J. Qiu and C. Shu, SIAM J. Sci. Comput. (USA) 26, 907 

(2005). 
[51] W. Rumelin, SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal. 

19(3), 604 –613 (1982). 

[52] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic 
Differential Equations (Springer, New York, 2000). 

[53] B. J. Berne and R. Pecora, Dynamic Light Scattering: With 
Applications to Chemistry, Biology, and Physics (Dover, Mi­
neola, 2000). 

[54] J. P. Boon and S. Yip, Molecular Hydrodynamics (Dover, New 
York, 1991). 

[55] R. Schmitz, Phys. Rep. 171, 1  (1988). 
[56] J. M. Ortiz de Zarate and J. V. Sengers, Hydrodynamic Fluc­

tuations in Fluids and Fluid Mixtures (Elsevier Science, New 
York, 2006). 

[57] D. Beysens, Y. Garrabos, and G. Zalczer, Phys. Rev. Lett. 45, 
403 (1980). 

[58] A. L. Garcia, Phys. Rev. A 34, 1454 (1986). 
[59] A. L. Garcia, M. Malek-Mansour, G. C. Lie, M. Mareschal, 

and E. Clementi, Phys. Rev. A 36, 4348 (1987). 
[60] G. A. Bird, Molecular Gas Dynamics and the Direct Simula­

tion of Gas Flows (Clarendon, Oxford 1994). 
[61] F. J. Alexander, Z. Cheng, S. A. Janowsky, and J. L. Lebowitz, 

J. Stat. Phys. 68, 761 (1992). 
[62] F. J. Alexander, S. A. Janowsky, J. L. Lebowitz, and H. van 

Beijeren, Phys. Rev. E 47, 403 (1993). 
[63] P. A. Ferrari and L. R. G. Fontes, Probab. Theory Relat. Fields 

99, 205 (1994). 
[64] S. A. Janowsky and J. L. Lebowitz, Phys. Rev. A 45, 618 

(1992). 
[65] A. L. Garcia, J. B. Bell, W. Y. Crutchfield, and B. J. Alder, J. 

Comput. Phys. 154, 134 (1999). 
[66] L. D. Landau and E. M. Lifshitz, Statistical Physics, Course of 

Theoretical Physics, Vol. 5, third ed., part 1 (Pergamon, New 
York, 1980). 

[67] J. F. C. Kingman and S. J. Taylor, Introduction to Measure and 
Probability (Cambridge University Press, Cambridge, 
England, 1966). 

[68] F. J. Alexander and A. L. Garcia, Comput. Phys. 11, 588 
(1997). 

[69] A. L. Garcia, Numerical Methods for Physics, 2nd ed. 
(Prentice-Hall, Englewood Cliffs, NJ, 2000). 

[70] W. Wagner, J. Stat. Phys. 66, 1011 (1992). 
[71] M. Malek-Mansour, A. L. Garcia, J. W. Turner, and M. Mare­

schal, J. Stat. Phys. 52, 295 (1988). 

016708-12 


	Numerical Methods for the Stochastic Landau-Lifshitz Navier-Stokes Equations
	Recommended Citation

	tmp.1398357056.pdf.iKW33

