
1

ORCHESTRA: An Asyncrhonous Non-Blocking
Distributed GVT Algorithm

Tommaso Tocci
Barcelona Supercomputing Center (BSC), Sapienza University of Rome

tommaso.tocci@bsc.es

Abstract—Taking advantage of high computing capabilities of modern distributed architectures is fundamental to run large-scale
simulation models based on the Parallel Discrete Event Simulation (PDES) paradigm. In particular, by exploiting clusters of modern
multi-core architectures it is possible to efficiently overcome both the power and the memory wall. This is more the case when relying
on the speculative Time Warp simulation protocol. Nevertheless, to ensure the correctness of the simulation, a form of coordination
such as the GVT is fundamental. To increase the scalability of this mandatory synchronization, we present in this paper a coordination
algorithm for clusters of share-everything multi-core simulation platoforms which is both wait-free and asynchronous. The nature of this
protocol allows any computing node to carry on simulation activities while the global agreement is reached.

F

1 INTRODUCTION

A classical technique to achieve high-performance simu-
lation runs is to rely on Parallel-DES (PDES) [1]. PDES
grounds on partitioning the simulation model into several
distinct objects, known as Logical Processes (LPs), which
concurrently execute simulation events, possibly on a dis-
tributed environment.

To deliver high-performance simulation runs, a core
aspect of PDES systems is synchronization, which ensures
causally-consistent (i.e. timestamp-ordered) execution of
simulation events at each LP. Several synchronization pro-
tocols have been proposed, among which the optimism-
oriented ones, such as the Time Warp protocol [2], are a
viable solution to tackle simulation performance aspects.
In Time Warp, events are processed speculatively, thus
significantly exploiting parallelism, while causal consistency
is guaranteed through rollback/recovery techniques, which
restore the simulation model to a correct state upon the
a-posteriori detection of consistency violations. These are
originated when LPa schedules a new event destined to
LPb having a timestamp lower than the one of some event
already speculatively processed by LPb. In case this occurs,
the rollback of LPb might also require undoing the send
operation of events that were produced by LPb during
the rolled back portion of the computation. This is done
via anti-messages (carrying anti-events), which annihilate
the originally-sent events, thus possibly causing cascading
rollbacks across chains of LPs.

This high level of independence among different LPs is
the key to high-performance simulation. In fact, this execu-
tion model tries to capture time independence, without any
manual intervention from the simulation model developer.
Nevertheless, Time Warp has the need for a global notion
of time. In fact, a core abstraction is the Global Virtual Time
(GVT), which is defined as the smallest timestamp among
events (or anti-events) that are still unprocessed, or that are
currently being processed. The GVT allows to identify the

commitment horizon of the speculative simulation run—
no LP can ever rollback to simulation time preceding the
GVT value [2]. Its value is used both to execute actions that
cannot be subject to rollback, such as displaying/inspecting
intermediate simulation results [3], [4], and to reclaim mem-
ory [5] (the fossil collection operation).

To determine the GVT value, some sort of coordination
among the computing nodes is required. This coordination
can significantly affect the simulation performance, in a way
that is directly affected by the organization of the computing
environment. This is an aspect that must be explicitly taken
into account, since computing architectures have recently
hit some physical limits: the power wall [6] and the memory
wall [7] have posed strict limitations on what can be done
with out-the-shelf computers.

2 RELATED WORKS

Several GVT algorithm have been proposed in the last 30
years, and usually they are designed for a specific un-
derlying architecture: either focusing on shared-memory
(e.g. [8], [9]) or distributed computers. In 2008 Chen and
Szymanski [10] presented an in-dept comparison and tried
to classify them. As outlined in their study, some of these
algorithms rely on assumptions or make use of some prop-
erties that limit their scalability. For instance, the usage of
message acknowledgments (e.g. [11], [12], [13]) in order to
cope with non observability of transient messages, is an
obstacle to scalability, because it introduces big overhead
in the communication. Mattern proposed a two-cuts [14]
approach in which by using colors, it is possible to keep
track of the transient messages without requiring explicit
acknowledgments. Only recently, with the goal of reaching
very large-scale simulations, some hybrid algorithms ap-
peared. Lin and Yao [15] proposed the first GVT algorithm
targeting a multi-thread PDES platform, that exploits the
shared-memory capability of each machine while reaching
a global virtual time agreement among them.

4th BSC Severo Ochoa Doctoral Symposium

57

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/87661275?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

Fig. 1. Representation of phases of the distributed GVT algorithm

3 REFERENCE SYSTEM MODEL

Communication latency and cluster nodes topology can
really impact on the simulation performance. To enforce
highly-scalable simulations and give them the flexibility
to adapt to the underlying network interconnection, it is
important to design a truly distributed software architecture
and to avoid any use of centralized algorithms.

Each computing node (i.e., a core in the distributed
system) is associated with a thread. The LPs are distributed
among all the simulation threads in such a way that each of
the thread will carry on simulation activities of a subgroup
of LPs bound to it. The threads running on the same ma-
chine are grouped together into the same simulation kernel
and they share a portion of the main memory. Commu-
nication among threads running on different kernels need
to pass through the interconnection network, while threads
living within the same kernel will take advantage of shared-
memory for local communication activities.

Unlike the organization used in [15], all the threads in
our architecture have exactly the same role, meaning that
no special thread is used to carry on communication tasks.
This homogeneity between all the worker threads simplify
the scheduling process and allows to better distribute the
simulation workload among the nodes of the cluster.

4 ASYNCHRONOUS NON-BLOCKING GVT
The algorithm to compute the GVT that we present here
works at two different levels. It uses the wait-free algorithm
proposed in [9] to reach consensus between threads of
a single kernel while implementing a variant of the two
cuts Mattern’s idea [14] to make all the kernels agree on
a common global virtual time. The 2-color scheme [14] is
used to solve the well known transient message problem. A
thread becames red colored while it is participating on a
GVT round, while normally it is white. Every outgoing
message takes the color of the sender thread. This coloring
scheme allows to include all the messages that are in transit
in the current GVT agreement round. In fact, while red
messages are always accounted by the sender, the white

ones will be accounted by the receiver. As shown in Figure 1
each thread participating in a GVT round, pass through the
phases of the algorithm that are actually determined by a
combination of the state of the thread itself and the shared
state of the kernel to which it belongs. At the beginning
of each GVT round, during the Start phase, every thread
switch its color to red. After that, every kernel collects the
number of white messages that have been sent to it. Once
the kernel has verified that no white message destined to it
is still in transit, it triggers the start of the local Kernel Virtual
Time (KVT) algorithm. This local algorithm, executed at each
kernel, is the one presented in [9] where, by exploiting
shared memory, all the threads reach an agreement upon the
KVT. In addition to the orginal version, during this phase,
every thread needs to leave from the red state and enter
again into the white one. This allow to collect the minimum
timestamps among all the red messages sent and to account
for it in the current KVT calculation. Once all the KVTs
are locally computed, all the kernels participate to a global
reduction in order to elect the minimum among these values
as the new GVT.

ACKNOWLEDGMENTS

This study has been carried on in close cooperation with
Alessandro Pellegrini, Postdoctoral Researcher at the De-
partment of Computer Science and System Engineering at
”Sapienza” University of Rome. All the work has been
supervised by Josep Casanovas from the Barcelona Super-
computing Center and supported by Toyotaro Suzumura
from T.J. Watson Research Center and visiting professor at
BSC. This research has been funded by JST, CREST Strategic
Basic Research Programs in collaboration with Barcelona
Supercomputing Center (BSC).

REFERENCES

[1] R. M. Fujimoto, “Performance of Time Warp under synthetic
workloads,” 1990.

[2] D. R. Jefferson, “Virtual Time,” ACM Transactions on Programming
Languages and System, vol. 7, no. 3, pp. 404–425, 1985.

4th BSC Severo Ochoa Doctoral Symposium

58



3

[3] F. Antonacci, A. Pellegrini, and F. Quaglia, “Consistent and
efficient output-stream management in optimistic simulation
platforms,” in Proceedings of the 2013 ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation,
ser. PADS. ACM, 2013, pp. 315–326. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2486092.2486133

[4] D. Cucuzzo, S. D’Alessio, F. Quaglia, and P. Romano, “A
Lightweight Heuristic-based Mechanism for Collecting Commit-
ted Consistent Global States in Optimistic Simulation,” in DS-RT,
2007, pp. 227–234.

[5] S. R. Das and R. M. Fujimoto, “Adaptive Memory Management
and Optimism Control in Time Warp,” ACM Transactions on Mod-
eling and Computer Simulation, vol. 7, no. 2, pp. 239–271, 1997.

[6] H. Sutter, “The Free Lunch Is Over: A Fundamental
Turn Toward Concurrency in Software,” Dr. Dobb’s Journal,
vol. 30, no. 3, pp. 202–210, 2005. [Online]. Available:
http://www.gotw.ca/publications/concurrency-ddj.htm

[7] S. a. McKee, “Reflections on the memory wall,” Proceedings

Tommaso Tocci chasing his passion for the informatics, he graduated
in computer science at the Sapienza University of Rome. He is con-
cluding the master of Science in Engineering in Computer Science at
the same university, focusing on distributed systems. At the moment he
is employed at Barcelona Supercomputing Center (BSC), working on
a parallel discrete event simulation platform and developing distributed
synchronization algorithms.

of the first conference on computing frontiers on Computing
frontiers - CF’04, p. 162, 2004. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=977091.977115

[8] R. M. Fujimoto and M. Hybinette, “Computing Global Virtual
Time in Shared-Memory Multiprocessors,” ACM Transactions on
Modeling and Computer Simulation, vol. 7, no. 4, pp. 425–446, 1997.

[9] A. Pellegrini and F. Quaglia, “Wait-Free Global Virtual Time
Computation in Shared Memory TimeWarp Systems,” in 2014
IEEE 26th International Symposium on Computer Architecture and
High Performance Computing. IEEE, oct 2014, pp. 9–16. [Online].
Available: http://ieeexplore.ieee.org/document/6970641/

[10] G. G. Chen and B. K. Szymanski, “Time Quantum GVT: A Scalable
Computation of the Global Virtual Time in Parallel Discrete Event
Simulations,” vol. 8, no. 4, pp. 423–435, 2008.

[11] B. Samadi, “Distributed Simulation Algorithms and Performance
Analysis,” Ph.D. dissertation, Computer Science Department, Uni-
versity of California, Los Angeles, 1985.

[12] S. Bellenot, “Global Virtual Time algorithms,” in Proceedings of the
SCS Multiconference on Distributed Simulation, 1990, pp. 122–127.

[13] R. Baldwin, M. J. Chung, and Y. Chung, “Overlapping window
algorithm for computing GVT in Time Warp.pdf,” pp. 534–541,
1991.

[14] F. Mattern, “Efficient Algorithms for Distributed Snapshots and
Global Virtual Time Approximation.” Journal of Parallel Distributed
Computing, vol. 18, no. 4, pp. 423–434, 1993.

[15] Z. Lin and Y. Yiping, “An asynchronous GVT computing algo-
rithm in neuron time warp-multi thread,” no. Gillespie 1977, pp.

1115–1126, 2015.

4th BSC Severo Ochoa Doctoral Symposium

59




