1,104 research outputs found

    A Review of Control Techniques for Wind Energy Conversion System

    Get PDF
    Wind energy is the most efficient and advanced form of renewable energy (RE) in recent decades, and an effective controller is required to regulate the power generated by wind energy. This study provides an overview of state-of-the-art control strategies for wind energy conversion systems (WECS). Studies on the pitch angle controller, the maximum power point tracking (MPPT) controller, the machine side controller (MSC), and the grid side controller (GSC) are reviewed and discussed. Related works are analyzed, including evolution, software used, input and output parameters, specifications, merits, and limitations of different control techniques. The analysis shows that better performance can be obtained by the adaptive and soft-computing based pitch angle controller and MPPT controller, the field-oriented control for MSC, and the voltage-oriented control for GSC. This study provides an appropriate benchmark for further wind energy research

    Pitch Control of Wind Turbine through PID, Fuzzy and adaptive Fuzzy-PID controllers

    Get PDF
    As the penetration of the wind energy into the electrical power grid is extensively increased, the influence of the wind turbine systems on the frequency and voltage stability becomes more and more significant. Wind turbine rotor bears different types of loads; aerodynamic loads, gravitational loads and centrifugal loads. These loads cause fatigue and vibration in blades, which cause degradation to the rotor blades. These loads can be overcome and the amount of collected power can be controlled using a good pitch controller (PC) which will tune the attack angle of a wind turbine rotor blade into or out of the wind. Each blade is exposed to different loads due to the variation of the wind speed across the rotor blades. For this reason, individual electric drives can be used in future to control the pitch of the blades in a process called Individual Pitch Control. In this thesis work, an enhanced pitch angle control strategy based on fuzzy logic control is proposed to cope with the nonlinear characteristics of wind turbine as well as to reduce the loads on the blades. A mathematical model of wind turbine (pitch control system) is developed and is tested with three controllers -PID, Fuzzy, and Adaptive Fuzzy-PID. After comparing all the three proposed strategies, the simulation results show that the Adaptive Fuzzy-PID controller has the best performance as it regulates the pitch system as well as the disturbances and uncertain factors associated with the system

    Modeling and Lyapunov-designed based on adaptive gain sliding mode control for wind turbines

    Get PDF
    In this paper, modeling and the Lyapunov-designed control approach are studied for the Wind Energy Conversion Systems (WECS). The objective of this study is to ensure the maximum energy production of a WECS while reducing the mechanical stress on the shafts (turbine and generator). Furthermore, the proposed control strategy aims to optimize the wind energy captured by the wind turbine operating under rating wind speed, using an Adaptive Gain Sliding Mode Control (AG-SMC). The adaptation for the sliding gain and the torque estimation are carried out using the sliding surface as an improved solution that handles the conventional sliding mode control. Furthermore, the resultant WECS control policy is relatively simple, meaning the online computational cost and time are considerably reduced. Time-domain simulation studies are performed to discuss the effectiveness of the proposed control strateg

    Linear Parameter Varying Power Regulation of Variable Speed Pitch Manipulated Wind Turbine in the Full Load Regime

    Full text link
    In a wind energy conversion system (WECS), changing the pitch angle of the wind turbine blades is a typical practice to regulate the electrical power generation in the full-load regime. Due to the turbulent nature of the wind and the large variations of the mean wind speed during the day, the rotary elements of the WECS are subjected to significant mechanical stresses and fatigue, resulting in conceivably mechanical failures and higher maintenance costs. Consequently, it is imperative to design a control system capable of handling continuous wind changes. In this work, Linear Parameter Varying (LPV) H_inf controller is used to cope with wind variations and turbulent winds with a turbulence intensity greater than 10%. The proposed controller is designed to regulate the rotational rotor speed and generator torque, thus, regulating the output power via pitch angle manipulations. In addition, a PI-Fuzzy control system is designed to be compared with the proposed control system. The closed-loop simulations of both controllers established the robustness and stability of the suggested LPV controller under large wind velocity variations, with minute power fluctuations compared to the PI-Fuzzy controller. The results show that in the presence of turbulent wind speed variations, the proposed LPV controller achieves improved transient and steady-state performance along with reduced mechanical loads in the above-rated wind speed region.Comment: 12 pages, 10 figure

    Rotor Current Control Design for DFIG-based Wind Turbine Using PI, FLC and Fuzzy PI Controllers

    Get PDF
    Due to the rising demand for electricity with increasing world population, maximizing renewable energy capture through efficient control systems is gaining attention in literature. Wind energy, in particular, is considered the world’s fastest-growing energy source it is one of the most efficient, reliable and affordable renewable energy sources. Subsequently, well-designed control systems are required to maximize the benefits, represented by power capture, of wind turbines. In this thesis, a 2.0-MW Doubly-Fed Induction Generator (DFIG) wind turbine is presented along with new controllers designed to maximize the wind power capturer. The proposed designs mainly focus on controlling the DFIG rotor current in order to allow the system to operate at a certain current value that maximizes the energy capture at different wind speeds. The simulated model consists of a single two-mass wind turbine connected directly to the power grid. A general model consisting of aerodynamic, mechanical, electrical, and control systems are simulated using Matlab/Simulink. An indirect speed controller is designed to force the aerodynamic torque to follow the maximum power curve in response to wind variations, while a vector controller for current loops is designed to control the rotor side converter. The control system design techniques considered in this work are Proportional-Integral (PI), fuzzy logic, and fuzzy-PI controllers. The obtained results show that the fuzzy-PI controller meets the required specifications by exhibiting the best steady-state response, in terms of steady-state error and settling time, for some DFIG parameters such as rotor speed, rotor currents and electromagnetic torque. Although the fuzzy logic controller exhibits smaller peak overshoot and undershoot values when compared to the fuzzy-PI, the peak value difference is very small, which can be compensated using protection equipment such as circuit breakers and resistor banks. On the other hand, the PI controller shows the highest overshoot, undershoot and settling time values, while the fuzzy logic controller does not meet the requirements as it exhibits large, steady-state error values

    MPPT control design for variable speed wind turbine

    Get PDF
    Variable speed wind turbine systems (VSWT’s) have been in receipt of extensive attention among the various renewable energy systems. The present paper focuses on fuzzy fractional order proportional-integral (FFOPI) control segment for variable speed wind turbine (VSWT) directly driving permanent magnet synchronous generator (PMSG). The main objective of this study is to reach maximum power point tracking (MPPT) through combination of advanced control based on FFOPI control applied to generator side converter (turbine and PMSG). The basic idea of the FFOPI controller is to implement a fuzzy logic controller (FLC) in cascade with Fractional Order Proportional Integral controller (FOPI). A comparative study with FOPI and classical PI control schemes is made. The traditional PI controller cannot deliver a sufficiently great performance for the VSWT. However, the results found that the proposed approach (FFOPI) is more effective and feasible for controlling the permanent magnet synchronous generator to mantain maximum power extraction. The validation of results has been performed through simulation using Matlab/Simulink®

    A design fuzzy logic controller for a permanent magnet wind generator to enhance the dynamic stability of wind farms

    Get PDF
    In this paper, a design fuzzy logic controller for a variable speed permanent magnet wind generator connected to a grid system through a LC-filter is proposed. A new current control method of grid side conversion is developed by integrating the fuzzy controller, in which both active and reactive power, delivered to a power grid system, is controlled effectively. The fuzzy logic controller is designed to adjust the gain parameters of the PI controllers under any operating conditions, so that the dynamic stability is enhanced. A new simple method, based on frequency response of the bode diagram, is proposed in the design of the fuzzy logic controller. To evaluate the controller system capabilities, simulation analyses are performed on a small wind farm model system including an induction wind generator connected to an infinite bus. The simulations have been performed using PSCAD/EMTDC. Simulation results show that the proposed control scheme is more effective for enhancing the stability of wind farms during temporary and permanent network disturbances and randomly fluctuating wind speed, compared with that of a conventional PI controller

    Data-Driven and Model-Based Control Techniques for a Wind Turbine Benchmark Model

    Get PDF
    Wind turbine plants are complex dynamic and uncertain processes driven by stochastic inputs and disturbances, as well as different loads represented by gyroscopic, centrifugal, and gravitational forces. Moreover, as their aerodynamic models are nonlinear, both modelling and control become challenging problems. On one hand, high–fidelity simulators should contain different parameters and variables in order to accurately describe the main dynamic system behaviour. Therefore, the development of modelling and control for wind turbine systems should consider these complexity aspects. On the other hand, these control solutions have to include the main wind turbine dynamic characteristics without becoming too complicated. The main point of this paper is thus to provide two practical examples of development of robust control strategies when applied to a simulated wind turbine plant. Extended simulations with the wind turbine benchhmark model and the Monte–Carlo tool represent the instruments for assessing the robustness and reliability aspects of the developed control methodologies when the model–reality mismatch and measurement errors are also considered. Advantages and drawbacks of these regulation methods are also highlighted with respect to different control strategies via proper performance metrics
    corecore