1,470 research outputs found

    A novel technique for load frequency control of multi-area power systems

    Get PDF
    In this paper, an adaptive type-2 fuzzy controller is proposed to control the load frequency of a two-area power system based on descending gradient training and error back-propagation. The dynamics of the system are completely uncertain. The multilayer perceptron (MLP) artificial neural network structure is used to extract Jacobian and estimate the system model, and then, the estimated model is applied to the controller, online. A proportional–derivative (PD) controller is added to the type-2 fuzzy controller, which increases the stability and robustness of the system against disturbances. The adaptation, being real-time and independency of the system parameters are new features of the proposed controller. Carrying out simulations on New England 39-bus power system, the performance of the proposed controller is compared with the conventional PI, PID and internal model control based on PID (IMC-PID) controllers. Simulation results indicate that our proposed controller method outperforms the conventional controllers in terms of transient response and stability

    Model based control strategies for a class of nonlinear mechanical sub-systems

    Get PDF
    This paper presents a comparison between various control strategies for a class of mechanical actuators common in heavy-duty industry. Typical actuator components are hydraulic or pneumatic elements with static non-linearities, which are commonly referred to as Hammerstein systems. Such static non-linearities may vary in time as a function of the load and hence classical inverse-model based control strategies may deliver sub-optimal performance. This paper investigates the ability of advanced model based control strategies to satisfy a tolerance interval for position error values, overshoot and settling time specifications. Due to the presence of static non-linearity requiring changing direction of movement, control effort is also evaluated in terms of zero crossing frequency (up-down or left-right movement). Simulation and experimental data from a lab setup suggest that sliding mode control is able to improve global performance parameters

    PID control system analysis, design, and technology

    Get PDF
    Designing and tuning a proportional-integral-derivative (PID) controller appears to be conceptually intuitive, but can be hard in practice, if multiple (and often conflicting) objectives such as short transient and high stability are to be achieved. Usually, initial designs obtained by all means need to be adjusted repeatedly through computer simulations until the closed-loop system performs or compromises as desired. This stimulates the development of "intelligent" tools that can assist engineers to achieve the best overall PID control for the entire operating envelope. This development has further led to the incorporation of some advanced tuning algorithms into PID hardware modules. Corresponding to these developments, this paper presents a modern overview of functionalities and tuning methods in patents, software packages and commercial hardware modules. It is seen that many PID variants have been developed in order to improve transient performance, but standardising and modularising PID control are desired, although challenging. The inclusion of system identification and "intelligent" techniques in software based PID systems helps automate the entire design and tuning process to a useful degree. This should also assist future development of "plug-and-play" PID controllers that are widely applicable and can be set up easily and operate optimally for enhanced productivity, improved quality and reduced maintenance requirements

    A comparative study of several control techniques applied to a boost converter

    Get PDF
    In this paper a comparison among three control strategies is presented, with application to a boost DC-DC converter. The control strategies are developed on the switched boost circuit model and validated on the nonlinear model by use of simulations. The classical PID, a 2dof-IMC (two degree of freedom internal model controller) and an alternative controller - MAC (uprocessor advanced control) are applied, tested and compared on the nonlinear system. Additional tests show the robustness of the controllers on the highly nonlinear circuit

    Modeling and control of a plastic film manufacturing web process

    Get PDF
    This paper is concerned with the modelling of aplastic film manufacturing process and the development and implementation of a model-based Cross-Directional (CD) controller. The model is derived from first-principles and some empirical relationships. The final validated nonlinear model could provide a useful off-line platform for developing control and monitoring algorithms.A new controller is designed which has a similar structureto that of Internal Model Control (IMC) with the addition ofan observer whose gain is designed to minimise process andmodel mis-match. The observer gain is obtained by solving amulti-objective optimisation problem through the application of a genetic algorithm. The controller is applied to the nonlinear model and simulation results are presented demonstrating improvements that can be achieved by the proposed controller over two existing CD controllers

    A classification of techniques for the compensation of time delayed processes. Part 2: Structurally optimised controllers

    Get PDF
    Following on from Part 1, Part 2 of the paper considers the use of structurally optimised controllers to compensate time delayed processes

    A survey of recent advances in fractional order control for time delay systems

    Get PDF
    Several papers reviewing fractional order calculus in control applications have been published recently. These papers focus on general tuning procedures, especially for the fractional order proportional integral derivative controller. However, not all these tuning procedures are applicable to all kinds of processes, such as the delicate time delay systems. This motivates the need for synthesizing fractional order control applications, problems, and advances completely dedicated to time delay processes. The purpose of this paper is to provide a state of the art that can be easily used as a basis to familiarize oneself with fractional order tuning strategies targeted for time delayed processes. Solely, the most recent advances, dating from the last decade, are included in this review

    PID control system analysis and design

    Get PDF
    With its three-term functionality offering treatment of both transient and steady-state responses, proportional-integral-derivative (PID) control provides a generic and efficient solution to realworld control problems. The wide application of PID control has stimulated and sustained research and development to "get the best out of PID", and "the search is on to find the next key technology or methodology for PID tuning". This article presents remedies for problems involving the integral and derivative terms. PID design objectives, methods, and future directions are discussed. Subsequently, a computerized, simulation-based approach is presented, together with illustrative design results for first-order, higher order, and nonlinear plants. Finally, we discuss differences between academic research and industrial practice, so as to motivate new research directions in PID control
    • 

    corecore