424 research outputs found

    A recurrent emotional CMAC neural network controller for vision-based mobile robots

    Get PDF
    Vision-based mobile robots often suffer from the difficulties of high nonlinear dynamics and precise positioning requirements, which leads to the development demand of more powerful nonlinear approximation in controlling and monitoring of mobile robots. This paper proposes a recurrent emotional cerebellar model articulation controller (RECMAC) neural network in meeting such demand. In particular, the proposed network integrates a recurrent loop and an emotional learning mechanism into a cerebellar model articulation controller (CMAC), which is implemented as the main component of the controller module of a vision-based mobile robot. Briefly, the controller module consists of a sliding surface, the RECMAC, and a compensator controller. The incorporation of the recurrent structure in a slide model neural network controller ensures the retaining of the previous states of the robot to improve its dynamic mapping ability. The convergence of the proposed system is guaranteed by applying the Lyapunov stability analysis theory. The proposed system was validated and evaluated by both simulation and a practical moving-target tracking task. The experimentation demonstrated that the proposed system outperforms other popular neural network-based control systems, and thus it is superior in approximating highly nonlinear dynamics in controlling vision-based mobile robots

    Vision Based Tracking and Interception of Moving Target by Mobile Robot Using Fuzzy Control

    Get PDF
    This paper presents a simple Fuzzy Logic Controllers (FLC) based control strategy to solve the tracking and interception problem of a moving target by a mobile robot equipped with a pan-tilt camera. Before sending commands to the mobile robot, video acquisition and image processing techniques are employed to estimate the target’s position in the image plane. The estimate coordinates are used by a fuzzy logic controller to control the pan-tilt camera angles. The objective is to ensure that the moving target is always at the middle of the camera image plane. A second FLC is used to control the robot orientation and to guarantee the tracking and interception of the target. The proposed pan-tilt camera and robot orientation controllers’ efficiency has been validated by simulation under Matlab using Virtual Reality Toolbox

    Navigational Path Analysis of Mobile Robot in Various Environments

    Get PDF
    This dissertation describes work in the area of an autonomous mobile robot. The objective is navigation of mobile robot in a real world dynamic environment avoiding structured and unstructured obstacles either they are static or dynamic. The shapes and position of obstacles are not known to robot prior to navigation. The mobile robot has sensory recognition of specific objects in the environments. This sensory-information provides local information of robots immediate surroundings to its controllers. The information is dealt intelligently by the robot to reach the global objective (the target). Navigational paths as well as time taken during navigation by the mobile robot can be expressed as an optimisation problem and thus can be analyzed and solved using AI techniques. The optimisation of path as well as time taken is based on the kinematic stability and the intelligence of the robot controller. A successful way of structuring the navigation task deals with the issues of individual behaviour design and action coordination of the behaviours. The navigation objective is addressed using fuzzy logic, neural network, adaptive neuro-fuzzy inference system and different other AI technique.The research also addresses distributed autonomous systems using multiple robot

    Self-organizing Brain Emotional Learning Controller Network for Intelligent Control System of Mobile Robots

    Get PDF
    The trajectory tracking ability of mobile robots suffers from uncertain disturbances. This paper proposes an adaptive control system consisting of a new type of self-organizing neural network controller for mobile robot control. The newly designed neural network contains the key mechanisms of a typical brain emotional learning controller network and a self-organizing radial basis function network. In this system, the input values are delivered to a sensory channel and an emotional channel; and the two channels interact with each other to generate the final outputs of the proposed network. The proposed network possesses the ability of online generation and elimination of fuzzy rules to achieve an optimal neural structure. The parameters of the proposed network are on-line tunable by the brain emotional learning rules and gradient descent method; in addition, the stability analysis theory is used to guarantee the convergence of the proposed controller. In the experimentation, a simulated mobile robot was applied to verify the feasibility and effectiveness of the proposed control system. The comparative study using the cutting-edge neural network-based control systems confirms the proposed network is capable of producing better control performances with high computational efficiency

    Design and analysis of Intelligent Navigational controller for Mobile Robot

    Get PDF
    Since last several years requirement graph for autonomous mobile robots according to its virtual application has always been an upward one. Smother and faster mobile robots navigation with multiple function are the necessity of the day. This research is based on navigation system as well as kinematics model analysis for autonomous mobile robot in known environments. To execute and attain introductory robotic behaviour inside environments(e.g. obstacle avoidance, wall or edge following and target seeking) robot uses method of perception, sensor integration and fusion. With the help of these sensors robot creates its collision free path and analyse an environmental map time to time. Mobile robot navigation in an unfamiliar environment can be successfully studied here using online sensor fusion and integration. Various AI algorithm are used to describe overall procedure of mobilerobot navigation and its path planning problem. To design suitable controller that create collision free path are achieved by the combined study of kinematics analysis of motion as well as an artificial intelligent technique. In fuzzy logic approach, a set of linguistic fuzzy rules are generated for navigation of mobile robot. An expert controller has been developed for the navigation in various condition of environment using these fuzzy rules. Further, type-2 fuzzy is employed to simplify and clarify the developed control algorithm more accurately due to fuzzy logic limitations. In addition, recurrent neural network (RNN) methodology has been analysed for robot navigation. Which helps the model at the time of learning stage. The robustness of controller has been checked on Webots simulation platform. Simulation results and performance of the controller using Webots platform show that, the mobile robot is capable for avoiding obstacles and reaching the termination point in efficient manner

    Type-2 Fuzzy Hybrid Controller Network for Robotic Systems

    Get PDF
    Dynamic control, including robotic control, faces both the theoretical challenge of obtaining accurate system models and the practical difficulty of defining uncertain system bounds. To facilitate such challenges, this paper proposes a control system consisting of a novel type of fuzzy neural network and a robust compensator controller. The new fuzzy neural network is implemented by integrating a number of key components embedded in a Type-2 fuzzy cerebellar model articulation controller (CMAC) and a brain emotional learning controller (BELC) network, thereby mimicking an ideal sliding mode controller. The system inputs are fed into the neural network through a Type-2 fuzzy inference system (T2FIS), with the results subsequently piped into sensory and emotional channels which jointly produce the final outputs of the network. That is, the proposed network estimates the nonlinear equations representing the ideal sliding mode controllers using a powerful compensator controller with the support of T2FIS and BELC, guaranteeing robust tracking of the dynamics of the controlled systems. The adaptive dynamic tuning laws of the network are developed by exploiting the popular brain emotional learning rule and the Lyapunov function. The proposed system was applied to a robot manipulator and a mobile robot, demonstrating its efficacy and potential; and a comparative study with alternatives indicates a significant improvement by the proposed system in performing the intelligent dynamic control

    Navigation of mobile robot in cluttered environment

    Get PDF
    Now a day’s mobile robots are widely used in many applications. Navigation of mobile robot is primary issue in robotic research field. The mobile robots to be successful, they must quickly and robustly perform useful tasks in a complex, dynamic, known and unknown surrounding. Navigation plays an important role in all mobile robots activities and tasks. Mobile robots are machines, which navigate around their environment extracting sensory information from the surrounding, and performing actions depend on the information given by the sensors. The main aim of navigation of mobile robot is to give shortest and safest path while avoiding obstacles with the help of suitable navigation technique such as Fuzzy logic. In this, we build up mobile robot then simulation and experiments are carried out in the lab. Comparison between the simulation and experimental results are done and are found to be in good

    Navigation Techniques for Control of Multiple Mobile Robots

    Get PDF
    The investigation reported in this thesis attempt to develop efficient techniques for the control of multiple mobile robots in an unknown environment. Mobile robots are key components in industrial automation, service provision, and unmanned space exploration. This thesis addresses eight different techniques for the navigation of multiple mobile robots. These are fuzzy logic, neural network, neuro-fuzzy, rule-base, rule-based-neuro-fuzzy, potential field, potential-field-neuro-fuzzy, and simulated-annealing- potential-field- neuro-fuzzy techniques. The main components of this thesis comprises of eight chapters. Following the literature survey in Chapter-2, Chapter-3 describes how to calculate the heading angle for the mobile robots in terms of left wheel velocity and right wheel velocity of the robot. In Chapter-4 a fuzzy logic technique has been analysed. The fuzzy logic technique uses different membership functions for navigation of the multiple mobile robots, which can perform obs..

    Diagnostic and adaptive redundant robotic planning and control

    Get PDF
    Neural networks and fuzzy logic are combined into a hierarchical structure capable of planning, diagnosis, and control for a redundant, nonlinear robotic system in a real world scenario. Throughout this work levels of this overall approach are demonstrated for a redundant robot and hand combination as it is commanded to approach, grasp, and successfully manipulate objects for a wheelchair-bound user in a crowded, unpredictable environment. Four levels of hierarchy are developed and demonstrated, from the lowest level upward: diagnostic individual motor control, optimal redundant joint allocation for trajectory planning, grasp planning with tip and slip control, and high level task planning for multiple arms and manipulated objects. Given the expectations of the user and of the constantly changing nature of processes, the robot hierarchy learns from its experiences in order to more efficiently execute the next related task, and allocate this knowledge to the appropriate levels of planning and control. The above approaches are then extended to automotive and space applications

    Navigation of Real Mobile Robot by Using Fuzzy Logic Technique

    Get PDF
    Now a day’s robots play an important role many applications like medical, industrial, military, transportation etc. navigation of mobile robot is the primary issue in now a days. Navigation is the process of detection and avoiding the obstacles in the path and to reach the destination by taking the surrounding information from the sensors. The successful navigation of mobile robot means reaching the destination in short distance in short period by avoiding the obstacles in the path. For this, we are using fuzzy logic technique for the navigation of mobile robot. In this project, we build up the four-wheel mobile robot and simulation and experimental results are carried out in the lab. Comparison between the simulation and experimental results are done and are found to be in good
    corecore