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Abstract

Vision-based mobile robots often suffer from the difficulties of high nonlinear

dynamics and precise positioning requirements, which leads to the development

demand of more powerful nonlinear approximation in controlling and monitoring

of mobile robots. This paper proposes a recurrent emotional cerebellar model

articulation controller (RECMAC) neural network in meeting such demand. In

particular, the proposed network integrates a recurrent loop and an emotional

learning mechanism into a cerebellar model articulation controller (CMAC),

which is implemented as the main component of the controller module of a

vision-based mobile robot. Briefly, the controller module consists of a sliding

surface, the RECMAC, and a compensator controller. The incorporation of the

recurrent structure in a slide model neural network controller ensures the retain-

ing of the previous states of the robot to improve its dynamic mapping ability.

The convergence of the proposed system is guaranteed by applying the Lyapunov

stability analysis theory. The proposed system was validated and evaluated by

both simulation and a practical moving-target tracking task. The experimenta-
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tion demonstrated that the proposed system outperforms other popular neural

network-based control systems, and thus it is superior in approximating highly

nonlinear dynamics in controlling vision-based mobile robots.

Keywords: Mobile robot, recurrent neural network, network based controller

1. Introduction

Along with the rapid development of computer vision technologies, vari-

ous vision-based mobile robots have been proposed and widely used in many

real-world service applications [1, 2, 3, 4, 5, 6, 7]. Note that the design and

implementation of mobile robots are challenging due to its non-linearity and5

non-holonomicity, which has led to a large number of research projects in this

area [8, 9, 10, 11, 12, 13, 14]. The traditional control methods work only when

the detailed system parameters and accurate position information of the track-

ing objects are available [15]. This has to be achieved in an environment with

highly nonlinear dynamics and uncertain disturbances, where the input chat-10

tering of the control systems caused by the disturbances seriously affects the

performance and even stability of the control systems [16, 17, 18]. Therefore,

it is important to develop a system with high tracking performance to support

the vision-based mobile robots, which are currently facing two main challenges

as discussed below.15

The control systems of mobile robots must be equipped with sufficient non-

linear learning abilities, as the first main challenge, to deal with highly nonlinear

dynamics. Feedforward artificial neural networks have been broadly employed

for identification and control of mobile robot systems, as neural networks are

able to approximate arbitrary nonlinear functions, and thus to reduce the chat-20

tering phenomenon of mobile robots [19, 20, 21, 22, 23]. One type of neural

networks, Cerebellar Model Articulation Controller (CMAC) network has been

widely used in the field of robot motion control, due to its simple structure and

rapid learning convergence [24, 25, 13]. For instance, adaptive CMAC networks

have been applied to control nonlinear dynamic robot systems, which demon-25
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strated fast response in experiments [25, 26]. Also, Brain Emotional Learning

network (BEL) is recognized for its powerful nonlinear approximation charac-

teristic [27, 28, 29, 30, 31]. Such BEL neural network is composed of a sensory

neural network representing the orbitofrontal cortex in a human brain, and an

emotional neural network referring to the amygdala cortex. Many BEL-based30

network controllers produce good performances in controlling dynamic systems

[32, 33, 34, 35]. The control performance is expected to be greatly improved

if the fast responsive ability can be integrated with the excellent nonlinear ap-

proximation ability.

The control system is also required to have the ability to handle unexpected35

uncertainties, which forms the second challenge. If a feed-forward neural net-

work is applied, it must include sufficient hidden neurons to represent dynamic

responses, which typically leads to bigger computational costs and more serious

feedback delay. It has been reported in multiple pieces of work in integrating

the recurrent loop to the feed-forward neural networks to form a new type of40

neural network, recurrent neural network (RNN) in addressing this challenge

[36, 37, 38]. Since the dynamic response of a system is captured without the

use of external feedback through delays, the integrated recurrent loop allows

networks to remember the past states of the system and to learn knowledge of

the system dynamics implicitly [39, 40]. Based on this, a neural network with a45

recurrent loop often demonstrates good control performance in the presence of

system uncertainties, though there is still room for improvement regarding the

nonlinear approximation ability of current RNN models.

This paper proposes a new recurrent neural network which is embedded in

a network controller to improve the visual tracking performance of vision-based50

mobile robots, and thus to address the above challenges. In particular, a tradi-

tional Brain Emotional Learning network (BEL) consists of a sensory channel

and an emotional channel. In this paper, the proposed recurrent emotional Cere-

bellar Model Articulation Controller (RECMAC) integrates a CMAC network,

an additional emotional network, and a recurrent loop structure, inspired by the55

Fuzzy Brain Emotional Learning Network (FBEL). Thus, the proposed network
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can be regarded as a CMAC which is embedded into a BEL network to serve

as the sensory channel. In addition, a typical sliding model control structure is

adopted to build the network controller. This was inspired by the work of [21],

where an extra controller is integrated in the network-based controller to achieve60

global stability. The RECMAC network and a robust controller jointly form the

robot control system for moving-target tracking tasks. The RECMAC network,

acting as a primary controller, is designed for imitating an ideal controller, while

the robust controller, performing as am indirect controller, is served for reducing

the approximation errors between the ideal controller and the RECMAC. The65

Lyapunov stability theory is used in this work to guarantee the stability of the

global control system and derive the update laws of the RECMAC. Experiments

based on a numerical simulation and a real mobile robot were used for system

validation and evaluation. The experimental results demonstrate the feasibility

of the proposed recurrent network, and show the control effectiveness of the70

proposed network-based controller.

The main contributions of this work are summarized as follows:

1. A new type of Cerebellar Model Articulation Controller neural network

(as detailed in Section 3) is established by integrating the structures of the

brain emotional learning network and recurrent neural network to meet75

the needs of nonlinear and dynamic characteristics of robotic controllers.

2. A neural network-based controller built upon the proposed network (in

Section 4) is created by integrating a sliding mode surface and a robust

controller to enable a vision-based robot to automatically track a moving

target.80

The reminder of this paper is organised as follows: Section 2 introduces

a basic sliding mode control system for mobile robots. Section 3 describes

the proposed RECMAC network in detail. Section 4 presents the RECMAC

based network control system, proves the stability of global control system using

the Lyapunov stability theory, and derives the update laws of the RECMAC.85

Section 5 reports the experimental results and discusses how emotional network

4
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improves the nonlinear ability of CMAC. Finally, Section 6 concludes the paper

and points out future work.

2. Background

A mobile robot is a highly nonlinear system. For a given vision-based target

tracking task, any small external disturbances and/or visual input instabilities

can seriously affect the tracking performances of mobile robots. The sliding

mode control (SMC) can be considered as an effective mobile robot control

method once the state of a robot system reaches a sliding surface, that is the

SMC can well handle external interference and system uncertainties caused by

input instability [41, 42, 43]. Without lose generality, a nth-order mobile robot

control system with mth-order input and output states can be expressed as

follow:

x(n)(t) = f(x(t)) +G(x(t))u(t) + d(t), (1)

where x(t) =
[
x(n−1)(t) . . . ẋ(t) x(t)

]
∈ <m×n is the system state vector,90

u(t) = [u1(t), u2(t), . . . , um(t)]T ∈ <m is the control input vector, f(x(t)) ∈ <m

is an unknown but bounded nonlinear function, G(x(t)) ∈ <m×m is an unknown

but bounded gain matrix, d(t) = [d1(t), d2(t), . . . , dm(t)]T ∈ <m is an external

disturbance.

Note that Eq. 1 represents a general form for dynamic, rather than a detailed95

dynamic model. This is because two types of experimental platforms (i.e., a

simulated mobile robot and a practical mobile robot) are used in this work to

evaluate the proposed network-based controller. In the simulation, the input

of Eq. 1 is the trajectory error, i.e., the difference between the trajectory of

the target and that of the mobile robot; the output u is the velocity of the100

robot in the x and y directions. In the practical robot experiment, the input of

Eq. 1 is the pixel errors, i.e., the number of pixels between the target and the

center of the image in a frame, and the output is the velocity of the two wheels

of the mobile robot. Of course, in addition to these, Eq. 1 can also represent
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other types of robot control such as robotic manipulator, which makes this work105

readily applicable for a wider range of applications.

The nominal model of (1) is defined as:

x(n)(t) = f0(x(t)) +G0u(t), (2)

where f0(x(t)) is nominal function of f(x(t)), G0 = diag[g1, g2, . . . , gm] ∈ <m×m

is nominal function of G(x(t)), for i = 1, 2, . . . ,m, gi are nominal gain constants,

by suitably arranging the control inputs and appropriately choosing the control

parameters, G0 can be positive definite and invertible. Eq. (1) that can then110

be represented as:

x(n)(t) =f0(x(t)) +4f(x(t)) +G0u(t) +4G(x(t))u(t) + d(t)

=f0(x(t)) +G0u(t) + ε(x(t), t),
(3)

where ε(x(t), t) = 4f(x(t)) + 4G(x(t))u(t) + d(t) denotes the external dis-

turbances and lumped uncertainties. xd(t) = [x
(n−1)T
d (t), . . . , ẋTd (t), xTd (t)]T ∈

<m×n denotes the trajectory of target which the robot will be tracked. The

tracking error vector is thus defined as:

e(t) =
[
e(n−1)(t) e(n−2)(t) . . . ė(t) e(t)

]T
∈ <m·n,

where e(t) = xd(t)− x(t) denotes the tracking error.

6



An ideal sliding surface is defined as:

s(e(t)) =


s1

s2
...

sm



=


e
(n−1)
1 (t)+ λ11e

(n−2)
1 (t) + · · ·+ λn1

∫ T
0
e1(t)dt

e
(n−1)
2 (t)+ λ12e

(n−2)
2 (t) + · · ·+ λn2

∫ T
0
e2(t)dt

...
...

...

e
(n−1)
m (t)+ λ1me

(n−2)
m (t) + · · ·+ λnm

∫ T
0
em(t)dt



=


1 λ11 λn1

. . .
. . .

. . .

1 λ1m λnm


 e(t)∫ T

0
e(t)dt



=J̄

 e(t)∫ T
0
e(t)dt

 ,

(4)

where J̄ = [I, J ] =
[
I λ1I . . . λnI

]
∈ <m×(m+1)n; λj = [λ1j . . . λnj ]

T ∈ <n

(λ ∈ {1, 2, · · · ,m}) are the roots of the equation: qn+λ1q
n−1+· · ·+λn−1q+λn =

0; and q is a Laplace operator that is in the open left half-plane. Taking the

time derivative of (4), the following yields:

ṡ(e(t)) = J̄

ė(t)
e(t)

 = J̄

e(n)(t)
e(t)


= e(n)(t) + Je(t) = x

(n)
d (t)− x(n)(t) + Je(t)

= x
(n)
d (t)− f0(x(t))−G0u(t)− ε(x(t), t) + Je(t)

(5)

where ė(t) =
[
e(n)(t) e(n−1)(t) . . . ė(t)

]T
∈ <m·n.

For the existence and reachability of sliding surface, the control law of a

robot system should satisfy the following inequation:

1

2

d

dt
(s2i ) ≤ −

m∑
i=1

σi|si| (6)

for σi > 0, i = 1, 2, . . . ,m.
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Applying (5) into (6), the following is derived:

sT (e(t))ṡ(e(t)) = sT (e(t))[x
(n)
d (t)−f0(x(t))−G0u(t)−ε(x(t), t)+Je(t)] ≤ −

m∑
i=1

σi|si|.

(7)

If the lumped uncertainty ε(x(t), t) and the system dynamic are known exactly,

the ideal sliding mode controller (ISMC) is designed as:

uISMC = G−10 [x
(n)
d (t)− f0(x(t))− ε(x(t), t) + Je(t) + σsgn(s(e(t)))], (8)

where sgn(·) is a sign function.115

Unfortunately, it is extremely difficult to practically define the dynamical

function and to measure the lumped uncertainty of system. Therefore, the

ideal sliding mode controller defined in (8) is generally unobtainable. However,

if the ideal sliding mode controller can be represented by a neural network,

the dynamical function of the system can be explicitly represented, and the120

robustness of SMC can be exploited [34]. This in the same time requires higher

nonlinear approximation ability of the system dynamics for the highly nonlinear

characteristics of vision-based mobile robot.

3. The Proposed RECMAC Network

This paper combines the efforts of multiple neural networks to collectively125

mimic the ideal sliding surface. In order to accurately simulate the nonlinear

mobile robot, an emotional network is integrated into a CMAC network as an

additional component, with the support of a recurrent loop structure, and the

combined network is named as recurrent emotional cerebellar model articulation

controller (RECMCA). The configuration of proposed RECMCA network is130

illustrated in Fig. 3. The outputs of the system are ui = bi−hi, i = 1, 2, . . . ,m,

where bi are the outputs of the Recurrent Emotional Network (REN) and hi

are the outputs of the Recurrent CMAC (RCMAC). REN includes the input

space (I), recurrent association memory space (M1), weight memory space (K),

and sub-output space (B). While RCMAC shares the input space with REN135

and contains the recurrent association memory space (M2), receptive-field space

8
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Figure 1: The configuration of the proposed RECMAC network.
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(R), weight memory space (W ), and sub-output space (H). These spaces are

specified as below.

1. Input Space I : p = [p1, p2, . . . , pm]T ∈ <m is an input vector that are fed

to both REN and RCMAC, simultaneously.140

2. Recurrent Association Memory Spaces M1 and M2 : M1 and M2 consist of

a group of blocks, the number of blocks, nb and nf for REN and RCMAC,

respectively. nb and nf are larger than or equal to two. Every block is

represented as a Gaussian basis function, i.e. ξ is for REN and g is for

RCMAC. This ξ is defined as:

ξij = exp[−
(pbij − cij)2

v2ij
], (9)

where cij and vij are the means and variances of REN, respectively;

i = 1, 2, . . . ,m, j = 1, 2, . . . , nb. pbij denotes the input of the recur-

rent structure of REN. The definition of pbij is given in the Recurrent

Structure subsection.

The block matrix of REN Ξ is defined as:

Ξ =
[
ξ11 . . . ξ1nb

. . . ξm1 . . . ξmnb

]T
∈ <mnb . (10)

For RCMAC, gij is defined by:

gij = exp[−
(pgij − yij)2

z2ij
], (11)

where yij , and zij are the means and variances of RCMAC, respectively;145

i = 1, 2, . . . ,m, j = 1, 2, . . . , nf . In addition, the definition of pgij is also

given in the Recurrent Structure subsection.

3. The Recurrent Structure: The recurrent structure is added to each unit

of the recurrent association memory space as illustrated in Fig. 3. The

recurrent structure of each unit is identically implemented. Therefore, the

input of each unit consists of two parts, one is the current input p(t) at

time t; and the other one is the output of the recurrent structure at time

t−Γ (Γ denotes a time unit). The output of REN is ξ(t), and the output

10



r/q T

p(t) ξ(t)/g(t)

Figure 2: The recurrent structure in RECMAC network.

of RCMAC is g(t). Therefore, the overall input of REN and RCMAC can

be expressed as:

pbij (t) = pi(t) + rijξij(t− Γ), (12)

pgij (t) = pi(t) + qijgij(t− Γ), (13)

where r and q are the recurrent coefficients of the REN and RCMAC,

respectively.

The recurrent structure makes the network working in a dynamic way by150

remembering the past states of the network, which are especially helpful

in the tasks of moving target tracking for mobile robots.

4. Receptive-field Space R : Each component in the receptive-field space is

the product of corresponding components of recurrent association memory

space M2, which is defined as:

φj =
m∏
i=1

gij =
m∏
i=1

exp[−
(pgij − yij)2

z2ij
] = exp[−

m∑
i=1

(pgij − yij)2

z2ij
], (14)

where j = 1, 2, . . . , nf . The block matrix of RCMAC Φ is defined as:

Φ =
[
φ11 . . . φ1nf

. . . φm1 . . . φmnf

]T
∈ <mnf . (15)

5. Weight Memory Spaces K and W : κijk is the weight of the ith output,

the jth input, and the kth block of REN; and ωijk is the weight of ith

11



output, jth layer, and the kth block of RCMAC. Thus, K is defined by:

K =
[
κ1jk κ2jk . . . κmjk

]

=



κ111 κ211 . . . κm11

...
...

...

κ11nb
κ21nb

. . . κm1nb

κ121 κ221 . . . κm21

...
...

...

κ12nb
κ22nb

. . . κm2nb

...
...

...

κ1m1 κ2m1 . . . κmm1

...
...

...

κ1mnb
κ2mnb

. . . κmmnb



∈ <mnb×m
(16)

W is defined by:

W =
[
ω1jk ω2jk . . . ωmjk

]

=



ω111 ω211 . . . ωm11

...
...

...

ω11nf
ω21nf

. . . ωm1nf

ω121 ω221 . . . ωm21

...
...

...

ω12nf
ω22nf

. . . ωm2nf

...
...

...

ω1m1 ω2m1 . . . ωmm1

...
...

...

ω1mnf
ω2mnf

. . . ωmmnf



∈ <mnf×m.
(17)

6. Suboutput Space B and H : bi and hi are the ith outputs of both REN

12



and RCMAC, which are represented as:

bi =

m∑
j=1

nb∑
k=1

κijkξjk, (18)

hi =

m∑
j=1

nf∑
k=1

ωijkφjk. (19)

In the above equations, b and h denote the output vectors, which are

represented as:

b =
[
b1 b2 . . . bm

]T
= KT · Ξ, (20)

h =
[
h1 h2 . . . hm

]T
= WT · Φ. (21)

7. Output Space U : The output of RECMAC, ui, is a equation of the outputs

of both REN and RCMAC, which is defined as:

ui = bi − hi =

m∑
j=1

nb∑
k=1

κijkξjk −
m∑
j=1

nf∑
k=1

ωijkφjk. (22)

Let u denote the final output of the entire network, which is expressed as:

u = b− h = KT · Ξ−WT · Φ. (23)

The overall computing procedure of the proposed RECMAC network is sum-

marized in pseudo-code, as shown in Algorithm 1.

4. The Control System of Vision-based Robots155

The RECMAC proposed in the last section mimics the sliding surface, which

is used as a primary controller in the overall control system; this works with

a robust controller, as a supplementary indirect controller, jointly performing

control tasks for vision-based robots. The framework of the proposed vision-

based mobile robot control system is illustrated in Fig. 3.160

The stability of the global control system can be proven using the Lyapunov

stability theory; from this, a set of update laws for the RECMAC network are

13



Algorithm 1 The pseudocode of RECMAC network

1: Normalize each dimension xi of X;

2: Compute ξij and gij by using (11) and (9);

3: Update ξij and gij by computing pbij and pgij ;

4: Compute φj by using (14);

5: Compute Ξ and Φ by using (10) and (15);

6: Compute bi and hi by using (18), then compute suboutputs b and h by using

(20);

7: Compute the output u of network by using (23);

8: update
˙̂
K,

˙̂
W , ˙̂y, ˙̂z, ˙̂q, ˙̂c, ˙̂v, and ˙̂r by using updating rules (38) and (40).

  

uRC

uRECMAC

u

e

Target 

Recognition

Silding 

Surface
Adaptive Laws

Mobile Robot

Robust Controller

RECMAC

x

xd

S

Figure 3: The proposed RECMAC-based Control System.
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derived to support the proposed control system. Following the discussions in

Section 3. The following yields by subtracting (8) from (5):

ṡ(e(t)) = G0[uISMC − u]− σsgn[s(e(t))]. (24)

Assume that there exists an optimal RECMAC, u∗RECMAC , to imitate an ideal

sliding mode controller uISMC , that ε is a minimum error vector, that K∗

and W ∗ are optimal weight matrixes, and that Ξ∗ and Φ∗ are optimal weight

matrixes of the optimal RECMAC, respectively. Then the output of the optimal

ISMC is:

uISMC = u∗RECMAC + ε = (uREN − uRCMAC)∗ + ε

= (KTΞ−WTΦ)∗ + ε = K∗TΞ∗ −W ∗TΦ∗ + ε.
(25)

The final output of RECMAC is u and actual outputs of REN and RCMAC are

uREN and uRCMAC , respectively. uRC is the output of the robust controller.

K̂, Ŵ , Φ̂ and Ξ̂ are estimated matrixes of K∗,W ∗,Φ∗,Ξ∗, respectively. The

actual output of the entire controller is then defined by:

u = uRECMAC + uRC = K̂T Ξ̂− ŴT Φ̂ + uRC . (26)

Taking (25) and (26) into (24), the following can be derived:

ṡ(e(t)) =G0[K∗TΞ∗ −W ∗TΦ∗ + ε− K̂T Ξ̂ + ŴT Φ̂− uRC ]− σsgn[s(e(t))]

=G0[K̃TΞ∗ + K̂T Ξ̃− W̃TΦ∗ − ŴT Φ̃ + ε− uRC ]− σsgn[s(e(t))],

(27)

where Φ̃ = Φ∗ − Φ̂, K̃ = K∗ − K̂, Ξ̃ = Ξ∗ − Ξ̂, and W̃ = W ∗ − Ŵ . A partially

linear form of the receptive-field basis function vector Ξ̃ in Taylor series can be

15



described as:

Ξ̃ =


ξ̃1
...

˜ξnd

 =


(∂ξ1∂c )T

...

(
∂ξnd

∂c )T

 |c=ĉ(c∗ − ĉ) + β1

+


(∂ξ1∂v )T

...

(
∂ξnd

∂v )T

 |v=v̂(v∗ − v̂) +


(∂ξ1∂r )T

...

(
∂ξnd

∂r )T

 |r=r̂(r∗ − r̂)
= Ξcc̃+ Ξv ṽ + Ξr r̃ + β1,

(28)

where Ξc,Ξv and Ξr are defined by:
Ξc = [

∂ξ1
∂c

, . . . ,
∂ξnd

∂c
]T |c=ĉ ∈ <nd×nbnd

Ξv = [
∂ξ1
∂v

, . . . ,
∂ξnd

∂v
]T |v=v̂ ∈ <nd×nbnd

Ξr = [
∂ξ1
∂r

, . . . ,
∂ξnd

∂r
]T |r=r̂ ∈ <nd×nbnd ,

(29)

where c̃ = c∗−ĉ, ṽ = v∗−v̂, r̃ = r∗−r̂, and β1 is a higher-order vector. Rewriting

(28) with Ξ̃ = Ξ∗ − Ξ̂ leads to:

Ξ∗ = Ξ̂ + Ξ̃ = Ξ̂ + Ξcc̃+ Ξv ṽ + Ξr r̃ + β1. (30)

Also, a partially linear form of the receptive-field basis function vector Φ̃ in

Taylor series is described as:

Φ̃ =


φ̃1
...

˜φnd

 =


(∂φ1

∂y )T

...

(
∂φnd

∂y )T

 |y=ŷ(y∗ − ŷ) + β2

+


(∂φ1

∂z )T

...

(
∂φnd

∂z )T

 |z=ẑ(z∗ − ẑ) +


(∂φ1

∂q )T

...

(
∂φnd

∂q )T

 |q=q̂(q∗ − q̂)
= Φy ỹ + Φz z̃ + Φq q̃ + β2,

(31)
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where Φy,Φz and Φq are defined by:

Φy = [
∂φ1
∂y

, . . . ,
∂φnd

∂y
]T |y=ŷ ∈ <nd×nfnd

Φz = [
∂φ1
∂z

, . . . ,
∂φnd

∂z
]T |z=ẑ ∈ <nd×nfnd

Φq = [
∂φ1
∂q

, . . . ,
∂φnd

∂q
]T |q=q̂ ∈ <nd×nfnd ,

(32)

where ỹ = y∗ − ŷ, z̃ = z∗ − ẑ, q̃ = q∗ − q̂, β2 are higher-order vectors. Rewriting

(31) with Φ̃ = Φ∗ − Φ̂, yields

Φ∗ = Φ̂ + Φ̃ = Φ̂ + Φy ỹ + Φz z̃ + Φq q̃ + β2 (33)

Substituting (30) and (33) to (27), Eq. 27 can be re-expressed as:

ṡ(e(t)) =G0[K̃T (Ξ̂ + Ξcc̃+ Ξv ṽ + Ξr r̃ + β1) + K̂T (Ξcc̃+ Ξv ṽ + Ξr r̃ + β1)

− W̃T (Φ̂ + Φy ỹ + Φz z̃ + Φq q̃ + β2)− ŴT (Φy ỹ + Φz z̃ + Φq q̃ + β2)

+ ε− uRC ]− σsgn[s(e(t))]

=G0[K̂T (Ξcc̃+ Ξv ṽ + Ξr r̃)− ŴT (Φy ỹ + Φz z̃ + Φq q̃)

+ K̃T Ξ̂− W̃T Φ̂ + τ − uRC ]− σsgn[s(e(t))],

(34)

where τ = K∗Tβ1 +W ∗Tβ2 + K̃T (Ξcc̃+ Ξv ṽ+ Ξr r̃) + W̃T (Φy ỹ+ Φz z̃+ Φq q̃) + ε

is a combined error of RCMAC while K̃ = K∗ − K̂ = [k̃1, k̃2, . . . , k̃m]T ∈

<m×mnb is an approximation error weight matrix of REN. A kind ofH∞ tracking

performance [18] is considered for the existence of τ and K̃ as:

m∑
i=1

∫ T

0

s2i (t)dt ≤ sT (0)G−10 s(0) + tr[W̃T (0)η−1W W̃ (0)] + c̃T (0)η−1c c̃(0)

+ ṽT (0)η−1v ṽ(0) + r̃T (0)η−1r r̃(0) + ỹT (0)η−1y ỹ(0) + z̃T (0)η−1z z̃(0)

+ q̃T (0)η−1q q̃(0) +

m∑
i=1

λ2i

∫ T

0

τ2i (t)dt+

m∑
i=1

∫ T

0

k̃2i (t)dt,

(35)

where ηW , ηc, ηv, ηr, ηy, ηz and ηq are diagonal positive constant learning-rate

matrices, and λi is an attenuation constant. The initial conditions of the system

are set as s(0) = 0, W̃ (0) = 0, c̃(0) = 0, ṽ(0) = 0, r̃(0) = 0, ỹ(0) = 0, z̃(0) =

17



0, q̃(0) = 0, then Eq. (35) can be rewritten as:

m∑
i=1

∫ T

0

s2i (t)dt ≤
m∑
i=1

λ2i

∫ T

0

τ2i (t)dt+

m∑
i=1

∫ T

0

k̃2i (t)dt. (36)

Assume that the approximation error between the proposed RECMAC and an

ideal controller are bounded, which means τ ∈ L2[0, T1] and k̃ ∈ L2[0, T2] with

∀T1, T2 ∈ [0,∞). Therefore
∫ T
0
τ2i (t)dt ≤ N1 and

∫ T
0
k̃2i (t)dt ≤ N2, where N1

and N2 are big positive constants. If
∑m
i=1

∫ T
0
s2i (t)dt =∞, the approximation

error is diverging and the controlled system will be unstable. Therefore, the

following must hold in order to make sure the controlled system is stable:

m∑
i=1

∫ T

0

s2i (t)dt ≤ ||λi||2N1 +N2 <∞. (37)

Then, in order to guarantee the system’s stability, the update laws of both

RECMAC and the robust controller must be designed by following the Lyapunov

stability theory.

Theorem: For the nonlinear vision-based mobile robot as represented by (1),

the update laws of the parameters of proposed RECMAC are described from

(40) to (46), in which the update rules of REN is designed as in (38) and (39)

[28]. Note that as an external network added to CMAC, the emotional network

has its own update rules of weights, the update rules of emotional network is

analyzed in Section 5.3 in details. The adaptive laws of robust controller are

derived as (47):

˙̂
K = α[Ξ×max(0, d− b)], (38)

d = γ × p+ µ× uRECMAC , (39)

where α is a learning-rate constant, d is composed of the input vector p and the

output vector uRECMAC with the learning constants γ and µ. The update laws

18



of the parameters of the proposed RECMAC are described as:

˙̂
W = −ηW Φ̂sT (e(t)) (40)

˙̂y = −ηyΦTy ŴsT (e(t)) (41)

˙̂z = −ηzΦTz ŴsT (e(t)) (42)

˙̂q = −ηqΦTq ŴsT (e(t)) (43)

˙̂c = ηcΞ
T
c K̂s

T (e(t)) (44)

˙̂v = ηvΞ
T
v K̂s

T (e(t)) (45)

˙̂r = ηrΞ
T
r K̂s

T (e(t)) (46)

uRC = (2R2)−1[(I + Ξ2)R2 + I]sT (e(t)), (47)

where R = diag
[
λ1 λ2 . . . λm

]
∈ <m×m is a diagonal matrix of robust

controller.165

Proof: The Lyapunov function is given by:

L(s(e(t)), K̃, W̃ , c̃, ṽ, r̃, ỹ, z̃, q̃) =
1

2
[sT (e(t))G−10 s(e(t)) + tr[K̃Tα−1K̃]]

+ c̃T η−1c c̃+ ṽT η−1v ṽ + r̃T η−1r r̃ + ỹT η−1y ỹ + z̃T η−1z z̃ + q̃T η−1q q̃ + tr[W̃T η−1W W̃ ].

(48)

Taking the derivative of the Lyapunov function and using (27), the following
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yields:

L̇(s(e(t)), K̃, W̃ , c̃, ṽ, r̃, ỹ, z̃, q̃)

=sT (e(t))G−10 ṡ(e(t)) + tr[K̃Tα−1 ˙̃K] + c̃T η−1c ˙̃c+ ṽT η−1v ˙̃v

+ r̃T η−1r ˙̃r + ỹT η−1y ˙̃y + z̃T η−1z ˙̃z + q̃T η−1q ˙̃q + tr[W̃T η−1W
˙̃W ]

=sT (e(t))G−10 ṡ(e(t))− tr[K̃Tα−1
˙̂
K]− c̃T η−1c ˙̂c− ṽT η−1v ˙̂v

− r̃T η−1r ˙̂r − ỹT η−1y ˙̂y − z̃T η−1z ˙̂z − q̃T η−1q ˙̂q − tr[W̃T η−1W
˙̂
W ]

=sT (e(t))K̃Ξ̂− sT (e(t))W̃ Φ̂ + sT (e(t))K̂(Ξcc̃+ Ξv ṽ + Ξr r̃)

− sT (e(t))Ŵ (Φy ỹ + Φz z̃ + Φq q̃)− tr[K̃Tα−1
˙̂
K]

− c̃T η−1c ˙̂c− ṽT η−1v ˙̂v − r̃T η−1r ˙̂r − ỹT η−1y ˙̂y − z̃T η−1z ˙̂z − q̃T η−1q ˙̂q

− tr[W̃T η−1W
˙̂
W ] + sT (e(t))(τ − uRC)− sT (e(t))G−10 σsgn[s(e(t))]

≤− tr[W̃T (s(e(t))Φ̂ + η−1W
˙̂
W )] + c̃[sT (e(t))K̂Ξc − η−1c ˙̂c]

+ ṽ[sT (e(t))K̂Ξv − η−1v ˙̂v] + r̃[sT (e(t))K̂Ξr − η−1r ˙̂r]

− ỹ[sT (e(t))ŴΦy + η−1y
˙̂y]− z̃[sT (e(t))ŴΦz + η−1z

˙̂z]

− q̃[sT (e(t))ŴΦq + η−1q
˙̂q] + sT (e(t))K̃Ξ̂ + sT (e(t))(τ − uRC).

(49)

If di−b ≤ 0, then
˙̂
K = 0; and if d−b > 0, then

˙̂
K = α ·Ξ · [d−b] > 0. Given that

K̃ ∈ L2[0, T2], it can be derived that −tr[K̃Tα−1
˙̂
K] ≤ 0. Substitute (40)-(47)

into (49), the following yields:

L̇(s(e(t)), W̃ , K̃, c̃, ṽ) ≤ sT (e(t))K̃Ξ̂ + sT (e(t))(τ − uRC)

=sT (e(t))K̃Ξ̂ + sT (e(t))τ − 1

2
sT (e(t))s(e(t))− 1

2

sT (e(t))s(e(t))

λ2
− 1

2
sT (e(t))s(e(t))Ξ̂Ξ̂T

=− 1

2
sT (e(t))s(e(t))− 1

2
[
s(e(t))

λ
− λτ ]2 − 1

2
[s(e(t))T Ξ̂− K̃]2 +

1

2
λ2τ2 +

1

2
K̃T K̃

≤− 1

2
sT (e(t))s(e(t)) +

1

2
λ2τ2 +

1

2
K̃T K̃.

(50)

Integrating (50) from t = 0 to t = T , the following can be derived:

L(T )− L(0) ≤ −1

2

m∑
i=1

∫ T

0

s2i (t)dt+
1

2

m∑
i=1

λ2i

∫ T

0

τ2i (t)dt+
1

2

m∑
i=1

∫ T

0

k̃2i (t)dt.

(51)
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Since L(T ) > 0 and L(0) > 0, from (36) and (37), it can be derived that∑m
i=1

∫ T
0
s2i (t)dt <∞. This indicates that the cumulative error is not divergent

and the entire control system is asymptotically stable; thus the stability of the

proposed system is proved.

5. Experimentation170

The proposed RECMAC-based controller was applied to a mobile robot for

the task of moving target tracking for system validation and evaluation. This

experiment was firstly simulated, which systematically compares the perfor-

mance of PID (Proportion Integration Differentiation) controller, the ECMAC

(Emotional Cerebellar Model Articulation Controller) controller without the175

use of the recurrent loop structure, the CMAC (Cerebellar Model Articulation

Controller) controller without the presence of the emotional network, and the

proposed RECMAC controller. Then, the experiment was practically carried

out using a vision-based mobile robot in a real-world environment. These two

experiments are detailed in the following two subsections.180

5.1. Numerical Simulation

The process of moving-target tracking in this experiment was simulated in

Matlab. The simulated mobile robot was required to track a virtual mobile

object, which moves along a predicted reference trajectory; thus the object

detection function was omitted in this simulation. A fixed distance, d = 0.1m,185

must be maintained between the mobile robot and the virtual object. Note

that the reference trajectory point had a fixed velocity. In order to capture

the reference trajectory point, an ideal velocity state of the mobile robot was

obtained by applying the Blazic’s work [44]. Therefore, in this experiment, the

tracking problem was converted to a control problem of the mobile robot in190

achieving the ideal velocity states.

The reference trajectory included two paths. In the first stage from t = 0

to t = 65, the trajectory was a circle, and this moved to the second path at
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the time point t = 65s. The changing of the path was designed to evaluate the

robustness and response speed of the simulated robot controller. The reference

trajectory used in this experiment are:xr = υr · cos(ω)

yr = υr · sin(ω), t = 0− 65s,

(52)

xr = υr · cos(2ω)

yr = υr · sin(ω), t = 65− 150s.

(53)

The initial velocities of the reference trajectory point and the mobile robot

were υr = 0.2m/s and ωr = 0.1rad/s, and their initial positions were qr =

[2 0]T and q = [1 0]T . The initial orientation of the mobile robot was ω =

π/2. The errors between the ideal velocity and the actual velocity of the mobile195

robot were fed into the RECMAC network, and the outputs of the network were

the velocity of the left and right wheels of mobile robot. The parameter matrix

R of the robust controller was set to 0.1 · I, where I ∈ R2 is a unit matrix. The

parameters of the applied REN and RCMAC are summarized in Table 1. The

weights of the network were randomly initiated, each within the range from 0200

to 1. For fair comparison, the parameters of the CMAC were set as the same

with those of RCMAC within the RECMAC structure. The coefficients of the

PID controller are κP = 25, κI = 0.01, and κD = 8.

The tracking performances of the mobile robot are shown in Fig. 4. The

black solid line represents the reference trajectory; and the red dotted line, the205

blue dotted line, the green dotted line, and the gray dotted line indicate the

tracking trajectories of the mobile robot controlled by the RECMAC, the EC-

MAC, the CMAC and the PID controllers, respectively. The tracking trajectory

of the RECMAC controller was smoother than that of the ECMAC controller,

which did not have a recurrent loop structure. The better performance was210

led by the inclusion of the recurrent loop units, which retained previous states

of the system; the previous states can assist the network to handle dynamic

situations. The tracking performance of the RECMAC controller was better
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Figure 4: The tracking trajectory of the mobile robot. The black solid line represents the

trajectory of the target, while the red dotted line, the blue dotted line, the green dotted line

and the gray dotted line indicate the tracking trajectories of the mobile robot controlled by

the RECMAC, ECMAC, CMAC and PID controller, respectively.
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REN RCMAC

Number of blocks in layers M1 and M2 8 8

Number of blocks in layers R - 8

Number of blocks in layers K and W 16 8

Number of blocks in layers B and H 2 2

Initialization range of mean cij and yij [−2.0, 2.0] [−1.8, 1.8]

Initial variances vij and zij 0.01 0.5

Initialization range of Kijk and Wijk [−0.5, 0.5] [−0.5, 0.5]

Learning rates of weights α, γ, µ and ηW 0.01, 0.05, 0.01 0.001

Learning rates of mean ηc and ηy 0.01 0.01

Learning rates of variances ηv and ηz 0.001 0.001

Learning rates of recurrent ηr and ηq 0.001 0.001

Table 1: Parameters of REN and RCMAC.

than that of the ECMAC controller; and noticeably, the tracking performance

of the PID controller was the worst in the three controllers. Interestingly, in215

the second path, the tracking trajectories of the RECMAC and the ECMAC

controllers coincide exactly. This expected result was led by the learning ability

of the networks in moving target tracking.

The velocity errors of left and right wheels of the mobile robot were shown in

Fig. 5. The performance of the proposed RECMAC controller was superior to220

that of ECMAC controller in velocity control, since RECMAC has a smoother

error curve. The error curve of CMAC controller was extremely steep. This

simulation indicates that the CMAC is not able to handle the uncertainty as

efficient as the RECMAC is. Also, there existed a period of adjustment when

trajectory changes after t = 65s, as indicated in the figure. The average velocity225

values of the left and right wheels of 10 simulations are shown in Table 2. It

is clear from the table, that the control performance and response speed of

RECMAC were better than those of the ECMAC and the CMAC. The PID

controller has difficulty to deal with the task of real-time target tracking.
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Figure 5: The velocity errors of left and right wheels of mobile robot. The red line, the blue

line, the green line and the gray line are the velocity errors of RECMAC, ECMAC, CMAC

and PID controller, respectively.

PID CMAC ECMAC RECMAC

average velocity value(left) 0.0902 0.0164 0.0162 0.0154

average velocity value(right) −0.1277 −0.0241 −0.0155 -0.0085

Table 2: The average velocity values of the left and right wheels of 10 simulations.
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Figure 6: Experimental environment of the practical mobile robot, where a task mobile robot

was tracing a target robot moving along a reference trajectory with a random changing ve-

locity.

5.2. Experiment in Real-world Environment230

Experiments on a practical mobile robot were provided to evaluate the ap-

plicability of the proposed RECMAC controller in a real-world environment.

The experimental set up of the robot tracking task is shown in Fig. 6. The

task involved two robots: one as the target which moved along a reference tra-

jectory, and another as the tracer which tracks the target robot. The tracking235

trajectory was a circle (radius = 2m) following a straight line (s = 10m); A

default distance constraint, d = 2m, between the two robots was applied to the
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(a) (b)

(b1) (b2)

(b3) (b4)

Figure 7: Image processing procedure. (a) The bird-view of the experiment scene. (b) The

color based detection programme included in the mobile robot and shown on the control PC.

(b1) An example image captured by the camera mounted on the task camera. (b2) The

example image in the HSV color space. (b3) The converted binary image with white area

presenting the target coordinate. (b4) The color centroid coordinates of the target in the

camera frame.

task robot.

The task mobile robot was equipped with an RGB camera, which has two

free wheels and two differential driving wheels under a STM32 microprocessor240

equipped with 265k FlashROM and 48k RAM. The target robot was the Pioneer

mobile robot with a blue block on it as the tracking target. The task robot used

a simple but effective color-based detection approach to determine and locate

the target. The raw RGB images were captured by the camera, which were

fed to the color-based detection programme. The color-based programme firstly245

mapped the images in the HSV color space; then, the coordinates of the target

were obtained using the histogram equalization and binarization. The image

processing software of the mobile robot supports a sliding-window structure to

detect a square block with a size around 50 × 50, so as to eliminate noises.

From this, the errors were forwarded into the RECMAC network which were250

the difference between the coordinates of the target and the center of the camera

frame. The outputs of the RECMAC were the velocity values of left and right

wheels of task robot.
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Figure 8: The position errors of X-axis and Y-axis of mobile robot in the case of target robot

with a fixed velocity. The red line and the blue line are the errors of RECMAC and ECMAC

controller, respectively.

Fig. 7 illustrates the image processing procedure. The bird view of the

experiment scene is shown in Fig. 7-(a), whilst a screenshot of the image pro-255

cessing program running on the control PC of the task robot is illustrated in

Fig. 7-(b). The image processing programme detected the target and calculated

tracking errors. Figs. 7-(b1) and 7-(b2) show the raw image amputated by the

camera and the converted image in the HSV color space, respectively. Fig. 7-

(b3) is the binary image, where the white area present the target coordinate.260

Fig. 7-(b4) shows the coordinates of the target within the camera frame.

The ECMAC controller and the proposed RECMAC controller were applied

in controlling the vision-based mobile robot in this experiment to demonstrate

the role of the recurrent loop structure in moving-target tracking. Figs. 8

and 9 show the tracking errors of the target robot with a static or a random-265

changing velocity, respectively. The tracking errors were represented as two
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Figure 9: The position errors of X-axis and Y-axis of mobile robot in the case of target robot

with a random changing velocity. The red line and the blue line are the errors of RECMAC

and ECMAC controller, respectively.
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Figure 10: The velocity of left and right wheels of mobile robot. The red line and the blue

line are the velocity of RECMAC and ECMAC controller, respectively.

values indicating the coordinate errors of the mobile robot. The velocity values

of the left and right wheels of the mobile robot in chasing the random-changing

velocity target is shown in Fig. 10. In these three figures, the red and the blue

lines denote the RECMAC controller and the ECMAC controller, respectively.270

In both Figs. 8 and 9, from t = 0s to about 25s, the performances in X-axis

and Y-axis of the two controllers are close; this is because the target robot moves

along a straight line, the tracking difficulty was low. In contrast, from about t =

25s to t = 50s, the robot moved along a circular trajectory; due to the recurrent

loop structure of RECMAC, the error change range of RECMAC is much smaller275

than that of ECMAC. Therefore, the RECMAC network exhibited advantages

in controlling a dynamic mobile robot. In particular, Fig. 9 demonstrates that

advantages became more significant when the target robot had the random-

changing velocity.
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The velocity changing curves of the right and left wheels of the robot is280

shown in Fig. 10. The implication of Fig. 10 was similar to that in Figs. 8

and 9: the velocity curves of the RECMAC controller is much smoother than

those of the RCMAC. Note that, from time t = 25s to t = 50s, the RECMAC

network rarely led to any drastic velocity changes, but this is not the case for

the compared counterparts. This proves that the presence of the recurrent loop285

in the network generally improves the performance of the controller in dynamic

environments.

5.3. Discussions

Based the experimental results, the proposed RECMAC controller shown

better nonlinear approximation ability and faster response speed than those of290

the ECMAC and CMAC, whilst the ECMAC controller generally outperformed

the CMAC controller. This is consistent with the biological model which in-

cludes a biological-plausible mechanism. As the motor control center, the cere-

bellum in human brain controls all of the low level movements of a human

body, whilst the human emotions usually play an important role in retaining or295

enhancing human motions. The CMAC component of the RECMAC network

performs similar function which simulates the function of human cerebellum.

The amygdala component works as an emotional controller to adjust emotion

in executing motion control.

The proposed RECMAC neural network in this paper is composed of two300

self-complete sub-networks, compared with the work reported in [34]. The input,

in this work, will be delivered to the two networks, and the outputs from the two

are merged together in the output layer. The two sub-networks produce similar

functions with those of the amygdala and the cerebellum, respectively. For

instance, when a human is making decision, emotional stimulus usually affects305

the decision results. Correspondingly, in the RECMAC network, the output of

the RCMAC network can be affected by the output of the emotional network

output as expressed in Eq. (23).

The relationship between the two sub networks are defined by the emotional
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updating rules, i.e., Eqs. (38) and (39), which are different with the two sets of310

rules owned by the two sub networks. The updated values of the emotional net-

work takes the output of the RCMAC network into account. Dynamic changes

in a given target tracking talk usually bring larger tracking errors, as to increase

the outputs of the RECMAC network. Such changes can be well handled by

the proposed RMCAC as expressed in (39) which increases the weight adjusting315

values in response to the dynamic changes. All these mechanisms ensure the

faster response speed of the RECMAC network.

6. Conclusion

This paper proposes a new recurrent neural network, RECMAC, which is

used to build the network controller for vision-based robots. By integrating the320

emotional network and recurrent loop into CMAC, the nonlinear approximation

ability and dynamic characteristics of the system were improved. The proposed

network was validated by a simulation and applied to the controller of a practical

vision-based mobile robot. The controller performed satisfactorily in the mobile

object tracking task, which demonstrates the power of the proposed neural325

network.

Despite of the good performance, there is still room for improvement. It

is expected that the application of a self-organization mechanism in RECMAC

would make the network more flexible in a dynamic environment, which will

be investigated in the future. In addition, the proposed network is currently330

applied to the task of target tracking only; it will be worthwhile to further

explore the application domain such that the proposed system can contribute

to the filed more broadly.
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