7,190 research outputs found

    Adaptive Live Video Streaming by Priority Drop

    Get PDF
    In this paper we explore the use of Priority-progress streaming (PPS) for video surveillance applications. PPS is an adaptive streaming technique for the delivery of continuous media over variable bit-rate channels. It is based on the simple idea of reordering media components within a time window into priority order before transmission. The main concern when using PPS for live video streaming is the time delay introduced by reordering. In this paper we describe how PPS can be extended to support live streaming and show that the delay inherent in the approach can be tuned to satisfy a wide range of latency constraints while supporting fine-grain adaptation

    Design and evaluation of tile selection algorithms for tiled HTTP adaptive streaming (Best paper award)

    Get PDF
    The future of digital video is envisioned to have an increase in both resolution and interactivity. New resolutions like 8k UHDTV are up to 16 times as big in number of pixels compared to current HD video. Interactivity includes the possibility to zoom and pan around in video. We examine Tiled HTTP Adaptive Streaming (TAS) as a technique for supporting these trends and allowing them to be implemented on conventional Internet infrastructure. In this article, we propose three tile selection algorithms, for different use cases (e.g., zooming, panning). A performance evaluation of these algorithms on a TAS testbed, shows that they lead to better bandwidth utilization, higher static Region of Interest (ROI) video quality and higher video quality while manipulating the ROI. We show that we can transmit video at resolutions up to four times larger than existing algorithms during bandwidth drops, which results in a higher quality viewing experience. We can also increase the video quality by up to 40 percent in interactive video, during panning or zooming

    FlexStream: SDN-Based Framework for Programmable and Flexible Adaptive Video Streaming

    Get PDF
    With the tremendous increase in video traffic fueled by smartphones, tablets, 4G LTE networks, and other mobile devices and technologies, providing satisfactory services to end users in terms of playback quality and a fair share of network resources become challenging. As a result, an HTTP video streaming protocol was invented and widely adopted by most video providers today with the goal of maximizing the user’s quality of experience. However, despite the intensive efforts of major video providers such as YouTube and Netflix to improve their players, several studies as well as our measurements indicate that the players still suffer from several performance issues including instability and sub-optimality in the video bitrate, stalls in the playback, unfairness in sharing the available bandwidth, and inefficiency with regard to network utilization, considerably degrading the user’s QoE. These issues are frequently experienced when several players start competing over a common bottleneck. Interestingly, the root cause of these issues is the intermittent traffic pattern of the HTTP adaptive protocol that causes the players to over-estimate the available bandwidth and stream unsustainable video bitrates. In addition, the wireless network standards today do not allow the network to have a fine-grain control over individual devices which is necessary for providing resource usage coordination and global policy enforcement. We show that enabling such a network-side control would drive each device to fairly and efficiently utilize the network resources based on its current context, which would result in maximizing the overall viewing experience in the network and optimizing the bandwidth utilization. In this dissertation, we propose FlexStream, a flexible and programmable Software-Defined Network (SDN) based framework that solves all the adaptive streaming problems mentioned above. We develop FlexStream on top of the SDN-based framework that extends SDN functionality to mobile end devices, allowing for a fine-grained control and management of bandwidth based on real time context-awareness and specified policy. We demonstrate that FlexStream can be used to manage video delivery for a set of end devices over WiFi and cellular links and can effectively alleviate common problems such as player instability, playback stalls, large startup delay, and inappropriate bandwidth allocation. FlexStream offloads several tasks such as monitoring and policy enforcement to end-devices, while a network element (i.e., Global Controller), which has a global view of a network condition, is primarily employed to manage the resource allocation. This also alleviates the need for intrusive, large and costly traffic management solutions within the network, or modifications to servers that are not feasible in practice. We define an optimization method within the global controller for resource allocation to maximize video QoE considering context information, such as screen size and user priority. All features of FlexStream are implemented and validated on real mobile devices over real Wi-Fi and cellular networks. To the best of our knowledge, FlexStream is the first implementation of SDN-based control in a live cellular network that does not require any internal network support for SDN functionality

    A machine learning-based framework for preventing video freezes in HTTP adaptive streaming

    Get PDF
    HTTP Adaptive Streaming (HAS) represents the dominant technology to deliver videos over the Internet, due to its ability to adapt the video quality to the available bandwidth. Despite that, HAS clients can still suffer from freezes in the video playout, the main factor influencing users' Quality of Experience (QoE). To reduce video freezes, we propose a network-based framework, where a network controller prioritizes the delivery of particular video segments to prevent freezes at the clients. This framework is based on OpenFlow, a widely adopted protocol to implement the software-defined networking principle. The main element of the controller is a Machine Learning (ML) engine based on the random undersampling boosting algorithm and fuzzy logic, which can detect when a client is close to a freeze and drive the network prioritization to avoid it. This decision is based on measurements collected from the network nodes only, without any knowledge on the streamed videos or on the clients' characteristics. In this paper, we detail the design of the proposed ML-based framework and compare its performance with other benchmarking HAS solutions, under various video streaming scenarios. Particularly, we show through extensive experimentation that the proposed approach can reduce video freezes and freeze time with about 65% and 45% respectively, when compared to benchmarking algorithms. These results represent a major improvement for the QoE of the users watching multimedia content online

    Quality of experience-centric management of adaptive video streaming services : status and challenges

    Get PDF
    Video streaming applications currently dominate Internet traffic. Particularly, HTTP Adaptive Streaming ( HAS) has emerged as the dominant standard for streaming videos over the best-effort Internet, thanks to its capability of matching the video quality to the available network resources. In HAS, the video client is equipped with a heuristic that dynamically decides the most suitable quality to stream the content, based on information such as the perceived network bandwidth or the video player buffer status. The goal of this heuristic is to optimize the quality as perceived by the user, the so-called Quality of Experience (QoE). Despite the many advantages brought by the adaptive streaming principle, optimizing users' QoE is far from trivial. Current heuristics are still suboptimal when sudden bandwidth drops occur, especially in wireless environments, thus leading to freezes in the video playout, the main factor influencing users' QoE. This issue is aggravated in case of live events, where the player buffer has to be kept as small as possible in order to reduce the playout delay between the user and the live signal. In light of the above, in recent years, several works have been proposed with the aim of extending the classical purely client-based structure of adaptive video streaming, in order to fully optimize users' QoE. In this article, a survey is presented of research works on this topic together with a classification based on where the optimization takes place. This classification goes beyond client-based heuristics to investigate the usage of server-and network-assisted architectures and of new application and transport layer protocols. In addition, we outline the major challenges currently arising in the field of multimedia delivery, which are going to be of extreme relevance in future years
    • 

    corecore