357 research outputs found

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    Electrical and Computer Engineering Research Report 2008

    Get PDF
    Department Research New Chair Publications Enterprisehttps://digitalcommons.mtu.edu/ece-annualreports/1005/thumbnail.jp

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Unified Role Assignment Framework For Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are made possible by the continuing improvements in embedded sensor, VLSI, and wireless radio technologies. Currently, one of the important challenges in sensor networks is the design of a systematic network management framework that allows localized and collaborative resource control uniformly across all application services such as sensing, monitoring, tracking, data aggregation, and routing. The research in wireless sensor networks is currently oriented toward a cross-layer network abstraction that supports appropriate fine or course grained resource controls for energy efficiency. In that regard, we have designed a unified role-based service paradigm for wireless sensor networks. We pursue this by first developing a Role-based Hierarchical Self-Organization (RBSHO) protocol that organizes a connected dominating set (CDS) of nodes called dominators. This is done by hierarchically selecting nodes that possess cumulatively high energy, connectivity, and sensing capabilities in their local neighborhood. The RBHSO protocol then assigns specific tasks such as sensing, coordination, and routing to appropriate dominators that end up playing a certain role in the network. Roles, though abstract and implicit, expose role-specific resource controls by way of role assignment and scheduling. Based on this concept, we have designed a Unified Role-Assignment Framework (URAF) to model application services as roles played by local in-network sensor nodes with sensor capabilities used as rules for role identification. The URAF abstracts domain specific role attributes by three models: the role energy model, the role execution time model, and the role service utility model. The framework then generalizes resource management for services by providing abstractions for controlling the composition of a service in terms of roles, its assignment, reassignment, and scheduling. To the best of our knowledge, a generic role-based framework that provides a simple and unified network management solution for wireless sensor networks has not been proposed previously

    METADATA CHALLENGE FOR QUERY PROCESSING OVER HETEROGENEOUS WIRELESS SENSOR NETWORK

    Get PDF
    ABSTRACT Wireless sensor networks become integral part of our life. These networks can be used for monitoring the data in various domain due to their flexibility and functionality. Query processing and optimization in the WSN is a very challenging task because of their energy and memory constraint. In this paper, first our focus is to review the different approaches that have significant impacts on the development o

    Advanced Flowrate Control of Petroleum Products in Transportation: An Optimized Modified Model Reference PID Approach

    Get PDF
    Efficient flowrate control is paramount for the seamless operation and reliability of petroleum transportation systems, where precise control of fluid movement ensures not only operational efficiency but also safety and cost-effectiveness. The main aim of this paper is to develop a highly effective modified model reference PID controller, tailored to ensure optimal flowrate control of petroleum products throughout their transportation. Initially, the petrol transportation process is analyzed to establish a suitable mathematical model based on vital factors like pipeline diameter, length, and pump attributes. However, using a basic first-order time delay model for petrol transportation systems is limiting due to inaccuracies, variable delay issues, safety oversights, and real-time control complexities. To improve this, the delay portion is approximated as a third-order transfer function to better reflect complex physical conditions. Subsequently, the PID controller is synthesized by modifying its structure to address flowrate control issues. These modifications primarily focus on the controller’s derivative component, involving the addition of a first-order filter and alterations to its structure. To optimize the proposed controller, the genetic, black hole, and zebra optimization techniques are employed, aiming to minimize an integral time absolute error cost function and ensure that the outlet flow of the controlled system closely follows the response of an appropriate reference model. They are chosen for their proficiency in complex optimization to enhance the controller's effectiveness by optimizing parameters within constraints, adapting to system dynamics, and ensuring optimal conditions. Through simulations, it is demonstrated that the proposed controller significantly enhances the stability and efficiency of the control system, while maintaining practical control signals. Moreover, the proposed modifications and intelligent tuning of the PID controller yield remarkable improvements compared to previous related work, resulting in a 36% reduction in rise time, a 63% reduction in settling time, an 80% reduction in overshoot, and a 98% reduction in cost value
    • …
    corecore