11 research outputs found

    ORCHESTRA: an asyncrhonous non-blocking distributed GVT algorithm

    Get PDF
    Taking advantage of high computing capabilities of modern distributed architectures is fundamental to run large-scale simulation models based on the Parallel Discrete Event Simulation (PDES) paradigm. In particular, by exploiting clusters of modern multi-core architectures it is possible to efficiently overcome both the power and the memory wall. This is more the case when relying on the speculative Time Warp simulation protocol. Nevertheless, to ensure the correctness of the simulation, a form of coordination such as the GVT is fundamental. To increase the scalability of this mandatory synchronization, we present in this paper a coordination algorithm for clusters of share-everything multi-core simulation platoforms which is both wait-free and asynchronous. The nature of this protocol allows any computing node to carry on simulation activities while the global agreement is reached

    Transaction-oriented simulation in ad hoc grids: design and experience

    Get PDF

    NUMA Time Warp

    Get PDF
    It is well known that Time Warp may suffer from large usage of memory, which may hamper the efficiency of the memory hierarchy. To cope with this issue, several approaches have been devised, mostly based on the reduction of the amount of used virtual memory, e.g., by the avoidance of checkpointing and the exploitation of reverse computing. In this article we present an orthogonal solution aimed at optimizing the latency for memory access operations when running Time Warp systems on Non-Uniform Memory Access (NUMA) multi-processor/multi-core computing systems. More in detail, we provide an innovative Linux-based architecture allowing per simulation-object management of memory segments made up by disjoint sets of pages, and supporting both static and dynamic binding of the memory pages reserved for an individual object to the different NUMA nodes, depending on what worker thread is in charge of running that simulation object along a given wall-clock-time window. Our proposal not only manages the virtual pages used for the live state image of the simulation object, rather, it also copes with memory pages destined to keep the simulation object's event buffers and any recoverability data. Further, the architecture allows memory access optimization for data (messages) exchanged across the different simulation objects running on the NUMA machine. Our proposal is fully transparent to the application code, thus operating in a seamless manner. Also, a free software release of our NUMA memory manager for Time Warp has been made available within the open source ROOT-Sim simulation platform. Experimental data for an assessment of our innovative proposal are also provided in this article

    Master/worker parallel discrete event simulation

    Get PDF
    The execution of parallel discrete event simulation across metacomputing infrastructures is examined. A master/worker architecture for parallel discrete event simulation is proposed providing robust executions under a dynamic set of services with system-level support for fault tolerance, semi-automated client-directed load balancing, portability across heterogeneous machines, and the ability to run codes on idle or time-sharing clients without significant interaction by users. Research questions and challenges associated with issues and limitations with the work distribution paradigm, targeted computational domain, performance metrics, and the intended class of applications to be used in this context are analyzed and discussed. A portable web services approach to master/worker parallel discrete event simulation is proposed and evaluated with subsequent optimizations to increase the efficiency of large-scale simulation execution through distributed master service design and intrinsic overhead reduction. New techniques for addressing challenges associated with optimistic parallel discrete event simulation across metacomputing such as rollbacks and message unsending with an inherently different computation paradigm utilizing master services and time windows are proposed and examined. Results indicate that a master/worker approach utilizing loosely coupled resources is a viable means for high throughput parallel discrete event simulation by enhancing existing computational capacity or providing alternate execution capability for less time-critical codes.Ph.D.Committee Chair: Fujimoto, Richard; Committee Member: Bader, David; Committee Member: Perumalla, Kalyan; Committee Member: Riley, George; Committee Member: Vuduc, Richar

    Distributed Simulation of High-Level Algebraic Petri Nets

    Get PDF
    In the field of Petri nets, simulation is an essential tool to validate and evaluate models. Conventional simulation techniques, designed for their use in sequential computers, are too slow if the system to simulate is large or complex. The aim of this work is to search for techniques to accelerate simulations exploiting the parallelism available in current, commercial multicomputers, and to use these techniques to study a class of Petri nets called high-level algebraic nets. These nets exploit the rich theory of algebraic specifications for high-level Petri nets: Petri nets gain a great deal of modelling power by representing dynamically changing items as structured tokens whereas algebraic specifications turned out to be an adequate and flexible instrument for handling structured items. In this work we focus on ECATNets (Extended Concurrent Algebraic Term Nets) whose most distinctive feature is their semantics which is defined in terms of rewriting logic. Nevertheless, ECATNets have two drawbacks: the occultation of the aspect of time and a bad exploitation of the parallelism inherent in the models. Three distributed simulation techniques have been considered: asynchronous conservative, asynchronous optimistic and synchronous. These algorithms have been implemented in a multicomputer environment: a network of workstations. The influence that factors such as the characteristics of the simulated models, the organisation of the simulators and the characteristics of the target multicomputer have in the performance of the simulations have been measured and characterised. It is concluded that synchronous distributed simulation techniques are not suitable for the considered kind of models, although they may provide good performance in other environments. Conservative and optimistic distributed simulation techniques perform well, specially if the model to simulate is complex or large - precisely the worst case for traditional, sequential simulators. This way, studies previously considered as unrealisable, due to their exceedingly high computational cost, can be performed in reasonable times. Additionally, the spectrum of possibilities of using multicomputers can be broadened to execute more than numeric applications
    corecore