1,929 research outputs found

    Virtual image sensors to track human activity in a smart house

    Get PDF
    With the advancement of computer technology, demand for more accurate and intelligent monitoring systems has also risen. The use of computer vision and video analysis range from industrial inspection to surveillance. Object detection and segmentation are the first and fundamental task in the analysis of dynamic scenes. Traditionally, this detection and segmentation are typically done through temporal differencing or statistical modelling methods. One of the most widely used background modeling and segmentation algorithms is the Mixture of Gaussians method developed by Stauffer and Grimson (1999). During the past decade many such algorithms have been developed ranging from parametric to non-parametric algorithms. Many of them utilise pixel intensities to model the background, but some use texture properties such as Local Binary Patterns. These algorithms function quite well under normal environmental conditions and each has its own set of advantages and short comings. However, there are two drawbacks in common. The first is that of the stationary object problem; when moving objects become stationary, they get merged into the background. The second problem is that of light changes; when rapid illumination changes occur in the environment, these background modelling algorithms produce large areas of false positives.These algorithms are capable of adapting to the change, however, the quality of the segmentation is very poor during the adaptation phase. In this thesis, a framework to suppress these false positives is introduced. Image properties such as edges and textures are utilised to reduce the amount of false positives during adaptation phase. The framework is built on the idea of sequential pattern recognition. In any background modelling algorithm, the importance of multiple image features as well as different spatial scales cannot be overlooked. Failure to focus attention on these two factors will result in difficulty to detect and reduce false alarms caused by rapid light change and other conditions. The use of edge features in false alarm suppression is also explored. Edges are somewhat more resistant to environmental changes in video scenes. The assumption here is that regardless of environmental changes, such as that of illumination change, the edges of the objects should remain the same. The edge based approach is tested on several videos containing rapid light changes and shows promising results. Texture is then used to analyse video images and remove false alarm regions. Texture gradient approach and Laws Texture Energy Measures are used to find and remove false positives. It is found that Laws Texture Energy Measure performs better than the gradient approach. The results of using edges, texture and different combination of the two in false positive suppression are also presented in this work. This false positive suppression framework is applied to a smart house senario that uses cameras to model ā€virtual sensorsā€ to detect interactions of occupants with devices. Results show the accuracy of virtual sensors compared with the ground truth is improved

    Recent Trends in Video Surveillance System in Dense Environment: - A Review Paper

    Get PDF
    Snow, fog, lightning, torrential rain, and darkness degrade outdoor surveillance footage. The detection, categorization, and event/object recognition capabilities of video surveillance systems in congested environments have attracted considerable interest. Real-time video analysis algorithms in various weather conditions have been enhanced by technology. Other examples include background extraction, the see-through algorithm, deep learning models, CNN for nocturnal incursions, the system for high-quality underwater monitoring utilising optical-wireless video surveillance, LVENet, and edge computing. In the current study, these methodologies improved monitoring efficiency and decreased human error. This study details these video surveillance techniques, platforms, and supplementary materials. After discussing prevalent building and architectural styles briefly, significant system evaluations are presented. This study contrasts current surveillance systems with various methods for real-time video processing under challenging weather conditions in order to provide readers with a thorough understanding of the system. The following research is also highlighted

    Mask-guided modality difference reduction network for RGB-T semantic segmentation

    Get PDF
    By exploiting the complementary information of RGB modality and thermal modality, RGB-thermal (RGB-T) semantic segmentation is robust to adverse lighting conditions. When fusing features from RGB images and thermal images, the existing methods design different feature fusion strategies, but most of these methods overlook the modality differences caused by different imaging mechanisms. This may result in insufficient usage of complementary information. To address this issue, we propose a novel Mask-guided Modality Difference Reduction Network (MMDRNet), where the mask is utilized in the image reconstruction to ensure that the modality discrepancy within foreground regions is minimized. Doing so enables the generation of more discriminative representations for foreground pixels, thus facilitating the segmentation task. On top of this, we present a Dynamic Task Balance (DTB) method to balance the modality difference reduction task and semantic segmentation task dynamically. The experimental results on the MFNet dataset and the PST900 dataset demonstrate the superiority of the proposed mask-guided modality difference reduction strategy and the effectiveness of the DTB method

    Automatic Vehicle Trajectory Extraction by Aerial Remote Sensing

    Get PDF
    Research in road usersā€™ behaviour typically depends on detailed observational data availability, particularly if the interest is in driving behaviour modelling. Among this type of data, vehicle trajectories are an important source of information for traffic flow theory, driving behaviour modelling, innovation in traffic management and safety and environmental studies. Recent developments in sensing technologies and image processing algorithms reduced the resources (time and costs) required for detailed traffic data collection, promoting the feasibility of site-based and vehicle-based naturalistic driving observation. For testing the core models of a traffic microsimulation application for safety assessment, vehicle trajectories were collected by remote sensing on a typical Portuguese suburban motorway. Multiple short flights over a stretch of an urban motorway allowed for the collection of several partial vehicle trajectories. In this paper the technical details of each step of the methodology used is presented: image collection, image processing, vehicle identification and vehicle tracking. To collect the images, a high-resolution camera was mounted on an aircraft's gyroscopic platform. The camera was connected to a DGPS for extraction of the camera position and allowed the collection of high resolution images at a low frame rate of 2s. After generic image orthorrectification using the flight details and the terrain model, computer vision techniques were used for fine rectification: the scale-invariant feature transform algorithm was used for detection and description of image features, and the random sample consensus algorithm for feature matching. Vehicle detection was carried out by median-based background subtraction. After the computation of the detected foreground and the shadow detection using a spectral ratio technique, region segmentation was used to identify candidates for vehicle positions. Finally, vehicles were tracked using a k- shortest disjoints paths algorithm. This approach allows for the optimization of an entire set of trajectories against all possible position candidates using motion-based optimization. Besides the importance of a new trajectory dataset that allows the development of new behavioural models and the validation of existing ones, this paper also describes the application of state-of-the-art algorithms and methods that significantly minimize the resources needed for such data collection. Keywords: Vehicle trajectories extraction, Driver behaviour, Remote sensin

    Nighttime Driver Behavior Prediction Using Taillight Signal Recognition via CNN-SVM Classifier

    Full text link
    This paper aims to enhance the ability to predict nighttime driving behavior by identifying taillights of both human-driven and autonomous vehicles. The proposed model incorporates a customized detector designed to accurately detect front-vehicle taillights on the road. At the beginning of the detector, a learnable pre-processing block is implemented, which extracts deep features from input images and calculates the data rarity for each feature. In the next step, drawing inspiration from soft attention, a weighted binary mask is designed that guides the model to focus more on predetermined regions. This research utilizes Convolutional Neural Networks (CNNs) to extract distinguishing characteristics from these areas, then reduces dimensions using Principal Component Analysis (PCA). Finally, the Support Vector Machine (SVM) is used to predict the behavior of the vehicles. To train and evaluate the model, a large-scale dataset is collected from two types of dash-cams and Insta360 cameras from the rear view of Ford Motor Company vehicles. This dataset includes over 12k frames captured during both daytime and nighttime hours. To address the limited nighttime data, a unique pixel-wise image processing technique is implemented to convert daytime images into realistic night images. The findings from the experiments demonstrate that the proposed methodology can accurately categorize vehicle behavior with 92.14% accuracy, 97.38% specificity, 92.09% sensitivity, 92.10% F1-measure, and 0.895 Cohen's Kappa Statistic. Further details are available at https://github.com/DeepCar/Taillight_Recognition.Comment: 12 pages, 10 figure

    Comprehensive Survey and Analysis of Techniques, Advancements, and Challenges in Video-Based Traffic Surveillance Systems

    Get PDF
    The challenges inherent in video surveillance are compounded by a several factors, like dynamic lighting conditions, the coordination of object matching, diverse environmental scenarios, the tracking of heterogeneous objects, and coping with fluctuations in object poses, occlusions, and motion blur. This research endeavor aims to undertake a rigorous and in-depth analysis of deep learning- oriented models utilized for object identification and tracking. Emphasizing the development of effective model design methodologies, this study intends to furnish a exhaustive and in-depth analysis of object tracking and identification models within the specific domain of video surveillance

    Brief Analysis of Methods for Detecting Moving Objects Using Computer Vision

    Get PDF
    In many computer vision applications, moving object detection has drawn notable interest. The scientific community has made numerous contributions to address the significant difficulties of moving object detection in practical settings. The research thoroughly analyzes several moving object recognition methods, which are divided into four groups: methods based on background modeling, Approaches rooted in frame differences, methods based on visual motion estimation, and methodologies based on deep learning. Additionally, thorough explanations of numerous techniques in each category are offered

    Silhouette-based gait recognition using Procrustes shape analysis and elliptic Fourier descriptors

    Get PDF
    This paper presents a gait recognition method which combines spatio-temporal motion characteristics, statistical and physical parameters (referred to as STM-SPP) of a human subject for its classification by analysing shape of the subject's silhouette contours using Procrustes shape analysis (PSA) and elliptic Fourier descriptors (EFDs). STM-SPP uses spatio-temporal gait characteristics and physical parameters of human body to resolve similar dissimilarity scores between probe and gallery sequences obtained by PSA. A part-based shape analysis using EFDs is also introduced to achieve robustness against carrying conditions. The classification results by PSA and EFDs are combined, resolving tie in ranking using contour matching based on Hu moments. Experimental results show STM-SPP outperforms several silhouette-based gait recognition methods

    Siamese Object Tracking for Unmanned Aerial Vehicle: A Review and Comprehensive Analysis

    Full text link
    Unmanned aerial vehicle (UAV)-based visual object tracking has enabled a wide range of applications and attracted increasing attention in the field of intelligent transportation systems because of its versatility and effectiveness. As an emerging force in the revolutionary trend of deep learning, Siamese networks shine in UAV-based object tracking with their promising balance of accuracy, robustness, and speed. Thanks to the development of embedded processors and the gradual optimization of deep neural networks, Siamese trackers receive extensive research and realize preliminary combinations with UAVs. However, due to the UAV's limited onboard computational resources and the complex real-world circumstances, aerial tracking with Siamese networks still faces severe obstacles in many aspects. To further explore the deployment of Siamese networks in UAV-based tracking, this work presents a comprehensive review of leading-edge Siamese trackers, along with an exhaustive UAV-specific analysis based on the evaluation using a typical UAV onboard processor. Then, the onboard tests are conducted to validate the feasibility and efficacy of representative Siamese trackers in real-world UAV deployment. Furthermore, to better promote the development of the tracking community, this work analyzes the limitations of existing Siamese trackers and conducts additional experiments represented by low-illumination evaluations. In the end, prospects for the development of Siamese tracking for UAV-based intelligent transportation systems are deeply discussed. The unified framework of leading-edge Siamese trackers, i.e., code library, and the results of their experimental evaluations are available at https://github.com/vision4robotics/SiameseTracking4UAV
    • ā€¦
    corecore