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By exploiting the complementary information of RGBmodality and thermal modality, RGB-thermal (RGB-
T) semantic segmentation is robust to adverse lighting conditions. When fusing features from RGB images
and thermal images, the existing methods design different feature fusion strategies, but most of these
methods overlook the modality differences caused by different imaging mechanisms. This may result
in insufficient usage of complementary information. To address this issue, we propose a novel Mask-
guided Modality Difference Reduction Network (MMDRNet), where the mask is utilized in the image
reconstruction to ensure that the modality discrepancy within foreground regions is minimized. Doing
so enables the generation of more discriminative representations for foreground pixels, thus facilitating
the segmentation task. On top of this, we present a Dynamic Task Balance (DTB) method to balance the
modality difference reduction task and semantic segmentation task dynamically. The experimental
results on the MFNet dataset and the PST900 dataset demonstrate the superiority of the proposed
mask-guided modality difference reduction strategy and the effectiveness of the DTB method.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

Semantic segmentation aims to densely attach each pixel with a
category label, and is widely used in many computer vision tasks,
such as autonomous driving [1–3], medical diagnostics [4,5], geo-
graphic information system [6,7], and so on. Boosted by the
extraordinary capability of convolutional neural networks (CNNs)
in deriving meaningful image features, semantic segmentation
based on deep CNNs has become prevalent in recent years [8–10].

Most deep learning based semantic segmentation methods are
designed for RGB single-modality data, achieving prominent per-
formance on many challenging large-scale datasets [11,12]. How-
ever, the RGB imaging sensors are highly sensitive to light and
therefore susceptible to adverse lighting conditions, like darkness
or overexposure. Instead, thermal imaging sensors can detect radi-
ation of the wavelength up to 14 lm by imaging thermal radiation
emitted by substances with the temperature above absolute zero
[13]. Compared with RGB sensors, thermal sensors lose color infor-
mation and detailed information but are robust to challenging
lighting conditions. Thus, thermal images can complement RGB
images with rich and clear contour information and semantic cues
in challenging lighting conditions. With the increasing popularity
of thermal sensors, RGB-T semantic segmentation has been inves-
tigated recently to improve the performance of scene segmenta-
tion [13–17].

Existing methods [13–15] for RGB-T semantic segmentation
routinely employ two independent feature extractors to extract
single-modality features from RGB modality and thermal modality,
respectively, and then fuse these extracted features using a feature
fusion strategy. For example, FuseSeg [15] utilizes a two-stage
fusion strategy to fuse single-modality features. The thermal fea-
ture maps are hierarchically added with the RGB feature maps at
the encoder, and then the fused feature maps are concatenated
with the corresponding decoder feature maps. However, RGB
images and thermal images have different imaging mechanisms.
Therefore, integrating single-modality features without consider-
ing the modality difference caused by different imaging mecha-
nisms inevitably leads to insufficient utilization of cross-modality
complementary information.

Alternatively, Zhang et al. [16] recently proposed an Adaptive-
weighted Bi-directional Modality Difference Reduction Network
(ABMDRNet) by the bridging-then-fusing strategy, which first alle-
viate the modality differences and then fuse the multi-modality
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features for RGB-T semantic segmentation. Specifically, the input
RGB (thermal) image is first fed into a feature extractor to compute
hierarchical single-modality features, which are then utilized to
reconstruct a thermal (RGB) image by an image-to-image transla-
tion network. By minimizing the difference between the recon-
structed thermal (RGB) image with the corresponding ground-
truth thermal (RGB) image, the modality differences between
RGB and thermal features could be reduced effectively. In other
words, the core of the bridging stage is to supervise the RGB (ther-
mal) hierarchical features being similar to the thermal (RGB) coun-
terparts as much as possible, so that the modality difference
caused by the imaging mechanism could be effectively reduced.
The core of the fusing stage is to adaptively choose the discrimina-
tive cross-modality complementary information from the single-
modality features after the bridging stage for fusion and exploit
its contextual information for RGB-T semantic segmentation.

Despite preliminary experiments that have proved its effective-
ness, ABMDRNet still suffers from two problems. Firstly, when
using the image-to-image translation method to reduce the modal-
ity difference, ABMDRNet performs the processing on the entire
image. In actual scenes, the pixels in the foreground region account
for only a small proportion of the entire image, so performing the
same processing on the entire image may result in the insufficient
reduction of the modality difference in the foreground region. Sec-
ondly, the bridging-then-fusing strategy involves two tasks, the
modality difference reduction task and the semantic segmentation
task, but these two tasks fail to be balanced well in the ABMDRNet,
because the fixed loss weights are adopted. However, the learning
difficulty of these two tasks is different, and different tasks may be
in different convergence stages, so the fixed weighting may lead to
inadequate learning of the model.

To address these issues, we propose a Mask-guided Modality
Difference Reduction Network (MMDRNet), with the aim to
improve and extend the ABMDRNet for better RGB-T semantic seg-
mentation. To tackle the aforementioned first problem, at the
image reconstruction stage, we first separate the foreground and
background from the entire image based on the given image mask
and then process them individually. By using a feature extractor
with better learning ability for the foreground region, we intend
to reduce the modality discrepancy within the foreground region
specifically. Doing so enables feature extractors to extract discrim-
inative multi-modality information about the to-be-segmented
foreground objects. To address the second problem, inspired by
the work in [18], we propose a Dynamic Task Balance (DTB)
method, which dynamically adjusts the weight of each task over
time by considering the magnitude of the loss of each task. Doing
so ensures that these two tasks with different learning difficulties
can be well balanced and that both tasks can be balanced at the
same convergence stage. The Dynamic Weight Average (DWA)
method proposed in [18] adapts the task weighting over time by
considering the rate of change of the loss for each task. However,
DWA overlooks the magnitude of the loss of different tasks and
requires manual tuning to balance the magnitude of the loss of dif-
ferent tasks before training. In contrast, our method can dynami-
cally balance the magnitude of the loss of different tasks during
training.

The main contributions of this paper are summarized as
follows:

� We improve the image-to-image translation branch of ABMDR-
Net [16] by involving the mask that indicates the foreground
region. The mask guidance enables our method to minimize
the reconstruction errors of the foreground region specifically.
It would potentially limit the modality difference reduction to
the foreground region only rather than the entire image, thus
making it more tractable.
10
� We introduce a multi-task loss optimization method for RGB-T
semantic segmentation. Our proposed DTB method dynamically
adjusts the weights of the image reconstruction task and the
semantic segmentation task in the training by considering the
magnitude of the loss of each task in each iteration. Doing so
ensures that the learning difficulty and convergence phase of
both tasks are well balanced, thus making the two-task learning
more sufficient.

The rest of this article is organized as follows. In Section 2, we
review the related work. In Section 3, we describe our method in
detail. In Section 4, we present our experiments on two datasets.
Conclusions and future work are presented in Section 5.
2. Related work

2.1. RGB semantic segmentation

In this section, we review the representative algorithms of deep
learning-based RGB semantic segmentation. Shelhamer et al. [19]
replaced the last fully connected layer of Convolutional Neural
Networks (CNNs) [20] with a convolutional layer, and first pro-
posed a Fully Convolutional Network (FCN) for pixel-level classifi-
cation. Inspired by VGG16 and FCN, DeconvNet [21] is the first
Encoder-Decoder architecture for semantic segmentation, which
contains two symmetrical parts of the convolutional network and
deconvolutional network. SegNet [22] also adopts a symmetric
structure consisting of an encoder and a decoder, but it is more
lightweight in the sense that there are no fully connected layers.
U-Net [23] was originally proposed for biomedical image segmen-
tation, but has been generalized and utilized in other domains. It
combines the high-resolution information from the contracting
path with the upsampled output to keep the spatial information,
which is proven effective for semantic segmentation. DeepLab V1
[24] utilizes atrous convolution to expand the receptive field with-
out increasing the number of parameters and adopts Conditional
Random Fields (CRF) to refine the boundary. DeepLab V2 [25]
adopts Atrous Spatial Pyramid Pooling (ASPP) with multiple sam-
pling rates to make the target still segmentable when the target
is represented in different sizes in the image. DeepLab V3 [26]
applies atrous convolution to the cascade module and improves
the ASPP module. Pyramid Scene Parsing Network (PSPNet) [27]
was designed to consider more context information in semantic
segmentation, which can avoid the mis-segmentation to a certain
extent. Dense Upsampling Convolution (DUC) [28] introduces the
hybrid dilated convolution for feature extraction. Hierarchical
Decoupled Convolution Network (HDCNet) [29] was designed to
alleviate grid problems caused by standard dilated convolution
operations, which employs different dilation rates in different lay-
ers of the encoder.

To sum up, RGB semantic segmentation has been widely stud-
ied and has achieved good results on large-scale datasets in many
application scenarios. However, these methods do not perform
well under adverse lighting conditions, thus limiting their
application.
2.2. RGB-T semantic segmentation

In recent years, with the popularity of thermal cameras,
researchers have proposed to complement RGB imaging with ther-
mal imaging for better semantic segmentation, e.g., road scene seg-
mentation. Existing RGB-T semantic segmentation algorithms
usually seek innovative fusion strategies to better utilize the com-
plementary information between different modalities. In the early
days, researchers mostly adopted simple fusion strategies, such as
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concatenation [14] and element-wise summation [13]. Ha et al.
proposed the Multi-spectral Fusion Network (MFNet) [14]. The
mini-inception block with dilated convolution is used in RGB enco-
der and thermal encoder, respectively, to enlarge the size of the
receptive field, and the shortcut is utilized to concatenate the fea-
ture maps from two encoders for improving up-sampling. Sun et al.
proposed RGB-thermal Fusion Network (RTFNet) [13], which con-
sists of two encoders and one decoder. In the encoder, the thermal
feature maps are gradually integrated into the RGB encoder
through element-wise summation. In the decoder, the Upception
blocks with the residual structures are utilized to extract features
and restore the resolution. Shivakumar et al. [30] designed PSTNet
with dual-stream CNN architecture, the concatenation strategy is
utilized to fuse the features from two modalities. Recently,
researchers tend to explore more sophisticated fusion strategies.
For example, FEANet [31] proposed a Feature-Enhanced Attention
Module (FEAM) to enhance multi-level features and fuse RGB
and thermal information in a complementary way. Sun et al. [15]
proposed the FuseSeg by fusing RGB and thermal features with a
two-stage fusion strategy. The feature maps from the thermal
encoder are added into the RGB encoder gradually, and then the
fused feature maps are concatenated with the corresponding deco-
der feature maps. MLFNet [32] was designed by employing multi-
level skip connections and an auxiliary decodingmodule to capture
contextual information comprehensively.

Nevertheless, the above approaches pay less attention to the
modality difference caused by different imaging mechanisms,
which may lead to insufficient information exploitation of the
RGB image and thermal image. Considering this, ABMDRNet [16]
proposed a bridging-then-fusing strategy. In the bridging stage,
an image-to-image translation structure was introduced to recon-
struct the entire image of the cross-modality to reduce the modal-
ity difference between RGB images and thermal images. In the
fusing stage, a channel-wise weighted fusion module was pro-
posed to capture the cross-modality information between the cor-
responding channels of single-modality RGB and thermal features.
However, since the foreground with a small proportion of pixels in
the entire image and the background with a large proportion of
pixels are processed in the same way, the image-to-image transla-
tion network cannot optimally reduce the modality difference.
Besides, ABMDRNet neglects the balance of the learning of differ-
ent tasks in the network training, which may cause insufficient
training, thus weakening the learning ability of the method.
2.3. Multi-task learning optimization

Multi-task learning (MTL) is to learn multiple related tasks
together, and is common in the field of deep learning [18,33–35].
Different tasks may have problems such as different learning rates,
different loss magnitudes, and mutual inhibition between tasks
during the training. Existing MTL methods investigate multi-task
architectures, optimization strategies and methods for learning
task relationships [33]. A classic optimization strategy is Weighting
by Uncertainty [34], where the loss weight is designed as a learn-
able parameter to model the uncertainty of each task. GradNorm
[35] also treates the loss weights as learnable parameters, but
the weights are optimized separately from the network parameters
to realize ideal magnitudes of loss gradients for each task. How-
ever, in this method, each iteration requires additional computa-
tion of gradients, which affects the training efficiency when there
are many parameters selected for balancing weights. DWA [18]
was introduced as a computationally efficient alternative to Grad-
Norm, and it only requires the numerical task loss, therefore it
would not increase the complexity of the network. Because of its
11
simpler implementation, DWA stands out among the multi-task
learning optimization methods. However, it overlooks the different
magnitude of the loss and manual tuning is needed in the DWA
method.
3. Method

3.1. Architecture

As our backbone, ABMDRNet consists of three parts: Modality
Difference Reduction and Fusion (MDRF) subnetwork, Multi-scale
Spatial Context (MSC) module and Multi-scale Channel Context
(MCC) module. The MDRF subnetwork employs a bridging-then-
fusing strategy to reduce the modality difference first and then
fuse the discriminative single-modality features. A bi-directional
image-to-image translation based method is utilized to reduce
the modality difference. A Channel Weighted Fusion (CWF) module
is proposed in the fusing stage to adaptively select the discrimina-
tive multi-modality features for RGB-T semantic segmentation.
MSC and MCC modules are designed to fully utilize the multi-
scale contextual information of cross-modality features and their
long-range dependencies in spatial and channel dimensions,
respectively. More details can be found in [16].

Fig. 1 shows our proposed MMDRNet for RGB-T semantic seg-
mentation. Specifically, the proposed network enhances the
ABMDRNet from two aspects: 1) a better modality difference
reduction strategy, and 2) the optimization of its multi-task
learning.

As mentioned in Section 1, when reducing the modality differ-
ence based on the image-to-image translation, ABMDRNet pro-
cesses the entire (RGB or thermal) image. In actual scenes, the
to-be-segmented foreground region sometimes accounts for a
small proportion of the entire image. For example, as shown in
Fig. 2, in the MFNet dataset [14], the pixels in the foreground area
only accounts for 7.862% of the entire dataset. Here, we define the
foreground region as the to-be-segmented regions (labeled as var-
ious classes) in the image except the background region. We think
that performing the same processing on the entire image will
result in the insufficient reduction of the modality difference in
the foreground region. To remedy this issue, we introduce the
image mask in the modality difference reduction stage. By focusing
on the foreground region in the image-to-image translation, our
method makes the reconstructed foreground region as similar as
possible to that of the real image. In this manner, the modality dis-
crepancy within foreground regions is minimized, thus boosting
the feature extractors to mining sufficient discriminative modality
complementarity information for RGB-T semantic segmentation.

To better balance the modality difference reduction task and the
semantic segmentation task in the network training, we propose a
DTB method which dynamically adjusts the weight of each task
over time by considering the magnitude of the loss of each task.
By assigning larger weights to the more difficult task, the two tasks
are dynamically balanced during training. Doing so ensures that
the learning difficulty and convergence phase of both tasks are well
balanced, thus making the two tasks learning more sufficient. As a
contrast, our reference method DWA [18] adapts the task weight-
ing over time by considering the rate of change of the loss for each
task. In terms of computational complexity, both DTB and DWA
only need to calculate the loss value of different iterations, so nei-
ther will increase the number of network parameters. However,
DWA overlooks the different loss magnitudes of different tasks
and requires balancing them to be similar manually at the begin-
ning of the training. In contrast, DTB can dynamically balance the
task magnitude during the training process.
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3.2. Mask-guided modality difference reduction

As shown in Fig. 1, to better reduce the modality difference and
fuse the RGB and thermal modalities, we employ an image mask in
the modality difference reduction stage. The image mask is gener-
ated by treating all the to-be-segmented regions of different
classes as foreground (pixel value set as 1), while the pixels in
the background region are set as 0.

In the mask-guided image-to-image translation, we perform
pixel-wise multiplication between the generated image mask and
the image to obtain the foreground image and background image.
The operation details are shown by taking the process of transfer-
ring the RGB image to the thermal image as an example. Firstly, the
ResNet50 without the fully connected layers and average pooling
layers is utilized to extract the five-level RGB feature maps

FRGB
n jn ¼ 1;2;3;4;5

n o
. Secondly, the bilinear interpolation method

is employed to upsample the last four-level feature maps

FRGB
n jn ¼ 2;3;4;5

n o
to the original image size, and then they are

added to obtain the reconstructed thermal image Frec�T . After that,
we multiply Frec�T with the image mask to obtain the foreground
image and background image of Frec�T respectively, which is formu-
lated as:

Frec�T�F ¼ Frec�T �Mask; ð1Þ
12
Frec�T�B ¼ Frec�T � ð1�MaskÞ; ð2Þ
similarly, we also obtain the foreground image and background

image of the corresponding ground-truth thermal image Freal�T of
Frec�T by image mask as follows:

Freal�T�F ¼ Freal�T �Mask; ð3Þ

Freal�T�B ¼ Freal�T � 1�Maskð Þ; ð4Þ
where � means pixel-wise multiplication. Frec�T�F and Freal�T�F

denotes the foreground image of Frec�T and Freal�T , respectively.

Frec�T�B and Freal�T�B denotes the background image of Frec�B and

Freal�B, respectively.
After separating the foreground and background region of the

reconstructed thermal image Frec�T , we employ ResNet18 without
the fully connected layers and average pooling layers as the feature
extractor of Frec�T�F , to extract its five-level features

Frec�T�F
n jn ¼ 1;2;3;4;5

n o
. To ensure that the reconstructed thermal

image is similar to the corresponding ground-truth thermal image,
we need to ensure that both the foreground and background
regions of the reconstructed thermal image are similar to the cor-
responding regions of the ground-truth thermal image. With the
aforementioned analysis, we need to pay more attention to the
foreground region, so we employ a strategy that extracts simple
features from the background region separately. Specifically, we
process the background using the convolution 1� 1 on Frec�T�B,

to obtain Frec�T�B
n jn ¼ 1

n o
.

In order to ensure that the modality difference between RGB
image and thermal image can be well reduced, we employ the fol-
lowing modality difference reduction loss LIR for supervision, i.e.,

LIR ¼ LIR�F þ LIR�B; ð5Þ
where, LIR�F denotes the foreground loss and LIR�B denotes the back-
ground loss, respectively. LIR�F and LIR�B can be calculated as
follows:

LIR�F ¼
X5
n¼1

Freal�T�F
n � Frec�T�F

n

���
���þ

X5
n¼1

Freal�RGB�F
n � Frec�RGB�F

n

���
���; ð6Þ
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LIR�B ¼ Freal�T�B
n � Frec�T�B

n

���
���þ jFreal�RGB�B

n � Frec�RGB�B
n j: ð7Þ

By minimizing the background features and foreground features
between the reconstructed image and those of the matched real
image with the above loss, the modality difference between the
RGB image and the thermal image can be effectively reduced, thus
improving the mining capability of RGB and thermal image feature
extractors. As a result, the single modality features will contain
more discriminative information of the other modality, which can
further reduce the difference between the RGB feature and thermal
features to a certain extent.

3.3. Multi-task learning optimization

Our method involves two tasks, the modality difference reduc-
tion task and the semantic segmentation task, which is a multi-
task learning network. Since different tasks have different learning
processes during the training, it is necessary to dynamically adjust
the weights of the tasks for balancing the different tasks at the
same learning level. However, fixed weights are utilized in the
original ABMDRNet [16]. In this section, we propose a novel
method DTB to solve this problem. The DWA [18] method learns
to balance the task weighting by considering the learning rate of
the different tasks to be similar. But whilst DWA requires adjusting
the magnitude of each task loss to be consistent manually at the
beginning of training, our DTB proposal adjusting the weight of
each task over time by considering the magnitude of the loss of
each task.

The weighting ck for task k is defined as:

ck tð Þ ¼ K
Lk tð ÞP
iLi tð Þ ; ð8Þ

where K (K ¼ 2 here) is the number of tasks, is designed to ensureP
ici tð Þ ¼ K, (i ¼ 1;2 here). t is the iteration index. Lk tð Þ is the loss

value, and in our experiment, it is calculated as the loss of the task
in the current iteration, which can ensure that the weighting ck tð Þ
can truly fits the current training data.

The total loss function Ltotal for training our model is composed
of the image reconstruction task loss LIR and the semantic segmen-
tation task loss Lseg .

Ltotal ¼ c1LSeg þ c2LIR; ð9Þ
where, c1 and c2 are calculated by DTB. Lseg is calculated by the
Cross Entropy Loss function.

4. Results and discussion

4.1. Datasets

Our model is verified on the MFNet dataset [14] and the PST900
dataset [30], which are the only two public datasets for RGB-T
semantic segmentation.

MFNet dataset contains a total of 1569 annotated RGB and ther-
mal image pairs, of which 820 are acquired during the day and 749
are acquired at night. Eight semantic classes of obstacles com-
monly encountered during driving (bike, person, car, curve, guard-
rail, car stop, bump and color cone) and an unlabelled background
class are included in a total of nine classes. The dataset has been
divided into three parts: a training set contains 50% daytime
images and 50% nighttime images, a validation set and a test set
each contains 25% daytime images and 25% nighttime images.
All of the images are resized to the same resolution of 480 � 640.

PST900 dataset is designed for the DARPA Subterranean Chal-
lenge, containing 894 matched RGB and thermal natural image
pairs. The sensor head of the mobile robot platform for data collec-
13
tion consists of a Stereolabs Zed Mini stereo RGB camera, a FLIR
Boson 320 camera, and an active illumination setup. This dataset
includes four visible artifacts (fire-extinguisher, backpack, hand-
drill, survivor: thermal mannequin and human) of pixel-level
human annotations.

4.2. Training details

We implement our proposed network using PyTorch 0.10.0
with the CUDA 10.2 and cuDNN 7.6.5 libraries. Our network is
trained on a single NVIDIA Tesla V100 graphics card. For fair com-
parison, the experimental settings are the same as our baseline
ABMDRNet. Specifically, the Stochastic Gradient Descent (SGD)
optimization solver is used for training, with a momentum of 0.9
and a weight decay of 0.005. The initial learning rate is set to
0.01, with an exponential decay scheme adopted to gradually
decrease it and the batch size is set as 2. Before each epoch, the
input image is randomly shuffled. In addition, the adopted data
augmentation methods include random flipping, cropping and
noise injecting techniques. We train the network until its loss no
longer decreases.

4.3. Evaluation measures

We use the widely-used evaluation measures, Accuracy (Acc)
and Intersection-over-Union (IoU), to evaluate the segmentation
performance. Specifically, Acc is calculated as the ratio of the true
and the predicted values for each class. IoU is calculated as the
ratio of the intersection and union of the two sets of true and pre-
dicted values for each class. The mean Acc (mAcc) and mean IoU
(mIoU) are global evaluation measures, calculated by averaging
Acc and IoU across all classes.

mAcc ¼ 1
N

XN

i¼1

pii

XN

j¼1

pij

; ð10Þ

mIoU ¼ 1
N

XN

i¼1

pii

XN

j¼1

pij þ pji

� �� pii

; ð11Þ

where N denotes the number of the object classes, pii denotes the
number of pixels for class i correctly classified as class i;pij denotes
the number of pixels for class i wrongly classified as class j and pji

denotes the number of pixels for class j wrongly classified as class i.
Additionally, the F1 measure is used to comprehensively con-

sider both mAcc and mIoU.

F1 ¼ 2 � mAcc �mIoU
mAcc þmIoU

: ð12Þ
4.4. Ablation studies

In this section, we validate the effectiveness of our proposed
modality difference reduction strategy and multi-task learning
optimization method in the proposed network on the MFNet
dataset.

1) The Effectiveness of Mask-guided Modality Difference Reduction:
To validate the effectiveness of the proposed mask-guided modal-
ity difference reduction strategy, we utilize the ABMDRNet as the
baseline (denoted as ‘BS’). Then we implement the proposed
mask-guided strategy on the baseline (‘BS + Mask-guided’). The
experimental results are shown in Table 1 where the results of
‘BS’ are cited from [16]. ‘BS + Mask-guided’ indicates that our pro-
posed mask-guided modality difference reduction strategy can fur-



Table 1
Results of ablation experiments for mask-guided modality difference reduction
strategy. Boldface values indicates the better results.

Variants mAcc mIoU F1

BS 69.5 54.8 61.3
BS + Mask-guided 71.5 54.7 62.0
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ther reduce the modality differences between RGB features and
thermal features. The reduction of the modality differences bene-
fits the mining capability of the single-modality feature extractors,
thus, more discriminative information of cross-modality can be
extracted and fused for RGB-T semantic segmentation.

2) The Effectiveness of DTB Method: We implement the proposed
DTB method on the baseline, and the results are given in Table 2.
With the proposed DTB method, the modality difference reduction
task and the semantic segmentation task can be balanced well, so
that the network can be trained sufficiently, thus boosting the
RGB-T semantic segmentation.

We also compare the DTB and the existing DWA method. We
add them to the ‘BS’ and ‘BS + Mask-guided’ respectively. The
results of (‘BS + DTB’ and ‘BS + DWA’) and (‘BS + Mask-guided +
DTB’ and ‘BS + Mask-guided + DWA’) indicate that the employing
of the multi-task optimization method enables each task to be
learned sufficiently, thus boosting the network to obtain better
performance. Meanwhile, the DTB method outperforms over
DWA method.‘BS + Mask-guided + DTB’ indicates that separating
the foreground and background of the reconstructed image and
processing them accordingly can effectively reduce the difference
between cross-modalities, and dynamically balancing different
tasks helps to promote the two tasks learning more sufficient.
Combined with the ‘Mask-guided’ strategy and the ‘DTB’ method,
our performance improved by 1.9% over ‘BS’.
4.5. Comparsion with state-of-the-art methods

4.5.1. Evaluation on MFNet dataset
1) Overall Results: In this section, we compare the proposed

MMDRNet with DUC [28], DANet [36], HRNet [37], LDFNet [38],
ACNet [39], SA-Gate (ResNet-50) [40], D-CNN [41], MFNet [14],
FuseNet [42], RTFNet [13], PSTNet [30], FuseSeg [15] and ABMDR-
Net [16]. The results of DUC, DANet, HRNet, LDRNet, ACNet, SA-
Gate are obtained from [16] and the results of D-CNN and MFNet
are obtained from [15] for comparison.

The quantitative results are shown in Table 3. Compared with
the state-of-the-art (SOTA) methods, our proposed MMDRNet
achieves competitive results in all categories, especially in small
object detection and segmentation. This performance may owe to
that the proposed modality difference reduction strategy can make
the difference caused by the imaging mechanism between modal-
ities further reduced. After that, the ability of the single-modality
extractor to extract cross-modality discriminative information is
improved, and thus more useful complementary information such
as boundary and contour information can be extracted. In addition,
the application of the DTB method ensures the network training is
Table 2
Results of ablation experiments for DTB method. Boldface values indicates the best
results.

Variants mAcc mIoU F1

BS 69.5 54.8 61.3
BS + DTB 71.2 55.1 62.1
BS + DWA 71.8 54.3 61.8
BS + Mask-guided + DTB 72.4 56.0 63.2
BS + Mask-guided + DWA 72.8 54.6 62.4
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more sufficient, so the learning ability of the model is improved,
and the ability to distinguish small targets is significantly
enhanced. Compared with our baseline ABMDRNet, our predicted
Guardrail class has the improvement of 22.9% in Acc and 2.6% in
IoU. At the same time, the Bump class has the improvement of
6.8% in Acc and 3.4% in IoU. And our proposed method also per-
forms well in other classes.

Fig. 3 gives the segmentation results on some typical images,
which visually showing that our proposed MMDRNet outperforms
most of the other methods on the MFNet dataset, especially in
small object detection. As shown in the fourth column, only our
method can segment the small Color Cone class (indicated by the
red box).

2) Daytime and Nighttime Results: To further evaluate these
methods, we test these methods on daytime set and nighttime
set of the MFNet dataset, respectively. The experimental results
are shown in Table 4, where the results of FuseNet [42], MFNet
[14], RTFNet [13], FuseSeg [15] are obtained from [15]. The quanti-
tative results show that our model achieves competitive results
under different lighting conditions. In addition, it can be found that
the overall effect of daytime is worse than that of nighttime, indi-
cating that at night, the complementary information of the two
modalities is better utilized. In the case of sufficient lighting condi-
tions during the day, the possible registration errors [14] between
the two modalities may result in poor performance of semantic
segmentation.
4.5.2. Evaluation on PST900 dataset
To further evaluate the effectiveness of our proposed model, we

also conduct the quantitative analysis with some RGB-T models on
the PST900 dataset [30]. The results are summarized in Table 5,
where the results of MFNet [14], RTFNet [13] and PSTNet [30]
are from [30], and the quantitative experimental results also
demonstrate that our method is superior to other RGB-T semantic
segmentation models.
5. Conclusions

In this paper, we have proposed a novel MMDRNet for RGB-T
semantic segmentation. Firstly, we utilize the mask-guided modal-
ity difference reduction strategy to reduce the differences between
RGB modality and thermal modality caused by different imaging
mechanism, thus benefiting the capability of single-modality
extractors to mining the discriminative complementary informa-
tion from the cross-modality. Then, we propose a DTB method
for balancing the modality difference reduction task and semantic
segmentation task dynamically, to make both tasks sufficiently
learned. Our experimental results confirmed that the proposed
method is better than the baseline, and is very competitive with
other SOTA methods. In the future, we would like to explore more
efficient modality difference reduction methods for segmentation
improvement.
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Table 3
Quantitative results (%) of different models on the test set of the MFNet dataset. The best three results for the corresponding
column are highlighted in red, green and blue.

Fig. 3. Segmentation results of different methods in typical daytime images (left four columns) and nighttime images (right three columns).
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Table 4
Quantitative results (%) of different models on the daytime set and nighttime set of [14]. The boldface value indicates the best results for the corresponding column.

Methods Daytime Nighttime

mAcc mIoU F1 mAcc mIoU F1

FuseNet [42] 49.5 41.0 44.9 48.9 43.9 46.3
MFNet [14] 42.6 36.1 39.1 41.4 36.8 39.0
RTFNet [13] 60.0 45.8 51.9 60.7 54.8 57.6
FuseSeg [15] 62.1 47.8 54.0 67.3 54.6 60.3
ABMDRNet [16] 65.7 46.7 54.6 68.3 55.5 61.2
Ours 70.3 48.1 57.1 69.9 56.7 62.6

Table 5
Quantitative results (%) of different models on the test set of the PST900 dataset. The boldface value indicates the best results for the corresponding column.

Methods Background Fire-
Extinguisher

Backpack Hand-Drill Survivor mAcc mIoU F1

Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU

MFNet [14] – 98.6 – 60.4 – 64.3 – 41.1 – 20.7 – 57.0 –
RTFNet [13] – 98.9 – 52.0 – 75.3 – 25.4 – 36.4 – 57.6 –
PSTNet [30] – 98.9 – 70.1 – 69.2 – 53.6 – 50.0 – 68.4 –
ABMDRNet [16] 99.4 98.7 89.4 54.9 89.9 72.9 67.8 57.6 24.4 24.1 74.2 61.6 67.3
Ours 99.5 98.9 77.9 52.4 79.1 71.1 77.1 40.6 69.8 62.3 81.3 68.7 74.5
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