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Self-organizing Brain Emotional Learning
Controller Network for Intelligent Control System

of Mobile Robots
Qiuxia Wu, Chih-Min Lin, Fellow, IEEE, Wubing Fang, Fei Chao, Member, IEEE, Longzhi Yang, Senior

Member, IEEE, Changjing Shang, and Changle Zhou

Abstract—The trajectory tracking ability of mobile robots
suffers from uncertain disturbances. This paper proposes an
adaptive control system consisting of a new type of self-organizing
neural network controller for mobile robot control. The newly
designed neural network contains the key mechanisms of a typical
brain emotional learning controller network and a self-organizing
radial basis function network. In this system, the input values
are delivered to a sensory channel and an emotional channel;
and the two channels interact with each other to generate the
final outputs of the proposed network. The proposed network
possesses the ability of online generation and elimination of fuzzy
rules to achieve an optimal neural structure. The parameters of
the proposed network are on-line tunable by the brain emotional
learning rules and gradient descent method; in addition, the
stability analysis theory is used to guarantee the convergence
of the proposed controller. In the experimentation, a simulated
mobile robot was applied to verify the feasibility and effectiveness
of the proposed control system. The comparative study using
the cutting-edge neural network-based control systems confirms
the proposed network is capable of producing better control
performances with high computational efficiency.

Index Terms—Mobile robot, neural network control, self-
organizing neural network, brain emotional learning controller
network.

I. INTRODUCTION

AUTONOMOUS mobile robots or vehicles are very useful
in many application fields. Recently, the requirement

growth of mobile robots in industrial and cargo applications
becomes more and more rapid [1]–[5]. Current intelligent
mobile robots broadly cover cutting-edge sciences and tech-
nologies of sensors, computer vision, artificial intelligence and
other disciplines [6]–[8]. In particular, as a nonholonomic
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control system, the trajectory tracking problem is a typical
and complicated research topic of mobile robots, since solving
such problem must deal with a large number of uncertain
and non-linear disturbances [9]–[13]. Several current work
suggested to use the robust optimal control for mobile robots
[14], [15]. In order to better solve the problem, it is necessary
to create a self-adaptive intelligent controller to handle the
disturbances. Many modern control methods, such as fuzzy
logic based and artificial neural network-based methods, have
been utilized to control uncertain nonlinear systems.

The dynamic control of mobile robots faces two major
challenges. First, an artificial neural network-based controller
in mobile robots must contain enough self-adaptation and non-
linear learning abilities. Many research applied adaptive neural
network controllers to solve the tracking control problem of
mobile robots and other dynamic systems [15]–[20]. Many
studies used artificial neural networks as inverse modeling
controllers to control mobile robots [5], [21]. However, these
studies merely took neural network-based controller’s output
errors as learning assessments to update network weights.
To achieve better performance for controlling mobile robot
systems, neural networks also require to consider robot’s
overall performance to adjust their control parameters. Re-
cently, a number of emotional learning methods [22]–[24],
inspired by the learning architectures of human brain [25]–
[27], are developed to build robot controllers [28], [29]; e.g.,
Mohammad Jafari et al.’s work developed and implemented a
novel biologically inspired intelligent tracking controller for
unmanned aircraft systems in presence of uncertain system
dynamics and disturbance [30]. Especially, a brain emotional
learning controller network (BELC) not only uses network
output errors to adjust its network weights, but also benefits
from using the network’s emotional output as an overall per-
formance to tune its parameters [31], [32]. However, there is
still room to improve the BELC’s the non-linear approximation
ability, which is limited by its static network structure.

Second, to deal with unexpected and time-varying distur-
bances in mobile robot systems, neural network-based con-
trollers must be able to fast arrange efficient computational
resources. Several existing studies focused on building a
incremental structure in their robot neural network control
systems; e.g., Chao et al.’s work applied a resource alloca-
tion network to build robotic hand-eye coordination systems
[33]–[35]. There studies merely considered the incremental
computing neurons, but ignored to remove less important
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neurons from their neural network based controllers; also, the
stabilities of these control systems cannot be guaranteed. Other
studies [36]–[39] suggested to use a ”pruning” mechanism
with adaptive learning methods to improve their network’s
computational efficiency. Indeed, such approaches can control
their computational resources. Nevertheless, for controlling
mobile robots, it is still a challenging task to quickly react to
external disturbances that appears suddenly; therefore, both the
computational efficiency and non-linear approximation ability
must be satisfied in the network-based controllers of mobile
robots.

This paper aims to address both challenges. A new type
of self-organizing neural network, called self-organizing brain
emotional learning controller network (SOBELC), is devel-
oped. The SOBELC network combines the key mechanisms of
a fuzzy brain emotional learning controller network (FBELC)
[31] and a self-organizing radial basis function network (RBF)
[40]. An FBELC network contains a sensory system and a
neural network judgement system, which are inspired by hu-
man brain’s amygdala and orbitofrontal cortices, respectively
[31], [41]. In this work, the network judgement system is
established by introducing a self-organizing mechanism, which
is developed from the RBF network [40]. The weights of
the two systems are adjusted based on an emotional cue
function [42], [43], which is calculated from the both system’s
inputs and outputs. After the emotional learning process, the
proposed network produces the final outputs by integrating the
two systems’ outputs. Thus, the proposed network not only
retains its non-linear approximation ability, but also possesses
the allocation capability of computational resources. With the
support of the proposed SOBELC network, this work further
develops an intelligent control system for dynamic non-linear
control of mobile robots. The experimental results demonstrate
the feasibility of the proposed learning method; in addition,
the tracking ability of the mobile robot, the stabilization
ability, and the robustness are improved to a certain extent.
This work is evaluated by a simulated environment; however,
various levels of unexpected disturbances are added into the
experimental system, so as to simulate real-world applications.
If the robot can well handle these simulated disturbances,
the SOBELC network-based controller can also have good
performances in the real world.

The remainder of this paper is organised as follows. Section
II describes the dynamic model of a mobile robot. Section III
introduces the detailed implementations of the proposed neural
network. Section IV describes the intelligent control system
using the proposed neural network for mobile robot control,
including a discussion of the controller’s update laws. Section
V presents the experimental results and comparisons. Finally,
Section VI concludes the paper and points out potential future
work.

II. DYNAMIC MODEL OF MOBILE ROBOT

A wheeled mobile robot shown in Fig. 1-a, is a typical
nonholonomic mechanical system. The robot has two coaxially
mounted driven wheels and a passive wheel. The driven wheels
are responsible for movements and steering of the mobile
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Fig. 1. Wheeled mobile robot model and tracking procedure. a) A wheeled
mobile robot

robot. Fig. 1-b illustrates a tracking procedure diagram of
mobile robots. The tracking procedure is assumed that a
task mobile robot can trace a virtual mobile robot (reference
robot) that can perfectly move along predefined trajectories.
Therefore, the optimal control scenario of the task robot is to
enable its position and orientation to be consistent with those
of the reference robot. The position and orientation errors
between the task robot and the reference robots are used as
the robot controller’s inputs.

In Fig. 1-a, the radius of the driven wheel is r, the distance
between two driven wheels is 2R, P is the center position of
the two driven wheel’s axis, C is the mobile robot’s center
of gravity, and d is the distance between P and C. In the
Descartes coordinate system, the position of the mobile robot
is represented by the vector q = [xc yc θ]T , where xc
and yc the coordinates of C; and θ is the angle between the
coordinate system xc, yc and Descartes coordinate system.

In general, the dynamic equation of a nonholonomic mobile
robot system with n-dimensional state and m dimension
constraints can be expressed as:

M(q)q̈+Vm(q, q̇)q̇+G(q)+F (q̇)+τd = B(q)τ−A(q)λ (1)

where q̇ is a velocity vector of the position and orientation;
q̈ is an acceleration vector of the position and orientation;
M(q) ∈ Rn×n is the positive definite symmetric inertia
matrix; Vm(q, q̇) ∈ Rn×n is matrix of the radial force and
Costa force; G(q, q̇) ∈ Rn is gravity matrix; and F (q̇) ∈ Rn is
friction. Here, assume that the mobile moves on the horizontal
ground, G(q) = 0 and F (q̇) = 0; τd ∈ Rn denotes the
bounded unknown disturbances; B(q) ∈ Rn×n is the input
transformation matrix; τ ∈ Rn is the control input vector;
A(q) is a constraint matrix; and λ ∈ Rm is the restrain force.

Thus, the kinetic parameters of the mobile robot model
in Fig. 1-A are obtained by Euler-Lagrange equation; the
parameters are defined as follows:

M(q) =

 m 0 md sin θ
0 m −md cos θ

md sin θ −md cos θ I

 (2)

C(q, q̇) =

0 0 mdθ̇ sin θ

0 0 mdθ̇ cos θ
0 0 0

 (3)

B(q) =
1

r

cos θ cos θ
sin θ sin θ
R −R

 (4)



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2018.2874426, IEEE Access

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

τ = [τr τl] (5)

where m is the weight of the mobile robot; I represents the
moment of inertia; and τr and τl are the torques of the right
and left wheels, respectively.

Usually, a general constraint for mobile robots is: The
mobile robot’s movements only contain pure rolling without
slipping [32]. Thus, we have:

ẋc sin θ − ẏc cos θ = θ̇d (6)

where d is defined in Fig. 1-A; then, (6) can be rewritten as:

A(q)q̇ = 0 (7)

In this paper, S(q) and v(t) are defined by:

S(q) =

cos θ d sin θ
sin θ −d cos θ

0 1

 (8)

v =

[
υ
ω

]
(9)

where υ is the linear velocities, and ω is the angular velocities.
In terms of the nonholonomic constraint mentioned above, the
kinematics model is then obtained as:

q̇ =

ẋ1

ẏ2

θ̇3

 =

 cos θ d sin θ
− sin θ d cos θ

0 1

[υ
ω

]
= S(q)v(t) (10)

Then, the tracking comparatively error against the position
ep is defined by:

ep =

e1

e2

e3

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

xr − xyr − y
θr − θ

 , (11)

and tracking comparatively error against the velocity ev is
defined as:

ev = vr − v

[
υr − υ
ωr − ω

]
(12)

where the reference velocities vr can be respectively defined
as:

vr =

[
υr cos e3 + k1e1

ωr + k2υre2 + k3υr sin e3

]
(13)

where k1, k2, and k3 are pre-defined parameters; and the
definition of vr is various; in this work, the reference velocity
model defined in (13) is selected from Blaz̆ic̆’s work [10].
Thus, the velocity error, ec, can be obtained by ec = vc − v.

Then, left-multiply St(q) to (1), the dynamic equation of
the mobile robot is obtained by:

Mv̇(t) + V mv(t) + F + τd = Bτ (14)

where M = STMS, V m = ST (MṠ + VmS), τd = ST τd,
τ = Bτ , B = STB; and M , C, and B are defined by:

M =

[
m 0
0 I −md2

]
, C =

[
0 0
0 0

]
, B =

[
1
r

1
r

R
r −Rr

]
. (15)

Based of an existing work [44], the parameter matrix of
(14) has the following properties:

Input

Output

⋮ 

111y oa 

nnny oa 

⋮ 





⋮ 

⋮ 

⋮ 



⋮ 

⋮ 

⋮ 

⋮ 

1p11  

mpm1  

 
i j

ij

1

ijva 

11

111 p
vv 

1

mp

1

m1
v v


⋮ 

 
i j

ij

n

ijva 

n

p

n vv 111 

n

mpvv n

m1

⋮ 

T1o w

⋮ 

γwTno

⋮ ⋮ 

Orbitofrontal 

Channel

Amygdala 

Channel

𝑤1
1 

𝑤1
𝑛  

𝑤𝑝
𝑛  

𝑤𝑝
1 

𝛾1 

𝛾𝑞  

𝑥1
𝑥2
⋮
𝑥𝑚

 

Fig. 2. The architecture of the SOBELC network.

Property 1: (M − 2Vm) is skew-symmetric, i.e.,

xT (M − 2Vm)x = 0,∀x 6= 0. (16)

Then, derivative ec and substitute it into (14), the dynamic
equation against the velocity error is defined by:

Mėc = −V m(q, q̇)ec + τ (17)

III. SELF-ORGANIZING BRAIN EMOTIONAL LEARNING
CONTROLLER NETWORK

In order to improve the non-linear approximation ability
and computational efficiency of the BELC network, a new
neural network is established by introducing a self-organizing
mechanism to BELC. The resulted network not only takes the
advantages of BELC and RBF neural networks in handling un-
certain situations, but also enjoys the benefit of self-organizing
mechanism for computational resource allocation. The archi-
tecture and self-organizing method of the new proposed neural
network are described as following subsections.

A. Neural Network Implementation

The network architecture of the proposed SOBELC network
shown in Fig. 2. The main structure of SOBELC is inspired
by the specification of a BELC network. Inputs of SOBELC
are mapped into two channels: a orbitofrontal channel (shown
in the upper shade box in Fig. 2) and a amygdala channel.
Such two-channel structure mimics that of a human brain,
which has an orbitofrontal and an amygdala cortices [31], [45],
[46]. The orbitofrontal cortex channel represents an emotional
process in the network and the amygdala cortex channel does a
sensory-motor process. Each channel also contains a receptive-
field space and a weight memory. The receptive-field space
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calculates the activate level for the weight memory; then, the
two weight vectors are aggregated and delivered to the output
layer for the generation of the network’s final output. The
implementation of the proposed neural network is specified as
follows.

1) Input: The input of a SOBELC network is a continuous
multi-dimensional signal. A given input signal is pre-
sented as X = [x1, . . . , xi, . . . , xm]T ∈ Rm, where m is
the input dimension. Then, X is sent to the orbitofrontal
and amygdala channels synchronously.

2) Orbitofrontal Channel: This channel is partially im-
plemented by a fuzzy cerebellar mode articulation con-
troller neural network, which is established in our pre-
vious work [32]. Inputs of the channel are distributed to
a number of corresponding receptive fields, within each
of which the Gaussian membership function calculates
the total firing strength from the network’s inputs. Thus,
the Gaussian function in this channel is defined as:

λij = exp(
−(xi − ζij)2

σ2
ij

) (18)

where i ∈ Rm, xi denotes the ith input, j ∈ Rp, j
is the jth receptive field and p denotes the number of
receptive field’s layers; in addition, λij , ζij , and σij
denote the membership function, uncertain mean value,
and variance value for the jth receptive field of the ith
input, respectively.
Each receptive-field is mapped to a corresponding
weight. The entire weight space, VOC , in this channel
is defined as:

VOC = Vi×j×k =

ν1

...
νn

 (19)

where k denotes the kth output; thus νk is defined as:

νk =

 ν11 . . . ν1p

...
. . .

...
νni1 . . . νnip

 . (20)

3) Amygdala Channel: The amygdala channel is estab-
lished by using a self-organizing radius basis function
neural network [36]. The receptive-field layer is com-
posed of a set of RBF neurons; thus, the jth neuron’s
output is defined as:

Θj(‖x− ψj‖ , γj) = exp(
−(xi − ψij)2

γij
2 ) (21)

where i ∈ Rm; in addition, ψij and γij denote the center
and width of the jth neucon of the ith input. Note that,
in the Orbitofrontal channel, the number of receptive
fields is static; however, the number of neurons in the
amygdala channel is dynamic and is adjusted during
the adaptive control process. The self-organizing rule is
defined in Section III-B.

x1

x2

⋮ 

⋮ 

Increasing process

Decreasing process

max

Add a new neuron

yes

no

Block_num(t)

Fading the index

Rising the index

Remove kth neuron

thGmax thGmax

thGmax noIk

yes

no

yes
 i  i

γ1 

γ𝑞  

RBF neurons

Fig. 3. Self-organizing mechanism for SOBELC network. The algorithm
consists of two steps of process: increasing process and decreasing process.

Each neuron links to a weight value in the weight space,
WAC , which is defined as:

WAC = Wq×nk
=

w11 . . . w1nk

...
. . .

...
wq1 . . . wqnk

 . (22)

4) Output: Outputs of the two channels, ukOC and ukAC ,
are presented as:

ukOC = V TOCΛ(x, ζ, σ) (23)

ukAC = WT
ACΘ(x, ψ, γ) (24)

where k ∈ Rn. Based on the BELC structure, the output
of SOBELC is yk = ukOC − ukAC ; thus, the output can
be further presented as:

yk = V TOCΛ(x, ζ, σ)−WT
ACΘ(x, ψ, γ) (25)

B. Self-organization Mechanism

In the on-line learning process, the number of neurons in
the amygdala channel can dynamic change. If the number of
neurons in the hidden layer, κ, is too small, the network’s
process ability may not be efficient for control tasks. Con-
versely, if the number is too large, the computational cost is
too heavy, so that it is might be unsuitable for online real-
time control. In order to find a balance between the network
performance and the computational cost, an online learning
algorithm is established to increase or decrease the number of
neurons in SOBELC. Based on this consideration, the on-line
learning algorithm consists of two steps of process: increasing
process and decreasing process, which are shown in Fig. 3 and
specified as follows:

1) Neuron Increasing: First of all, the leaning algorithm
is to decide whether or not to add a new neuron into the
amygdala channel. For each input data, xi, the activation
values of the amygdala channel’s existing hidden neurons is
used to represent xi’s membership degree that the input data
belongs to the existing neurons. If the current activation value
is low, this situation indicates that the existing neural neurons
are not sensitive to the input data, more processing neurons
are required in the amygdala channel; otherwise, if the value
is high, it is not necessary to add a new neuron. To simplify
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the calculation, the maximum activation value of the existing
neurons is used to represent the activation grade of the all
neurons. Thus, the maximum value, Θmax, is defined as:

Θmax = max
1≤j≤κ(t)

Θj (26)

where q(t) is the number of the existing neurons at the t-th
time.

A pre-defined threshold, Gth ∈ (0, 1), determines whether
a new neuron can be added. Thus, if γmax ≤ Gth, then a new
hidden neuron is created and added in the hidden layer in
the amygdala channel. The new neuron’s parameters, (ψnewq ,
γnewq , and wnew), are initialized as:

ψnewκ = xt

γnewκ = γ

wnew = 0

κnewt+1 = κt + 1

(27)

where xt is the new incoming data at the t-th time, γ is the
mean width of radial basis function of the existing neurons,
and wnew is easily set at 0.

2) Neuron Decreasing: To save the computational cost, the
on-line learning algorithm can remove existing neural neuron,
whose processing results cannot impact the overall results of
the entire network. Thus, a neuron’s significance, I , is defined
to determine whether a neuron must be removed. Therefore,
if the j-th neuron’s significance, Ij , is larger than a threshold,
Pth, then the j-th neuron is retained in the hidden layer.
Otherwise, if Ij ≤ Pth, the j-th neuron must be removed
from its network. Ij can be updated by using the status of
Θj : If Θj is smaller than elimination threshold value, ρ, then
Ij will have a slight decrease; otherwise, Ij will have a small
increase. The updating rule of Ij is summarized as follows:

Ij(t+ 1) =

{
Ij(t) exp(−τ1) if Θj < ρ
Ij(t)[2− exp(−τ2(1− Ij(t)))] if Θj ≥ ρ

(28)
where the initial value of each I is set at 1; j ∈ [1, q] is the
number of current neurons; and τ1 and τ2 are two pre-defined
constant values. The complete algorithm is summarised as a
pseudo-code shown in Algorithm 1.

Algorithm 1 Self-organization mechanism
1: Initialize Gth = 0.1, ρ = 0.1, τ1 = 0.01, and τ2 = 0.05;
2: Calculate Θmax;
3: if Θmax ≤ Gth then
4: Set γnewκ+1 , q(t+ 1) by (27);
5: end if
6: for j = 0 to κ(t) do
7: Update Ij by Eqn. 28;
8: if Ij < Pth then
9: Remove ψj , γj , and wj ;

10: Update κ;
11: end if
12: end for

C. Parameter Update

The weights in the orbitofrontal channel are updated based
on the brain emotional learning rule, the weight update values,
v̇iq , are defined by:

v̇iq = ηz(hi ×max[0, dq − uqOC ]) (29)

where ηz denotes a learning rate; and dq denote an emotional
cue parameter, defined by:

dq =
m∑
i=1

βiq × SIi + cq × yk (30)

where βiq and cq are gain parameters, which are determined
in practical control problems. Thus, the updating law for the
orbitofrontal channel’s weights is defined as:

viq(t+ 1) = viq(t) + ˙viq. (31)

The tunable parameters of the amygdala channel are w,
ψ, and γ; therefore, to obtain more robust performance, the
parameters are updated by Lyapunov stability analysis theory,
rather than the brain emotional method. The updating values,
ẇ, ψ̇ and γ̇, are described in Section IV and the updating laws
of the amygdala channel are defined as:

wijk(t+ 1) = wijk(t) + ẇijk (32)

ψ̂ijk(t+ 1) = ψ̂ijk(t) +
˙̂
ψijk (33)

γ̂ijk(t+ 1) = γ̂ijk(t) + ˙̂γijk (34)

IV. NEURAL NETWORK CONTROL SYSTEM

The proposed SOBELC network is used to form a new
network controller for mobile robot control problems. The
structure of the proposed controller is illustrated in Fig. 4.
The control system is designed based on Jin and Wang’s
work [47]. The errors, ep, are the position differences between
the reference robot and the task robot. Combing with the
reference velocity model listed in Section II, and the velocity
reference error, ec, is used as the controller’s input. The
controller minimizes ec and produce control values as system
outputs. The controller is comprised of two sub-systems,
including a SOBELC network, and a baseline robust controller.
The input error values are fed into the two sub-systems for
control signal generation. The control signals generated from
both controllers are then aggregated to produce the final output
of the overall control system. Thus, the output of the entire
controller is computed by:

u = uSOBELC + ur (35)

where uSOBELC and ur denote the outputs of the SOBELC
network and robust controllers, respectively.

Assume that there exits an ideal SOBELC controller,
u∗SOBELC , to approximate the target u∗, which is presented
as follows:

u∗ = u∗SOBELC(w∗, ψ∗, γ∗) + ε

= V ∗T Λ̂−W ∗TΘ∗ + ε
(36)

where ε is an approximation error, and w∗, ψ∗, and γ∗

are the optimal parameters of u∗SOBELC . However, since
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Fig. 4. Wheeled mobile robot control and tracking system

the optimal nonlinear approximation u∗SOBELC cannot be
obtained, the online estimating ûSOBELC must estimate the
optimal u∗SOBELC . Therefore, the approximate optimal value
of the network-based controller can be defined as:

û = ûSOBELC(ŵ, ψ̂, γ̂) + ur

= V̂ T Λ̂− ŴT Θ̂ + ur
(37)

where ŵ, ψ̂, and γ̂ are the estimated value of w∗, ψ∗, and γ∗,
respectively; and ur denotes output of the robust controller
used to eliminate the error between the ideal controller u∗

and the actual controller ûSOBELC . Consider both (36) and
(37), the approximation difference, ũ, between u∗ and û can
be defined as:

ũ ≡ u∗ − û
= V ∗T Λ̂−W ∗TΘ∗ + ε− V̂ T Λ̂ + ŴT Θ̂− ur
= Ṽ T Λ̂− W̃TΘ∗ − ŴT Θ̃ + ε− ur

(38)

where W̃ = W ∗ − Ŵ , Ṽ = V ∗ − V̂ and Θ̃ = Θ∗ − Θ̂. The
Taylor linearization method is applied to expand the Gaussian
functions into partially linear form; thus, the expansion of Θ̂
in a Taylor series can be obtained by:

Θ̃ =



Θ̃1

...
Θ̃l

...
Θ̃nl

 =



(
∂Θ1

∂ψ

)T
...(

∂Θl

∂ψ

)T
...(

∂Θnl

∂ψ

)T


∣∣∣∣∣
ψ=ψ̂

(ψ∗ − ψ̂)

+



(
∂Θ1

∂γ

)T
...(

∂Θl

∂γ

)T
...(

∂Θnl

∂γ

)T


∣∣∣∣∣
γ=γ̂

(γ∗ − γ̂) + Ot

=ΘT
ψ ψ̃ + ΘT

γ γ̃ + Ot

(39)

where ψ̃ = ψ∗ − ψ̂, γ̃ = γ∗ − γ̂ and Ot ∈ Rnl is a vector of

higher-order terms; ∂Θl

∂ψ and ∂Θl

∂γ are defined as:

[
∂Θl

∂ψ

]
=

0, . . . , 0︸ ︷︷ ︸
(l−1)×ni

,
∂rl
∂ψ1l

, . . . ,
∂Θl

∂ψnil
, 0, . . . , 0︸ ︷︷ ︸
(nl−l)×ni


T

(40)

[
∂Θl

∂γ

]
=

0, . . . , 0︸ ︷︷ ︸
(l−1)×ni

,
∂Θl

∂γ1l
, . . . ,

∂Θl

∂γnil
, 0, . . . , 0︸ ︷︷ ︸
(nl−l)×ni


T

. (41)

Rewrite (39), we have:

Θ∗ = Θ̂ + ΘT
ψ ψ̃ + ΘT

γ γ̃ +Ot (42)

Substituting (42) and (39) into (38), yield

ũ =Ṽ T Λ̂− W̃T (Θ̂ + Θψψ̃ + Θγ γ̃ +Ot)

− ŴT (Θψψ̃ + Θγ γ̃ +Ot) + ε− ur
=Ṽ T Λ̂− W̃T Θ̂− ŴT (Θψψ̃ + Θγ γ̃)− ur + ξ

(43)

where ξ denotes the approximation error term, and ξ =
W̃TΘT

ψ ψ̃ + ŴTΘT
γ γ̃ + W ∗TOt + ε. ξ is supposed to be

bounded by 0 ≤ |ξ|∞ ≤ ξp, in which ξP2×1
is a positive

constant matrix.
The robust control is designed as follows:

ur =
(I + Λ2)R2 + I

2R2
eTc (44)

where R is a positive diagonal matrix, R =
diag(φ1, φ2, · · · , φi), φi is a robust attenuation coefficient
that is specified by designers.

In order to guarantee the entire control system can retain
convergence, the parameters updating values must be deter-
mined by using the Lyapunov stability theory. The proposed
control system shown in Fig. 4 convert the error of the mobile
robot’s position and orientation to the reference velocity error.
Therefore, a Lyapunov function is defined as:

L = L1(ep, t) + L2(ec, t) (45)

where L1 and L2 are presented as follow:

L1(ep, t) = k1(e2
x + e2

y) +
2k1

k2
(1− cos eθ) (46)

L2(ec, t) =
1

2
[eTc M̄ec + tr[W̃T η−1

W W̃ ] + ψ̃T η−1
ψ ψ̃

+ γ̃T η−1
γ γ̃ + tr[Ṽ Tα−1Ṽ ]]

(47)
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where ep = [ex, ey, eθ]
T , and ec = [ev, ew]T . The proof of

asymptotic stability of L1(ep, t) is given in Blaz̆ic̆’s work [10].
Therefore, if L2(ec, t) achieves stable, the entire control sys-
tem can be guaranteed. Derivative (47) and substitute (17) and
(43) to the derivation (Note that: the estimation error of the
derived torque τ̃ is the estimation error ũ), then we have:

L̇2 =eTc M̄ ėc +
1

2
[eTc

˙̄Mec] + tr[W̃T η−1
W

˙̃W ]

+ ψ̃T η−1
ψ

˙̃
ψ + γ̃T η−1

γ
˙̃γ + tr[Ṽ Tα−1 ˙̃V ]

=eTc (−V̄mec + ˜̄τ) +
1

2
[eTc

˙̄Mec] + tr[W̃T η−1
W

˙̃W ]

+ ψ̃T η−1
ψ

˙̃
ψ + γ̃T η−1

γ
˙̃γ + tr[Ṽ Tα−1 ˙̃V ]

=
1

2
eTc ( ˙̄M − 2V̄m)ec + eTc ˜̄τ + tr[W̃T η−1

W
˙̃W ]

+ ψ̃T η−1
ψ

˙̃
ψ + γ̃T η−1

γ
˙̃γ + tr[Ṽ Tα−1 ˙̃V ]

=
1

2
eTc ( ˙̄M − 2V̄m)ec + eTc ũ− tr[W̃T η−1

W
˙̂
W ]

− ψ̃T η−1
ψ

˙̂
ψ − γ̃T η−1

γ
˙̂γ − tr[Ṽ Tα−1 ˙̂

V ]

=eTc Ṽ Λ̂− eTc W̃ Θ̂− eTc Ŵ (Θψψ̃ + Θγ γ̃) + eTc (ξ − ur)

− tr[W̃T η−1
W

˙̂
W ]− ψ̃T η−1

ψ
˙̂
ψ − γ̃T η−1

γ
˙̂γ − tr[Ṽ Tα−1 ˙̂

V ]

≤− tr[W̃ (eTc Θ̂ + η−1
W

˙̂
W )]− ψ̃[eTc ŴΘψ + η−1

ψ
˙̂
ψ]

− γ̃[eTc ŴΘγ + η−1
γ

˙̂γ] + eTc Ṽ Λ̂ + eTc (ξ − ur)
(48)

Since ˙̂
V = 0 when dq − uqOC ≤ 0 and ˙̂

V = ηz · Λ · [dq −
uqOC ] > 0 if dq − uqOC > 0, we have −tr[Ṽ Tα−1 ˙̂

V ] ≤ 0.
Based on (48), the updating values of ẇ, ψ̇ and γ̇ are defined

as:
˙̂
W = −ηW eTc Θ̂ (49)
˙̂
ψ = −ηψeTc ΘψŴ (50)
˙̂γ = −ηγeTc ΘγŴ (51)

By using the updating laws in (49), (50), and (51), and the
robust controller’s definition (44), (48) can be rewritten as:

L̇2 ≤eTc Ṽ Λ̂ + eTc (ξ − ur)

=eTc Ṽ Λ̂ + eTc ξ −
1

2
eTc ec −

1

2

eTc ec
r2
− 1

2
eTc ecΛ̂Λ̂T

=− 1

2
eTc ec −

1

2
[
ec
r
− rξ]2 − 1

2
[eTc Λ̂− Ṽ ]2

+
1

2
r2ξ2 +

1

2
Ṽ T Ṽ

≤− 1

2
eTc ec +

1

2
r2ξ2 +

1

2
Ṽ T Ṽ

(52)

Integrate (52) from t = 0 to t = T , then:∫ T

0

L2dt ≤
∫ T

0

n∑
i=1

[
−e

2
ci(t)

2
+
r2
i e

2
ci(t)

2
+
ν̃2
i

2

]
dt. (53)

Then, (53) is rewritten as:

L2(T )− L2(0) ≤
n∑
i=0

[
−1

2

∫ T

0

eci(t)dt+
r2
i

2

∫ T

0

ξ2
i (t)dt+

1

2

∫ T

0

ν̃i(t)dt

]
(54)

Since L2(T ) ≥ 0, (54) is simplified as:

1

2

n∑
i=0

∫ T

0

e2
ci(t)dt ≤ L2(0)+

1

2

n∑
i=0

r2
i

∫ T

0

ξ2
i (t)dt+

1

2

m∑
i=0

∫ T

0

ν̃i(t)dt.

(55)
Then, we have:
n∑
i=0

∫ T

0

e2
ci(t)dt ≤

n∑
i=0

e2
ci(0)+

n∑
i=0

r2
i

∫ T

0

ξ2
i (t)dt+

1

2

m∑
i=0

∫ T

0

ν̃i(t)dt.

(56)
If
∫ T

0
ξ2
i (t)dt < ∞,

∫ T
0
ν2
i (t)dt < ∞, then for all T , there

exists
∫ T

0
e2
ci(t)dt <∞; therefore, the asymptotic stability of

L2 has been proved to be completed.
In summary, as t → ∞, {ep, ec} → 0, and {ėp, ėc} →

0; the tracking system is asymptotically stable proved by the
Lyapunov stability theory.

V. EXPERIMENTATIONS

A. Experimental setup

The proposed controller with the new SOBELC is applied
to a mobile robot system, so as to verify the controller’s
effectiveness and efficacy. The experiments are based on a
simulation mobile robot, which tracks a predefined reference
trajectory. The reference trajectory has two patterns; the first
pattern with the time 0 ≤ t < 65 is designed as:{

xr = υr · cos(ω)

yr = υr · sin(ω)
(57)

and the second pattern with the time 65 < t ≤ 130 is defined
as: {

xr = υr · cos(2ω)

yr = υr · sin(ω)
(58)

where the initial velocity of the reference robot is set as:
υr = 0.2m/s and ωr = 0.1rad/s and that of the task
robot is set as the identical value. In addition, the initial
position and orientation of the reference mobile robot are set
as qr = [2 0 π/2]T and those of the tracking one are set
as q = [1 0 π/2]T .

In the experiments, the task mobile robot’s parameters are
set as: m = 10kg, I = 5kg · m2, R = 0.2m, r = 0.05m,
d = 0.0m, F (q̇) = 0. In addition, the disturbance, τd, is
defined as:

τd =

[
δ sin(4t)
δ cos(4t)

]
. (59)

where δ denotes the level of disturbance. In this experiment,
two levels of disturbances are used to evaluate the proposed
network controller; thus, δ is set at 10 and 20, respectively.

In order to compare the effectiveness of the proposed
method, a TSK CMAC” network based controller [48] (labeled
as “TSK-CMAC”), a fuzzy BEL network based controller [31]
(labeled as “BELC”), and an adaptive BEL network based
controller [43] (labeled as “AF-BELC”) are included in the
same experiments. The parameters of the SOBELC neural
network model are selected as: Gth = 0.5, Pth = 0.1,
ρ = 0.1, κ = 9, τ1 = 0.01, and τ2 = 0.05. The following
paragraphs describe three experiments, each of which applies
one disturbance level.
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Fig. 5. Trajectories of the mobile robot for the four controllers with τd : δ =
10 and 20.

B. Results

Fig. 5 demonstrates the simulated position response of the
mobile robot under the three levels of disturbances. Each of
the sub-figures contains the reference trajectory (red solid
line), the TSK-CMAC output trajectory (blue dotted line),
the BELC output trajectory (pink dotted line), the adaptive
BELC output trajectory (green dotted line), and the proposed
SOBELC output trajectory (red dotted line). In the experiment,
the tracking time-length is 130s; however, from 0s to 65s, the
mobile robot is required to track the circular trajectory in the
down-left of the sub-figure; then, from 65s to 130s, the robot
must track the trajectory similar to digit number “8”.

In Fig. 5, the performances of the four controllers are
very close to each other; their output trajectories are almost
coincided and closely reach the reference trajectory. This
situation proves that the entire neural network-based controller
possesses strong applicability and generality. However, in
order to clearly identify the tracking performance of the four
controllers, the position and velocity errors of the controllers
with various disturbances at around 0s and 65s are magnified
and shown in Figs. 6 and 7.

Fig. 6a shows position and orientation errors of the four
network controllers with δ = 10. As defined in (11), the errors
consist of x, y, and θ components. The left column shows
the entire tracking procedure and the right column shows
the magnification of the errors at around 65s. Three plots in
the left column indicate the three errors in x, y, and θ; the
other three in the middle column indicate the three magnified
versions of those left ones after a few seconds of tracking;
and the rest three in the right column show the magnified
plots after the 65s.

In this figure, the left three plots reveal the similar situation
with that of Fig. 5: the four network-based controllers can
rapidly react to tracking errors. However, in the magnified
plots at 0s, The TSK-CMAC, BELC, and AF-BELC con-
trollers generate very similar results regarding the position and
orientation tracking errors, since the three curves are almost
coincided. However, the tracking performance of the SOBELC
controller is much better than those of the TSK-CMAC, BELC,
and AF-BELC controllers at 0s. The SOBELC exhibits fast
error convergence speed in x and y; in addition, the SO-
BELC can achieve less overshoot in θ. At 65s, the SOBELC
controller also exhibits the faster error convergence speed
than those of the rest three controllers. The performances of

the TSK-CMAC and AF-BELC controllers are very similar;
however, the BELC controller has the worst performance.

Fig. 6b shows velocity errors of the four network controllers
with δ = 10, and the line types of this figure are identical with
those of Fig. 6a. As defined in (12), the velocity error consists
of υ and ω components. At 0s, the SOBELC controller
exhibits clearly advantages in velocity tracking in both υ
and ω, since the SOBELC controller has less overshoot and
smoother convergence curve. Especially, the performance of
the SOBELC in ω has a significant advantage. At 65s, the
performances of the four controllers are about the same; the
SOBELC controller has a slim leading over the rest three
controllers. However, the BELC controller’s performance is
the worst in the four controllers. As considered the entire
tracking performance of the four network controllers with
δ = 10, the proposed SOBELC network has a better ability to
dynamically control mobile robots.

Fig. 7 illustrates the position, orientation, and velocity
tracking performances the four network controllers with δ =
20; the legend of this figure is identical to that of Fig. 6.
In Fig. 7a, the entire performances of the four controllers
remain consistent with those under δ = 10. The tracking
performance of the SOBELC is much better than those of
the other three controllers, since the controller demonstrated
faster error convergence speed across all these experiments.
It is interesting to note that the entire performance of the
SOBELC under δ = 20 is better than those under δ = 10.
This phenomenon is related to the combination of the outputs
of the self-organizing mechanism and the robust term in the
SOBELC controller of the proposed system. If a larger dis-
turbance presents, both components must adjust their weights
or parameters simultaneously, resulting in different tracking
performances from those under small disturbances. Also, the
output value range of the robust controller is larger than that
of the network; therefore, the robust controller can act faster
for larger disturbances. A formal analysis of such situation
remains as an important piece of active future work.

Based on the above analysis, Fig. 8 shows the dynamic self-
organizing process during the experiments with δ = 10 and
20. Note that, the SOBELC contains two processing channels,
Fig. 8 merely shows the hidden neurons of the amygdala
channel. The initial size of neurons in the SOBEL is set at 9 in
the both levels of disturbance. Under δ = 10, the size increases
rapidly just after the mobile robot starts to move; however,
when the size reaches 95, it rapidly reduces and remain stable
at 11 neurons. At the 65s, the trajectory pattern is changed
so that the tracking error have a large shock. Therefore, the
size increases to 20, then immediately returns and remains at 8.
Under δ = 20, the increasing situation at the beginning is very
similar to that under δ = 10: the size has rapid increasing and
decreasing. However, after the 65s, the increasing of the size
is not remarkable; in particular, the size remains at 11. The
more neurons reveal that the SOBELC controller consumes
more processing resources to handle the larger disturbances.
Also, the dynamic size proves the SOBELC is able to improve
the efficiency of resource utilizing for mobile robots.



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2018.2874426, IEEE Access

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

0 20 40 60 80 100 120 140

time (s)

-0.5

0

0.5

1

er
ro

r x (
m

)

0 20 40 60 80 100 120 140

time (s)

-1

-0.5

0

0.5

er
ro

r y (
m

)

0 20 40 60 80 100 120 140

time (s)

-10

-5

0

5

er
ro

r 3
 (

ra
d)

0 0.2 0.4 0.6 0.8 1

time (s)

0

0.5

1

er
ro

r x (
m

)

0 0.2 0.4 0.6 0.8 1

time (s)

-1

-0.5

0

0.5

er
ro

r y (
m

)

0 0.2 0.4 0.6 0.8 1

time (s)

0

1

2

er
ro

r 3
 (

ra
d)

65 65.1 65.2 65.3 65.4 65.5 65.6

time (s)

0

0.02

0.04

er
ro

r x (
m

)

65 65.1 65.2 65.3 65.4 65.5 65.6

time (s)

-0.05

0

0.05

er
ro

r y (
m

)

65 65.1 65.2 65.3 65.4 65.5 65.6

time (s)

-5.5

-5

-4.5

er
ro

r 3
 (

ra
d) TSK-CMAC

BELC
AF-BELC
SO-BELC

(a) Position and orientation errors of the four controllers
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Fig. 6. Tracking performance of the four network controllers with τd : δ = 10.

C. Discussions
The quantitative performance comparisons of using the

TSK-CMAC, BELC, AF-BELC, and SOBEL for mobile robot
control are summarized in Table I. The accumulated RMSE
values of the mobile robot’s position, orientation, and velocity
against time are used to measure the performance. The time-
length of the accumulated RMSE is through the entire tracking
process. This table shows the proposed SOBEL controller has
the tracking performances under both levels of disturbances.
Under δ = 20, the performances of the TSK-CMAC, BELC,
and AF-BELC controllers are lower than those under δ = 10;
such lower performances indicate that larger disturbances
become a challenging task for these structure-fixed network-
based controllers. In contrast, the self-organizing mechanism
assigns computational resources based on the overall per-
formances of the controllers. The dynamic neuron revising
mechanism of the proposed SOBELC automatically adjusts
the number of neurons in the hidden layer, in addition to
the coupled robust controller, which leads to better tracking
performances than the TSK-CMAC, BELC, and AF-BELC

TABLE I
COMPARISON OF TSK-CMAC, BELC, AF-BELC, AND SOBELC

CONTROLLERS FOR MOBILE ROBOT

τd : δ TSK-CMAC BELC AF-BELC SOBELC

10 0.5646 0.5823 0.5673 0.4805
20 0.5812 0.5834 0.5780 0.4681

controllers, especially when a larger disturbance presents. Note
that the SOBELC controller is not allowed to produce too
many new neurons to sacrifice the online in time performance,
and the size of the hidden layer eventually converges at a rea-
sonably low value. Therefore, the experimental investigations
confirm that the proposed SOBELC is more capable in deal-
ing with external disturbances and allocating computational
resources.

VI. CONCLUSION

This paper focused on the trajectory tracking problem of a
nonholonomic mobile robot. A self-organizing neural network
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(a) Position and orientation errors of the four controllers
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Fig. 7. Tracking performance of the four network controllers with τd : δ = 20.
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(b) τd : δ = 20

Fig. 8. Self-organizing performance of SOBELC with τd = 10 and 20.

was established by integrating the key components of self-
organizing RBF and BELC networks. The proposed network
was updated by following the brain emotional learning rules
and Lyapunov stability theory; and a self-organizing mecha-
nism can automatically add new hidden neurons and prune
insignificant neurons. Moreover, the proposed new neural
network used the Lyapunov stability theory to guarantee
that the updating laws of the network’s parameters ensure

the convergence of the control system. Experimental results
demonstrated the proposed neural network controller can bet-
ter resist the influences of outside disturbance to improve the
trajectory tracking performance and the efficiency of nonlinear
function approximation.

There is still room to improve this research. Cutting-edge
Type-2 fuzzy inference techniques may be employed in the
proposed neural network controller, so as to obtain a better
processing ability for uncertainties. More research effort is
required to investigate why better control performances are
achievable in an environment with larger disturbance. In
addition, this initial report of the proposed approach focuses on
the simulated mobile robot control only, but practical mobile
robots are more appealing to fully discover the potential of
the proposed network.
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