287 research outputs found

    Optimizing Membership Function Tuning for Fuzzy Control of Robotic Manipulators Using PID-Driven Data Techniques

    Get PDF
    In this study, a method for optimizing membership function tuning for fuzzy control of robotic manipulators using PID-driven data techniques is presented. Traditional approaches for designing membership functions in fuzzy control systems often rely on the experience and knowledge of the system designer, which can lead to suboptimal performance. By utilizing data collected from a PID control system, the proposed method aims to enhance the precision and controllability of robotic manipulators through improved fuzzy logic control. A Mamdani-type fuzzy logic controller was developed and its performance was simulated in Simulink, demonstrating the effectiveness of the proposed optimization technique. The results indicate that the method can outperform conventional P control systems in terms of overshoot reduction while maintaining comparable transient response specifications. This research highlights the potential of the PID-driven data-based approach for optimizing membership function tuning in fuzzy control systems and offers valuable insights for the development and evaluation of fuzzy logic control in robotic manipulators. Future work may focus on further optimization of the tuning process, evaluation of system robustness under various operating conditions, and exploring the integration of other artificial intelligence techniques for improved control performance

    Kalman Filter to Improve Performance of PID Control Systems on DC Motors

    Get PDF
    A proportional–integral–derivative (PID) controller is a type of control system that is most widely applied in industrial world. Various tuning models have been developed to obtain optimal performance in PID control. However, the methods are designed under ideal circumstances. This means that the control system which has been built will not work optimally when noise exists. Noise can come from electrical vibrations, inference of electronic components, or other noise sources. Thus, it is necessary to design PID control system that can work optimally without being disturbed by noise. In this research, Kalman filter was used to improve the performance of PID controllers. The application of Kalman filter was used to reduce the noise of the input signal so that it could generate output signal which is in accordance with the expected output. Simulation result showed that the PID performance with Kalman filter was more optimal than the ordinary one to minimize the existing noise. The resulting speed of DC motor with Kalman filter had a lower overshoot than PID control without Kalman filter. This method resulted lower integral of absolute error (IAE) than ordinary PID controls. The IAE value for the PID controller with the Kalman filter was 25.4, the PID controller with the observer was 31.0, while the IAE value in the ordinary controller was only 60.9

    Energy-Efficient Robot Configuration and Motion Planning Using Genetic Algorithm and Particle Swarm Optimization

    Get PDF
    The implementation of Industry 5.0 necessitates a decrease in the energy consumption of industrial robots. This research investigates energy optimization for optimal motion planning for a dual-arm industrial robot. The objective function for the energy minimization problem is stated based on the execution time and total energy consumption of the robot arm configurations in its workspace for pick-and-place operation. Firstly, the PID controller is being used to achieve the optimal parameters. The parameters of PID are then fine-tuned using metaheuristic algorithms such as Genetic Algorithms and Particle Swarm Optimization methods to create a more precise robot motion trajectory, resulting in an energy-efficient robot configuration. The results for different robot configurations were compared with both motion planning algorithms, which shows better compatibility in terms of both execution time and energy efficiency. The feasibility of the algorithms is demonstrated by conducting experiments on a dual-arm robot, named as duAro. In terms of energy efficiency, the results show that dual-arm motions can save more energy than single-arm motions for an industrial robot. Furthermore, combining the robot configuration problem with metaheuristic approaches saves energy consumption and robot execution time when compared to motion planning with PID controllers alone

    Efficient Mixer in Baking “Galamai” Process by Using Camera Sensor

    Get PDF
    One of Indonesian traditional food, expecially in Minangkabau called galamai was baked with inefficient and complicated manner. At least 4 or 5 person were needed to mix 30 kg galamai batter for 6 hours during baking process. This research solved those problems. The aim  of this work was to displace a human labor with an automatic machine to make it more efficient.  The basic idea of this reseach is to desain an automatic mixer by using camera sensor for controling the speed of DC machine. This mixer was worked base on the fact galamai batter characteristics that its color and viscosity will change during cooking process. Discoloration in galamai batter will be captured by camera sensor as a data input. Images data of the color of galamai batter will be converted in grayscale images. The intensity of gray scale image became an input for  FIS (Fuzzy Inference System) which controled the speed of  machine. The speed of motor will increase when the grayscale color of galamai batter is low. The system could controlled turning speed of motor automatically with acuration of speed value is more than 96.4% and synchronized in variation of galamai batter volume

    Design & Implementation of Motion Controller for Industrial Paper Cutting Machine

    Get PDF
    In order to solve a speed control, Speed measurement & synchronization problem, an effective motion controller is design & develop for paper cutting machine of papermaking plant. PID control algorithm was proposed to solve the problem in this paper. The speed closed-loop control was realized after studying & comparing different control algorithm. According to comparison of industrial application results, the applied control strategy to develop a motion controller truly guide, control & can accurately restrain the load disturbance and improve the control effect of synchronization for the cutter speed. This System proves how it can be a low cost solution in the production practice

    Industrial Robotics

    Get PDF
    This book covers a wide range of topics relating to advanced industrial robotics, sensors and automation technologies. Although being highly technical and complex in nature, the papers presented in this book represent some of the latest cutting edge technologies and advancements in industrial robotics technology. This book covers topics such as networking, properties of manipulators, forward and inverse robot arm kinematics, motion path-planning, machine vision and many other practical topics too numerous to list here. The authors and editor of this book wish to inspire people, especially young ones, to get involved with robotic and mechatronic engineering technology and to develop new and exciting practical applications, perhaps using the ideas and concepts presented herein

    Modelling, Monitoring, Control and Optimization for Complex Industrial Processes

    Get PDF
    This reprint includes 22 research papers and an editorial, collected from the Special Issue "Modelling, Monitoring, Control and Optimization for Complex Industrial Processes", highlighting recent research advances and emerging research directions in complex industrial processes. This reprint aims to promote the research field and benefit the readers from both academic communities and industrial sectors
    • …
    corecore