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Abstract: Wind turbine plants are complex dynamic and uncertain processes driven by stochastic inputs and 
disturbances, as well as different loads represented by gyroscopic, centrifugal, and gravitational forces. Moreover, as 
their aerodynamic models are nonlinear, both modelling and control become challenging problems. On one hand, high–
fidelity simulators should contain different parameters and variables in order to accurately describe the main dynamic 
system behaviour. Therefore, the development of modelling and control for wind turbine systems should consider these 
complexity aspects. On the other hand, these control solutions have to include the main wind turbine dynamic 
characteristics without becoming too complicated. The main point of this paper is thus to provide two practical examples 
of development of robust control strategies when applied to a simulated wind turbine plant. Extended simulations with 
the wind turbine benchhmark model and the Monte–Carlo tool represent the instruments for assessing the robustness 
and reliability aspects of the developed control methodologies when the model–reality mismatch and measurement 
errors are also considered. Advantages and drawbacks of these regulation methods are also highlighted with respect to 
different control strategies via proper performance metrics.  
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1. INTRODUCTION 

Wind turbine plants represent complex and 
nonlinear dynamic systems usually driven by stochastic 
inputs and different disturbances describing 
gravitational, centrifugal, and gyroscopic loads. 
Moreover, their aerodynamic models are uncertain and 
nonlinear, whilst wind turbine rotors are subject to 
complex turbulent wind fields, especially in large 
systems, thus yielding to extreme fatigue loading 
conditions. In this way, the development of viable, 
robust and reliable control solutions for wind turbines 
can become a challenging issue [10]. 

Usually, a model–based control design requires an 
accurate description of the system under investigation, 
which has to include different parameters and variables 
in order to model the most important nonlinear and 
dynamic aspects. Moreover, the wind turbine working 
conditions can produce further problems to the design 
of the control method. In general, commercial codes 
are not able to adequately describe the wind turbine 
overall dynamic behaviour; usually, special simulation 
software solutions are used. On the other hand, control 
schemes have to manage the most important turbine 
dynamics, without being too complex and unwieldy. 
Control methods for wind turbines usually rely on the 
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signals from sensors and actuators, with a system that 
connects these elements together. Hardware or 
software modules elaborate these signals to generate 
the output signals for actuators. The main feature of the 
control law consists of maintaining safe and reliable 
working conditions of the wind turbine, while achieving 
prescribed control performances, and allowing for 
optimal energy conversion, as shown e.g. in recent 
works applied to the same wind turbine model 
considered in this work [16]. 

Today’s wind turbines can implement several 
control strategies to allow for the required 
performances. Some turbines use passive control 
methods, such as in fixed–pitch, stall control machines. 
In this case, the system is designed so that the power 
is limited above rated wind speed through the blade 
stall. Therefore, the control of the blades is not required 
[10]. In this case, the rotational speed control is 
proposed thus avoiding the inaccuracy of measuring 
the wind speed. Rotors with pitch regulation are usually 
used for constant–speed plants, in order to provide a 
power control that works better than the blade stall 
solution. In these machines, the blade pitching is 
controlled in order to provide optimal power conversion 
with respect to modelling errors, wind gusts and 
disturbance. However, when the system works at 
constant speed and below rated wind speed, the 
optimal conversion rate cannot be obtained. Therefore, 
in order to maximise the power conversion rate, the 
rotational speed of the turbine must vary with wind 
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speed. Blade pitch control is thus used also above the 
rated wind speed [10] . A different control method can 
introduce the yaw regulation to orient the machine into 
the wind field. A yaw error reference from a nacelle–
mounted wind direction sensor system must be 
included in order to calculate this reference signal [32]. 

Regarding the regulation strategies proposed in this 
paper, two control design examples are described and 
applied to a wind turbine system. The wind turbine 
model exploited in this work is freely available for the 
Matlab and Simulink environments, and already 
proposed as benchmark for an international 
competition regarding the validation of fault diagnosis 
and fault tolerant control approaches [16]. 

In particular, a first data–driven method relying on a 
fuzzy identification approach to the control design is 
considered. In fact, since the wind turbine 
mathematical model is nonlinear with uncertain inputs, 
fuzzy modelling represents an alternative tool for 
obtaining the mathematical description of the controlled 
process. In contrast to purely nonlinear identification 
schemes, see e.g. [11], fuzzy modelling and 
identification methods are able to directly provide 
nonlinear models from the measured input–output 
signals. Therefore, this paper suggests to model the 
wind turbine plant via Takagi–Sugeno (TS) fuzzy 
prototypes [1], whose parameters are obtained by 
identification procedures. This approach is also 
motivated by previous works by the same authors [24] . 
On the other hand, concerning the control design, the 
paper proposes also a fuzzy control method for the 
regulation of the blade pitch angle, and the generator 
torque of the wind turbine system. 

With respect to similar works, see e.g. [7], this 
paper suggests an off–line identification approach, 
without any on–line optimisation schemes, thus 
enhancing real–time implementations. Note also that 
the works by the same authors, see e.g. [23], 
addressed a different design procedure of the fuzzy 
regulator, that consists of fuzzy PI controllers. On the 
other hand, this paper proposes the direct estimation of 
the fuzzy regulator by means of an identification 
scheme. 

Regarding the second model–based strategy 
presented in this paper, it relies on an adaptive control 
scheme [12]. Again, with respect to pure nonlinear 
control methods [20], it does not require a detailed 
knowledge about the model structure. Therefore, this 
work suggests the implementation of controllers based 

on adaptive schemes, used for the recursive derivation 
of the controller model. 

In particular, a recursive Frisch scheme extended to 
the adaptive case for control design is considered in 
this study, as proposed e.g. in [23] by the same 
authors, which makes use of exponential forgetting 
laws. This allows the on–line application of the Frisch 
scheme to derive the parameters of a time–varying 
controller. 

Since it is necessary to evaluate the robustness and 
the reliability of the designed control methods with 
respect to modelling uncertainties, disturbance, and 
measurement errors, the verification and validation 
tools use extensive Monte–Carlo simulations. In fact, 
the wind turbine system contains elements that cannot 
be described by analytical models. Thus, the Monte–
Carlo analysis represents a solution for testing the 
robustness and reliability features of the control 
schemes when applied to the wind turbine model. This 
paper compares the proposed methodologies also with 
respect to different control methods based on sliding 
mode techniques, neural controllers, or gain scheduling 
methods. However, with respect again to [23] by the 
same authors, different comparisons are proposed in 
this work that exploit proper performance metrics. 

It is worth noting the main contributions brought by 
this paper. The first one proposes a methodology 
relying on a fuzzy inference system that requires the 
clustering of the available data into subsets 
characterised by linear behaviours. The integration 
between clusters and linear regression is exploited, 
thus allowing for the combination of fuzzy logic 
techniques with system identification methodologies. 
This study proposes the use of fuzzy models in the 
form of Takagi–Sugeno prototypes as they are able to 
describe nonlinear dynamic relations with arbitrary 
accuracy. The switching between the local affine 
submodels is achieved through a smooth function of 
the system state defined exploiting the fuzzy set theory 
and its tools. The main advantage of this approach is 
motivated by the availability of proper simulation tools 
already present in the Matlab

 
and Simulink 

environments. Moreover, this approach has shown very 
powerful features, since allowed several degrees of 
freedom that can be exploited for improving the 
accuracy of the achieved model. On the other hand, 
the computational complexity increases when 
extensive optimisation procedures are required for 
obtaining the optimal structure of the fuzzy models. 
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However, this aspect is not critical as this optimisation 
phase can be performed off–line. 

Regarding the second solution exploited for 
obtaining the mathematical description of the controller, 
it relies on a recursive algorithm applied to a well–
established description of the system under 
investigation as error–in–variable model. The main 
advantage of the methodology is the optimal filtering of 
the uncertainty and disturbance effects, without any 
preliminary assumtpion on the noise process. On one 
hand, the procedure can be easily implemented on–line 
by means of the simulation tools already available in 
the Matlab and Simulink. On the other hand, specific 
designs are required for the transformation of the 
adaptive algorithms into iterative schemes that may be 
simulated in real–time, without increasing the 
computational complexity of the coding solution. 

Finally, this work is organised as follows. Section 2 
recalls the wind turbine model considered for control 
design purposes. Section 3 addresses the data–driven 
scheme exploited for the derivation of the fuzzy 
controller, proposed in Section 3.1. On the other hand, 
the model–based control design is considered in 
Section 3.2, based on its mathematical derivation also 
described in Section 3. The achieved results and 
comparisons with different control strategies are 
outlined in Section 4. The robustness and reliability 
features of the developed control strategies are also 
investigated. Finally, Section 5 ends the paper by 
summarising the main achievements of the work. 

2. WIND TURBINE BENCHMARK MODEL AND ITS 
GOVERNOR 

This section outlines the wind turbine model, whose 
sampled inputs and outputs will be used for the 
proposed control designs, as shown in Section 3. In 
particular, Section 2.1 recalls the wind turbine model, 
whilst Section 2.2 summarises its baseline regulator, as 
proposed in [17]. 

2.1. Wind Turbine Model 

The wind turbine system exploited in this work uses 
a nonlinear dynamic model representing the wind 
acting on the wind turbine blades, thus producing the 
movement of the low–speed rotor shaft. The higher 
speed required by the electric converter is produced by 
means of a gear box. The simulator is described in 
more detail e.g. in [17, 15]. A scheme of the wind 
turbine simulator considered in this paper is 
represented in Figure 1 with its main blocks. 

 

Figure 1: Scheme of the wind turbine simulator. 

Both the generator speed ! g  and the generator 
power Pg  are controller by means of the 2  control 
inputs representing the generator torque ! g (t)  and the 
blade pitch angle !(t) . Several signals can be acquired 
from the wind turbine simulator. In particular, the main 
signals available from the wind turbine simulator and 
used for control purpose are listed in the following. 

• ! : blade pitch angle [deg]; 

• ! g : generator/converter speed [rad/s]; 

• Pg : generator power Pg  [W]; 

• ! r : rotor speed [rad/s]; 

• ! r : requested torque [N m]; 

• ! g : generator torque [N m]; 

• ! aero : aerodynamic torque [N m]; 

• v : wind speed [m/s];  

The aerodynamic model defining the aerodynamic 
torque provides the ! aero(t)  signal, which is a nonlinear 
function of the wind speed v(t) . This measurement is 
very difficult to be acquired correctly, as described in 
[15]. 

The aerodynamic model reported in Figure 1 is 
described by the following relation:  

! aero(t) =Cp "r (t),#(t)( )$Av
3(t)

2% r (t)
         (1) 

where the variable !  represents the air density, whilst 
A  is the effective rotor area. 

The pitch system implemented in the wind turbine 
benchmark as depicted in Figure 1 uses a second–
order transfer function, represented by Eq. (2) :  
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!r (s)
!(s)

= " n
2

s2 + 2#" n +" n
2           (2) 

where !r  is the actuated pitch angle, which is 
exploited in Eq. (1) , whilst !  is the controlled pitch 
angle. ! n  is the natural frequency of the pitch actuator 
model, and !  its damping ratio. 

Another important variable is represented by the 
so–called tip–speed ratio, which is defined as:  

!(t) = " r (t)R
v(t)

           (3) 

with R  the rotor radius. Cp (!)  represents the power 
coefficient, that is normally represented via a two–
dimensional map [15] . The expression of Eq. (1) 
allows the computation of the signal ! aero(t)  (highlighted 
in Figure 1) by means of the estimated wind speed 
v(t) , and the signals !(t)  and ! r (t) . Due to the 
uncertainty of the wind speed, the estimate of ! aero(t)  is 
considered affected by an unknown measurement 
error, which justifies the robust approaches described 
in Section 3. Moreover, the nonlinearity represented by 
the expressions of Eqs. (1) and (3) motivates the 
required reliable and robust control approaches 
suggested in this work. 

The wind turbine simulator includes a two–mass 
model that is exploited to describe the drive–train 
system depicted in Figure 1, as shown by the following 
linear state–space representation [17]:  
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where the matrices Adt  and Bdt  are defined as:  
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and:  
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where Jr  is the momentum of inertia of rotor shaft, Kdt  
is the torsion stiffness of the drive–train, Bdt  is the 
torsion damping coefficient of the drive–train, Bg  is the 
viscous friction of the generator shaft, Ng  is the gear 
ratio, Jg  is the moment of inertia of the generator shaft, 
!dt  is the efficiency of the drive–train, and !"  is the 
torsion angle of the drive train. Note that the 
benchmark simulator considered in this work does not 
include possible nonlinear gearbox dynamics, as 
addressed e.g. in [21, 28, 29] . However, the data–
driven approach proposed in this study could be able to 
include this further nonlinearity for the design of the 
control solutions. 

Moreover, the generator/converter dynamics are 
described as a first–order transfer function, as 
highlighted by Eq. (7):  

! g (s)
! r (s)

=
" gc

s +" gc

           (7) 

s  being the Laplace operator, 1/! gc  is the time 
constant of the generator/converter, whilst the power 
Pg  produced by the generator is given by Eq. (8):  

Pg (t) =!g" g# g (t)           (8) 

with !g  denoting the efficiency of the generator. More 
details regarding the considered simulator are in [15] . 

Under these assumptions, the complete state–
space description of the wind turbine model has the 
form of Eq. (9):  

 

!xc(t) = fc xc(t),u(t)( )
y(t) = xc(t)

!
"
#

$#
         (9) 

where u(t) = !(t)," g (t)#$ %&
T

, y(t) = Pg (t),! g (t)"# $%
T

, and 

xc(t) = Pg (t),! g (t)"# $%
T

 are the control inputs, the 
monitored output measurements, and the state vector, 
respectively, as shown in Figure 1. Pg (t)  is the 

generator power measurement, whilst fc !( )  represents 
the continuous–time nonlinear function that will be 
approximated via discrete–time models from N  
sampled data u(tk )  and y(tk ) , with the sample index 

 k =1,2,…N  and sampling time Ts , such that tk = kTs , 
as presented in Section 3. The model parameters, and 
the map Cp !,"( )  are chosen in order to represent a 
realistic wind turbine plant [15] . 
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Moreover, the input and output measurements 
available from the wind turbine simulator are assumed 
to be acquired via sensors that introduce additive 
Gaussian noise processes with zero mean and 
standard deviation values summarised in Table 1. 

On the other hand, this benchmark model set–up 
uses a predefined wind speed sequence v(t)  
consisting of real measured wind data of a wind park 
from 0  to 4400 s. Figure 2 highlights that this wind 
speed covers the range from 5  to 20  m/s, with a few 
spikes at 25  m/s, which is a good coverage of normal 
operational for a wind turbine. 

 

Figure 2: The wind speed sequence v(t)  used in the 
benchmark model. 

It is worth noting also that the nonlinearity 
represented by Eqs. (1) and (3) is sketched in Figure 3, 
for different values of !(t)  (i.e. v(t) ) and !(t) . 

2.2. Wind Turbine Baseline Regulator 

With reference to the baseline control system for the 
wind tubine model, Figure 3 also shows the power 
curve that highlights the the so–called partial load 
(region 1) and full load (region 2) working conditions of 
a wind turbine [17]. In fact, the baseline controller 
implemented in the wind turbine simulator works in 
these 2  operating conditions. A schematic diagram of 
the baseline wind turbine controller system is detailed 
in Figure 4. 

 

Figure 4: The details of the baseline wind turbine controller. 

Table 1: Sensor Standard Deviation Values used in the Wind Turbine Simulator 

Variable   v(t)    ! r    ! g   

Std. Dev. Value   0.5  m/s   0.025  rad/s   0.05  rad/s  

Variable   ! g    Pg    !  

Std. Dev. Value   90  Nm   103  W   0.2  deg  

 

 

Figure 3: Examples of (a) power coefficient function and (b) 
generated power (b). 
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In particular, Figure 4 highlights that in partial load 
working condition, the optimal tracking is achieved 
without any pitching of the blades, which are fixed to 0  
degrees. In this case, !  is constant at its optimal value 
!opt , that is defined by the maximal value of the power 
coefficient map Cp  when ! = 0  degrees, as shown in 
Figure 3(a). Therefore, this working condition is 
completely defined by setting ! g = ! r  (i.e. the generator 
torque is equal to the required reference value) with 
pitch angle ! = 0  degrees. Note that this assumption is 
no longer valid when the wind turbine is working in full 

load conditions, when the signal !r (Xi " X)
2

i=1

n

#  is 

determined by the controller. 

The reference torque signal ! g  shown in Figure 1 is 
computed as:  

! r = Kopt" g
2          (10) 

where:  

Kopt =
1
2
!AR3

Cpmax

"opt
3         (11) 

with Cpmax
 the maximal value of Cp , related the to !opt , 

i.e. the optimal tip–speed ratio, as sketched in Figure 
3(a). 

When the power reference Pr = 4.8MW  is achieved 
by the wind turbine system (it corresponds to the so–
called rated power) [17] , and the wind speed v(t)  
increases, the controller is switched to the control 
region 2  (full load condition). In this working condition 
(region 2), the control objective consists of tracking the 
power reference Pr , obtained by regulating ! , such 
that the Cp  is decreased, as shown in Figure 3(a). In a 
traditional industrial control scheme, usually a PI 
controller is used to keep ! g  at the prescribed value by 
changing ! ; the second input of the controller is ! g . 

The baseline controller considered in this work was 
implemented with a sample frequency at 100  Hz, i.e. 
Ts = 0.01  s. In full load conditions, i.e. in region 2 , the 
actuated input !  is controlled via the relations of Eq. 
(12) [15] :  

!(tk ) = !(tk"1)+ kp e(tk )+

+ kiTs " kp( )e(tk"1)
e(tk ) = # g (tk )"# nom

$

%
&&

'
&
&

       (12) 

with the sample index  k =1,2,…,N . The parameters for 
this PI speed controller are ki = 0.5  [1/s] and kp = 3  
[deg/rad/s] [15] . For the case of the wind turbine 
system considered in this paper, the constant ! nom  is 
equal to 162  [rad/s] [17] . 

The control of the further input ! g  shown in Figure 
1, a second PI regulator is used, in the form of Eq. (13):  

! r (tk ) = ! r (tk"1)+ kp e(tk )+

+ kiTs " kp( )e(tk"1)
e(tk ) = Pg (tk )" Pr

#

$
%%

&
%
%

       (13) 

The parameters for this second PI power controller 
are ki = 0.014  and kp = 447 !10

"6  [15]. 

Finally, note that in region 1  (partial load, below the 
rated wind speed) the wind turbine is regulated only by 
means of the torque input ! g (t) . In this situation, the 
blade pitching system is not exploited to achieve the 
optimal power conversion, as highlighted in Figure 4. 
On the other hand, in region 2  (full load, above the 
rated wind speed), the wind turbine control regulates 
both the blade pitch angle !(t)  and the control torque 
! g (t) . The wind turbine Simulink model considered in 
this work includes also saturation blocks that limit the 
values of the control signals, which were not reported 
in Figures 1 and 4. 

3. DATA–DRIVEN AND MODEL–BASED CONTROL 
TECHNIQUES 

This section describes the two approaches 
considered in this paper for obtaining the control laws 
by using data–driven and model–based methodologies. 
Once a suitable mathematical description of the 
monitored process is provided, the derivation of the 
controller structure is sketched in Section 3.1 for the 
fuzzy approach, whilst Section 3.2 proposes a different 
method relying on an adaptive technique. 

3.1. Fuzzy Control Strategy 

The first method proposed in this paper for the 
derivation of the wind turbine controller is based on a 
fuzzy clustering technique to partition the available data 
into subsets characterised by linear behaviours. The 
integration between clusters and linear regression is 
exploited, thus allowing for the combination of fuzzy 
logic techniques with system identification 
methodologies. These tools are already available and 
implemented in the Matlab Fuzzy Modelling and 
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IDentification (FMID) Toolbox recalled below [1]. This 
study proposes the use of TS fuzzy prototypes since 
they are able to model nonlinear dynamic systems with 
arbitrary accuracy [1]. The switching between the local 
affine submodels is achieved through a smooth 
function of the system state defined exploiting the fuzzy 
set theory and its tools. 

In more detail, the fuzzy estimation scheme relies 
on a two–step algorithm, in which, the working regions 
are first defined by exploiting the data fuzzy clustering 
tool, i.e. the Gustafson–Kessel (GK) method [1]. On the 
other hand, the second step performs the identification 
of the controller structure and its parameters using the 
estimation method proposed by the same authors in 
[24]. This estimation approach can be considered as a 
generalisation of the general least–squares method for 
hybrid models. 

Under these assumptions, the TS fuzzy prototypes 
have the form of the model of Eq. (14):  

y(tk+1) = i=1

M

!µi x(tk )( )yi (tk )

i=1

M

!µi x(tk )( )
        (14) 

where yi (tk ) = ai
T x(tk )+ bi , with ai  the parameter vector 

(regressand), and bi  is the scalar offset. x(tk )  
represents the regressor vector containing the delayed 
samples of the signals u(tk )  and y(tk ) . 

Note that the discrete–time description of Eq. (14), 
after the proper estimation of the parameter vector [1], 
will be used for reconstructing the sampled outputs 
Pg (t)  and ! g (t)  of the continuous–time nonlinear 
model of Eq. (9) fed by the sampled input signals !(t)  
and ! g (t) . 

The antecedent fuzzy sets µi  that determine the 
switching among the different submodels i  in Eq. (14) 
are estimated using the input–output data acquired 
from the wind turbine simulator, i.e. the input and 
output sampled signals !(t) , ! g (t) , and ! g (t)  and 
Pg (t) . These data are organised into proper clusters 
where affine relations hold, as described in [1]. The 
consequent parameters ai  and bi  are also identified 
from these input–output data by means of the 
estimation methodology proposed in [24] . This 
identification scheme exploited for the estimation of the 
TS model parameters has been integrated into the 
FMID toolbox for Matlab by the authors. This approach 
is preferable when the TS model of Eq. (14) is used as 

predictor, since it derives the consequent parameters 
via the so–called Frisch scheme, developed for the 
Errors–In–Variables (EIV) structures [24]. 

Once the description of the monitored process is 
obtained in the form of Eq. (14) , the data–driven 
approach for the design of the fuzzy controller is 
exploited. As already remarked, this design procedure 
differs from the approach proposed in [22] . In fact, the 
control design proposed in this paper relies on the so–
called inverse model principle, which is solved using 
the fuzzy identification approach recalled above. 

Note that as explained in the following, the fuzzy 
methodology is exploited twice. First, the fuzzy 
modelling and identification approach is used to derive 
a fuzzy representation of the process under 
investigation, by means of its sampled inputs and 
outputs. Second, by means of this fuzzy model, and in 
particular using its state, the design of the fuzzy 
controller can be achieved. The derivation of the fuzzy 
controller model is performed by employing the states 
of the process fuzzy model. However, the estimation of 
the parameters of the fuzzy controller are achieved by 
minimising the error between the reference power Pr  
and the controlled power Pg (t) , thus leading to 
maximise the wind turbine generated power. 

With reference to stable fuzzy systems, whose 
inverted dynamics are also stable, a nonlinear 
controller can be simply designed by inverting the fuzzy 
model itself. Moreover, when modelling errors and 
disturbances are not present, this controller is able to 
allow for exact tracking with zero steady–state errors. 
However, modelling errors and disturbance effects are 
always present in real conditions, which can be tackled 
by directly identifying the controller model (i.e. the 
inverse controlled model) using the FMID approach. 
Differently from [22] , a robust control strategy is thus 
achieved by minimising a cost function which includes 
the difference between the desired and controller 
outputs, and a penalty on the system stability. In 
general, a nonconvex optimisation problem has to be 
solved, which hampers the direct application of the 
proposed approach. However, the optimisation scheme 
described in [24] can be exploited, which is based on a 
parametrised search technique applied at a higher level 
to formulate the control objectives and constraints. 

Note that, as remarked in Section 2, the fuzzy 
approach proposed in this work is able to provide a 
high–fidelity description of the wind turbine behaviour, 
which already includes uncertainty and disturbance, as 
described e.g. in [17]. The fuzzy approach is thus used 
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again to derive the formulation of the controller in the 
form of TS prototypes. The parameters of the controller 
fuzzy model are estimated by minimising the difference 
between the monitored outputs and the reference ones, 
taking into account the disturbance and the uncertainty 
affecting the wind turbine process. Therefore, the 
approach proposed in this work is able to cope with 
external disturbance modelled in the wind turbine 
benchmark. 

In this way, the estimated controller based on the 
process inverse model and approximated via a fuzzy 
prototype is able to describe the complete behaviour of 
the monitored plant in its different working conditions 
(i.e. partial and full load situations). In fact, the rule–
based fuzzy inference system of Eq. (14) has been 
derived for modelling the wind turbine dynamic process 
of Eq. (9) in its equivalent discrete–time form of Eq. 
(15):  

y(tk+1) = f x(tk ),u(tk )( )         (15) 

and, in particular, the TS fuzzy representation has the 
form of Eq. (16) :  

y(tk+1) = i=1

M

!µi
(m ) x(m ) (tk )( ) ai(m )x(m ) (tk )+ bi(m )( )

i=1

M

!µi
(m ) x(m ) (tk )( )

     (16) 

The current state 

 x(tk ) = [y(tk ),…,y(tk!n+1),u(tk ),…,u(tk!n+1)]
T  and the input 

u(tk+1)  represent the inputs that drive the model of Eq. 
(16) . Its output represents the prediction of the system 
output at the next sample y(tk+1) . The model of Eq. (16) 
requires the estimated membership functions µi

(m ) , the 
state x(m )  and the parameters ai

(m ) , bi
(m )  of the 

controlled system, which are denoted by the 
superscript (m) . 

Therefore, the input u(tk )  generated by the control 
law feeds the monitored process such that its output 
y(tk+1)  asymptotically follows the desired (reference) 
output r(tk+1) . This behaviour is obtained by using the 
inverse model principle, represented by the expression 
of Eq. (17):  

u(tk+1) = f
!1 xc(tk ),r(tk+1)( )        (17) 

that is a nonlinear function of the vector xc(tk )  and 
the reference r(tk+1) . 

However, in general, with reference to Eq. (17) , it is 
difficult to determine the analytical expression of the 
inverse function f !1(") . Therefore, the methodology 
proposed in this work suggested to exploit the identified 
fuzzy TS prototype of Eq. (16) to provide the particular 
state x(m ) (tk )  at each time sample tk . In this way, from 
this relation, the inverse mapping 
u(tk+1) = f

!1 x(c) (tk ),r(tk+1)( )  is directly identified the form 
of Eq. (14) , if the controlled system is stable, and in 
particular in the form of Eq. (18) :  

u(tk+1) = i=1

M

!µi
(c) x(c) (tk )( ) ai(c)x(c) (tk )+ bi(c)( )

i=1

M

!µi
(c) x(c) (tk )( )

      (18) 

where the state  x
(c) (tk ) = [x

(m ) (tk ),r(tk ),…,r(tk!n+1)]
T  and 

the reference signal r(tk+1)  represent the inputs of the 
identified controller model. The model of Eq. (18) 
contains the estimated membership functions µi

(c)  and 
the parameters ai

(c) , bi
(c)  of the identified controller 

model, that are denoted by the superscript (c) . The 
complete scheme is outlined in Figure 5. 

 

Figure 5: The fuzzy controller based on the inverse process 
model principle. 

Note that Figure 4 sketches the general principle of 
the design of the controller for a system with input 
u(tk )  and output y(tk ) . On the other hand, the signal 
r(tk )  represents the generic set–point to be tracked 
(i.e. Pr  or ! nom ) depending on the working region (1 or 
2) and the controlled output (i.e. the sampled signal 
Pg (t)  or ! g (t) ). Under this assumption, the 
identification of the fuzzy controller parameters leads to 
minimise the difference between r(tk )  and y(tk ) . It is 
not required that r(tk )  equals y(tk ) , thus making the 
problem feasible within the selected degree of 
accuracy. 

Figure 5 highlights the series connection between 
the controller models (i.e. the inverse process model 
identified using the fuzzy systems) and the process 
model itself (described by means of fuzzy models), 
which should lead to an identity mapping as in Eq.  
(19): 
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y(tk+1) = f x
(m ) (tk ),u(tk+1)( ) =

= f x(m ) (tk ), f
!1 x(c) (tk ),r(tk+1)( )( ) =

= r(tk+1)

      (19) 

where r(tk+1) = f x
(m ) (tk ),u(tk+1)( )  for a proper value of 

u(tk ) . However, the expression of Eq. (19) holds in 
ideal conditions. Moreover, the model–reality mismatch 
and measurement errors are properly managed by 
means of the fuzzy modelling scheme recalled in 
Section 3. In this way, the difference 
| r(tk+1)! f x(m ) (tk ),u(tk+1)( ) |  can be made arbitrarily small 
by a suitable selection of the model parameters, i.e. the 
fuzzy membership functions µi

(c) , the number of 
clusters M , and the regressand ai

(c) , bi
(c) . 

Moreover, as highlighted in Figure 5, the fuzzy 
model of the process is used for providing the state 
vector x(m ) (tk ) . Therefore, the state of the fuzzy 
controller x(c) (tk )  is updated using the process model 
state x(m ) (tk )  and the reference input r(tk ) . These 
computations are performed using standard matrix 
operations, thus making the algorithm suitable for real–
time implementations [25] . 

As already remarked, the effects of the model 
uncertainty and disturbance lead to a different 
behaviour of the model with respect to controlled 
process, thus resulting in a mismatch between the 
process outputs y(tk )  and their references r(tk ) . This 
mismatch can be compensated by means of the on–
line mechanism described by the expressions of Eqs. 
(16) and (18) . These issues motivate the model–based 
strategy relying on the adaptive algorithm proposed in 
Section 3.2. 

Note finally that the fuzzy controller proposed in this 
section and depicted in Figure 5 will replace the 
baseline wind turbine regulator of Section 2 and 
reported in Figure 4. 

3.2. Adaptive Control Scheme 

 This section describes the model–based adaptive 
control strategy used in connection with the on–line 
estimation scheme presented above. In more detail, 
with reference to the wind turbine system recalled in 
Section 2, adaptive controllers for second order models 
are designed. Moreover, the considered adaptive 
controllers are based on the trapezoidal method of 
discretisation. 

An on–line version of the batch Frisch scheme 
estimation methodology is recalled here estimating the 
parameters of dynamic EIV models. For the derivation 
of the adaptation law, an on–line bias–compensating 
algorithm is also implemented. Thus, the on–line Frisch 
scheme estimation is generalised to enhance its 
applicability to real–time implementations. Moreover, 
by means of an exponential forgetting factor included in 
the adaptation law, the algorithm is able to deal with 
Linear Parameter–Varying (LPV) structures, that are 
exploited in connection with the model–based design of 
the adaptive control scheme, presented in Section 3.2. 
Note that the adaptive algorithm proposed here exploits 
an iterative procedure that starts from an initial 
controller estimated off–line, for example using the 
baseline controller already implemented in the wind 
turbine simulator, and described in Section 2. This 
initial controller model is subsequently adapted on–line 
using the recursive laws in order to track the different 
operating conditions of the process under investigation. 

Thus, the considered scheme is proposed for the 
on–line identification of the process modelled by the 
following transfer function G(z) :  

 

G(z) = A(z
!1)

B(z!1)
=

b1 z
!1 +…+ bnb z

!nb

1+ a1 z
!1 +…+ ana z

!na
      (20) 

where ai , bi , na , and nb  represent the unknown 
parameters and the structure of the model, defining the 
polynomials A(z!1)  and B(z!1) , whilst z  is the discrete–
time complex variable. 

The parameter vector describing the linear 
relationship is given by:  

 
! = a1…ana b1…bnb

"
#

$
%
T

        (21) 

 whose extended version is defined as in Eq. (22) :  

! = 1! T"# $%
T

         (22) 

An equivalent expression of the considered 
relations is obtained by using vector and matrix 
notations, in the form of Eq. (23) :  

! T (tk )" = 0          (23) 

where the regressor vector ! (tk )  is defined as:  

 

! (tk ) = ["y(tk )," y(tk"1),…," y(tk"na ),…

u(tk"1),…,u(tk"nb )]
T       (24) 
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with tk  the sample time, tk = kTs , and  k = 0,1,…,N . 

The Frisch scheme provides the estimates of the 
measurement errors affecting the input and output 
signals u(tk )  and y(tk ) , i.e. ! u  and ! y , and !  for a 
linear time–invariant dynamic system. Note that the 
polynomial orders na  and nb  in the relation of Eq. (20) 
are assumed to be fixed in advance. 

From the Frisch scheme method, the following 
expression is considered:  

 
!" # ! !"( )$ = 0          (25) 

where the noise covariance matrix is given by:  

 

! !" =
# y Ina+1 0

0 # u Inb

$

%

&
&

'

(

)
)         (26) 

which are approximated by the sample covariance 
matrix over N  samples:  

 
! !" # 1

N k=1

N

$" (tk )"
T (tk )         (27) 

Thus, the Frisch scheme aims at providing suitable 
noise variances ! u  and ! y  such that 

 
!" # ! !"( )  results 

to be a matrix singular positive semidefinite as it is 
rank–one deficient. On the other hand, the system 
represented by the expression of Eq. (25) can be 
solved, and !  represents its solution. 

The expression of Eq. (28) is determined:  

!(tk ) "( ) = A(z#1)y(tk )# B(z#1)u(tk )        (28) 

whilst the so–called sample auto–covariance is defined 
in the form of Eq. (29) :  

r! th , tN =
1
N l=1

N

"! l #( )!(tl+h ) #( )        (29) 

where the subscripts l  and h  in Eq. (29) indicate 
time–shifts. 

The on–line control development requires a 
recursive estimate of the model parameters 
represented by the vector !(tk )  of Eq. (20) , while the 
input and output data u(tk )  and y(tk )  acquired on–line 
by the dynamic process of the wind turbine system. In 
fact, the adaptive control law computed at time step k  
is based on the recursive estimate of a model of the 
process, which is derived exploiting the dynamic data 
up to the sample k . In this way, the algorithm of the 

Frisch scheme defined by the expressions of Eqs. (25), 
(27), and (29) is expressed by means of an on–line 
scheme. 

Note that the expressions of Eqs. (27) and (29) are 
required in their recursive form. Therefore, whilst the 
derivation of the on–line form of the covariance matrix 
update is easily obtained as in the form of Eq. (30):  

 
! !" (tk ) =

k #1
k

! !" (tk )+
1
k
" (tk )"

T (tk )       (30) 

the formulation of the auto–covariance expression 
r! th , tk  can be obtained recursively for 1! l ! k  only if the 

approximated expression of Eq. (31) is considered:  

!(tl ) " (tk )( ) # !(tl ) " (tl )( )         (31) 

for l < k . In this way, only the residual !(tk ) " (tk )( )  has 

to be computed at tk  using the lagged data in the 
vector ! (tk )  and the updated estimate ! (tk )  of the 
model parameters. The on–line computation of the 
expression of the auto–covariance matrix of Eq. (32):  

r! th , tk = k "1
k

r! tk , tk"1 +

+ 1
k
!(tk ) # (tk )( )!(tk+h ) # (tk )( )

      (32) 

can be achieved using only the vector !(tk+h ) " (tk )( )  at 

each samples. The initial values !0 ,  ! !" 0 , and r! 0,h  for 
the recursive algorithm are equal to the variables of the 
classic Frisch scheme batch procedure. 

Since variations of system properties have to be 
tracked on–line, in order to cope with time–varying 
systems, this paper considers a further modification of 
the recursive estimation scheme. This point can be 
achieved by placing more emphasis on the more recent 
data, while forgetting the older ones. Therefore, the 
methodology represented by the expressions of Eqs. 
(30) and (32) with the approximation of Eq. (31) is 
implemented by including the so–called exponential 
forgetting factor. This is achieved in practice by 
defining the new expressions of the sample covariance 
and auto–covariance matrices in the form of Eqs. (33) :  

 

H! !"
(tk ) = # ($ )! !" (tk )

h% th , tk = # ($ )r% th , tk

&
'
(

)(
       (33) 

where ! (" )  is a scaling factor. In this way, the updated 
expressions have the form:  
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H! !"
(tk ) = (1#$ )H! !"

(tk#1)+

+$" (tk )"
T (tk )

h% th , tk = (1#$ )h% th , tk#1 +

+$ %(tk ) & (tk )( )%(tk+h ) & (tk )( )

'

(

)
))

*

)
)
)

     (34) 

with 0 < ! <1  representing the forgetting factor. Thus, 
the adaptive Frisch scheme algorithm is implemented 
via Eqs. (34) in three steps. First, !0 ,  ! !" 0 , and r! t0 , th  

with h ! na  are initialised. Moreover, at each recursion 
step, by means of r! th , tk , the noise variances ! u  and 

! y  are computed. Finally, at each recursion step, 

! (tk )  is determined by solving Eq. (25) via the 
expression of Eq. (34) . In this way, the vector !(tk )  
contains the estimates of the model parameter derived 
at time tk . 

Once the parameters !(tk )  of the discrete–time 
linear time–varying model of the nonlinear dynamic 
process of Eq. (9) have been computed at each time 
tk , the adaptive controller is derived as follows. 

With reference to Eq. (20) , the transfer function of 
the time–varying controlled system with na = nb = n = 2  
is considered, whose parameters estimated using the 
on–line identification approach recalled above:  

!(tk ) = â1,â2,b̂1,b̂2"# $%
T

        (35) 

The control law corresponding to the discrete–time 
adaptive controller in its difference form of Eq. (36) :  

!e(tk ) = e(tk )" e(tk"1)

u(tk ) = Kp !e(tk )+
Ts
TI

!e(tk )
2

#

$
%

&

'
( + u(tk"1)

)

*
++

,
+
+

     (36) 

with e(tk )  representing the tracking error, 
e(tk ) = r(tk )! y(tk ) , and r(tk )  the reference (set–point) 
signal. 

The controller parameters Kp  and TI  are here 
time–varying and derived from the on–line model 
parameters in the vector !(tk ) . The control law can be 
represented also in its feedback formulation as 
described by Eq. (37) :  

u(tk ) = q0 e(tk )+ q1e(tk!1)+ u(tk!1)  (37) 

where the new controller variables q0  and q1  (or Kp  
and TI ) are derived from the relations of Eq. (38) :  

q0 = Kp 1+
Ts
2TI

!
"#

$
%&

q1 = 'Kp 1'
Ts
2TI

!
"#

$
%&

(

)

*
*

+

*
*

       (38) 

where the parameters Kp  and TI  are functions of the 
(time–varying) critical gain and the critical period of 
oscillations, respectively, KPu

 and Tu :  

Kp = 0.6KPu
,TI = 0.5Tu         (39) 

that depend on the time–varying model parameters in 
the vector !(tk ) . In particular, when considering a 
second order model described by its (time–varying) 
parameters â2 , â1 , b̂2 , and b̂1 , the variables KPu

 and 

Tu  required by the Ziegler–Nichols method used in this 
work are computed at each time step k  from the 
following relations [14, 2] :  

KPu
= â1 ! â2 !1

b̂2 ! b̂1

Tu =
2"Ts

arccos#
, with # = â2 b̂1 ! â1 b̂2

2b̂2

$

%

&
&

'

&
&

      (40) 

In this way, the adaptive discrete–time linear 
controllers of Eq. (36) or (37) are designed on the basis 
of the time–varying linear model of Eq. (20) estimated 
via the on–line identification scheme from the data of 
the nonlinear wind turbine process of Eq. (9) . 

The adaptive regulators considered in this section 
have been implemented in the Simulink environment, 
integrating also the on–line estimation scheme recalled 
above. 

The experimental set–up employs 3  adaptive 
regulators used for the control of the blade pitch 
angles, and the generator control torque, in the partial 
and full load working conditions. The complete block 
scheme is shown in Figure 6. 

 
Figure 6: Layout of the adaptive control strategy. 



Model-Based Control Techniques for a Wind Turbine Benchmark Model International Journal of Robotics and Automation Technology, 2022, Vol. 9    89 

Moreover, the adaptive control scheme represented 
in Figure 6 will replace the baseline wind turbine 
controller recalled in Section 2 and depicted in Figure 
3. In this way, the adaptive controller should be able to 
manage possible uncertainty affecting the wind turbine 
system, thus allowing to improve the performance of 
the baseline wind turbine control described in Section 
2. 

Note that a bumpless transfer mechanism has been 
considered along with the implementation of the 
switching logic among the partial and full load 
controllers, as shown in Figure 5. However, this 
mechanism is not included in the schemes shown in 
this paper, but it was developed as described e.g. in  
[6, 5] . 

Finally, Section 4 will show the achieved results 
regarding the design and the application of the 
adaptive controller to the data from the wind turbine 
benchmark. 

4. SIMULATIONS, PERFORMANCE ANALYSIS, AND 
COMPARISONS 

This section presents the simulation results 
achieved with the proposed control techniques relying 
on both the data–driven and model–based fuzzy 
modelling technique, which are oriented to the 
identification of the fuzzy controller description and the 
adaptive control strategy using the on–line estimated 
models. The simulations obtained with these regulators 
are summarised in Section 4.1. Moreover, the reliability 
and robustness analysis, followed by extended 
comparisons with respect to different control solutions 
are reported in Sections 4.2 and 4.3, respectively. 

4.1. Controller Performance Tests 

Regarding the fuzzy modelling and identification 
method, the GK clustering algorithm recalled in Section 
3 with a number M = 3  of clusters and delays n = 2 . 
These variables were applied for clustering the first 
data set consisting of Pg (tk ),! g (tk ),"r (tk ){ } . A number of 
samples  k =1,2,…,N  were considered with 
N = 440 !103 . The same number of clusters and shifts 
were exploited for clustering the second data set 
Pg (tk ),! g (tk )," g (tk ){ } . After this procedure, the 

structures of the TS prototypes were derived for each 
output y(tk )  equal to Pg (tk )  and ! g (tk ) . In this way, the 

2  continuous–time outputs y(t) = ! g (t)," g (t)#$ %&  of the 
wind turbine continuous–time model of Eq. (9) are 
approximated by 2  TS fuzzy prototypes of Eq. (14) . 

The performances of the fuzzy models that are 
derived using the procedure described above can be 
evaluated using the so–called Variance Accounted For 
(VAF) parameter [1]. In particular, the TS fuzzy model 
reconstructing the first output has a VAF index bigger 
than 90% , whilst for the second one it was higher than 
99% . This means that the fuzzy prototypes are able to 
describe the behaviour of the controlled process with 
very good precision. These estimated TS fuzzy models 
have been used for the derivation of the fuzzy 
controllers and applied to the considered wind turbine 
benchmark. 

Two fuzzy controllers with 2 inputs and 1 output 
have been used for the control of the wind turbine 
system. As shown in Figure 4, these controllers are 
both fed by the sampled signals Pg (tk ) , ! g (tk )  (i.e. the 
outputs of the wind turbine system) for the generation 
of the sampled signals !(tk )  and ! r (t)  (i.e. the control 
inputs for the wind turbine system). By using the 
inverse model principle, they were estimated exploiting 
the methodology recalled in Section 3.1. Again, the GK 
fuzzy clustering method has lead to 2  fuzzy regulators 
applied to the data sets !(tk ),Pg (tk )," g (tk ){ }  and 

! g (tk ),Pg (tk )," g (tk ){ } , respectively, with M = 3  clusters 
and n = 3  lagged signals. 

The controller performances were verified and 
validated via extensive simulations by considering 
different data sequences generated via the wind 
turbine simulator. Table 2 reports the values of the per–
cent Normalised Sum of Squared tracking Error 
( NSSE% ) index defined in Eq. (41):  

NSSE%=100 k=1

N

! r(tk )" y(tk )( )2

k=1

N

!r2 (tk )
       (41) 

Note that in partial load operation (region 1, !r = 0 ), 
the performance is represented by the comparison 
between the power produced by the generator, 
y(tk ) = Pg (tk ) , with respect to the theoretical maximum 
power output, r(tk ) = Pr . On the other hand, in full load 
operation (region 2), the tracking error is given by the 
difference between the generator speed, y(tk ) =! g (tk )  
and its nominal value, r(tk ) =! nom . The achieved 
results are shown in Figure 7 for the case of the 
identified fuzzy controllers. 
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Figure 7: Generator speed ! g  and power Pg  (bold gray line) 

with respect to their references (dashed black line) ! nom  and 
Pr  with the fuzzy controllers. 

Figure 7 depicts the signal representing the 
controlled generator speed ! g  and the generated 
power Pg  in gray bold gray line with respect to their 
desired values ! nom  and Pr  in dashed black line, 
respectively. It can be noted that in both partial and full 
load conditions, the fuzzy controllers are able to track 
the reference signals, as recalled in Section 2. Note 
that the performance of the fuzzy regulators are better 
than those achieved via the baseline governors, which 
were tuned with frequency approaches described in  
[6, 5] . 

With reference to the second adaptive design 
approach using adaptive solutions, the two outputs 
Pg (t)  and ! g (t)  of the wind turbine continuous–time 
nonlinear model of Eq. (9) were approximated by 2  
second–order time–varying discrete–time models of 
Eq. (20) with 2  inputs and 1  output. Using these 2  
LPV prototypes, the model–based approach for 
determining the adaptive controllers recalled in Section 
3.2 was exploited and applied to the wind turbine 
benchmark of Section 2. Thus, according to Section 
3.2, the parameters of the adaptive controllers were 
computed on–line. In particular, for each output, 2  
second–order ( na = nb = 2 ) time–varying prototypes 
were identified, and the adaptive regulator parameters 
in Eqs. (36) or (37) were computed analytically at each 
time step k . Also in this case, with reference to the 
adaptive controller structure of Eqs. (36) or (37) , the 
parameters of the adaptive controllers were tuned on–
line via the Ziegler–Nichols rules, applied to the LPV 

models. This adaptive procedure is already 
implemented and available in [14, 2] . In this way, if 
both the model on–line parametric identification and the 
regulator recursive tuning procedure are exploited, the 
parameter adaptation mechanisms should lead to good 
control performances. 

The simulations with the adaptive regulators have 
been obtained in the same situation of the fuzzy 
controllers. In this case, 3  on–line regulators were 
exploited for the compensation of both the blade pitch 
angle !(t)  and the generator torque ! g (t) , in region 1 
and region 2. The adaptive algorithm described above 
run with initial values for its parameters reported in 
Table 1. 

Table 2: Initialisation Parameters of the Adaptive 
Algorithm 

Recursive Algorithm Parameter Parameter Value 

! (0)    0.1,0.15,0.20,0.250.30,0.35[ ]T  

 
! !" (0)    10!1 I7  

!    0.995   

 
Also with reference to the model–based adaptive 

approach, Figure 7 depicts both the controlled outputs 
Pg  and ! g  in bold gray lines with respect to their 
reference values Pr  and ! nom , respectively, in dashed 
black lines. As it will be seen in the following, also for 
the case of the adaptive regulators, Figure 8 highlights 
that this approach leads to interesting performances. 

 

Figure 8: Pg  and ! g  tracking capabilities in partial and full 
load conditions with the adaptive controllers.  
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Note that the recursive scheme is able to react 
actively with respect to variations of the working 
conditions of the wind turbine system. In fact, the fuzzy 
method can be considered a passive (even if robust) 
control solution, since the controllers are identified to 
passively tolerate the disturbance acting on the system. 
On the other hand, the adaptive methodology is able to 
counteract any variation or disturbance effects of the 
controlled process, thus representing an active control 
solution. These definitions were provided for different 
frameworks e.g. in [3, 30] . 

In order to analyse the performance of the proposed 
adaptive strategy, Table 2 reports also the NSSE  
values computed for these controllers. 

Table 3: Controllers in Partial and Load Operations: 
NSSE%  values 

Controller Type  Partial Load  Full Load  

Baseline governors   46.68%    20.96%  

Fuzzy controllers   37.17%    17.85%  

Adaptive controllers   28.73%    13.67%   

 
 According to the simulation results summarised in 

Table 2, good tracking capabilities of the suggested 
adaptive controllers seem to be reached, and they are 
better than both the fuzzy regulators and the baseline 
governor, recalled in Section 2. 

4.2. Robustness Analysis 

This section summarises further simulation results 
that concern the evaluation of the achieved 
characteristics of the developed control strategies 
when the effects of uncertainty and disturbance are 
taken into account. 

In particular, the wind turbine benchmark in the 
Matlab and Simulink environments can vary the 
variables and the parameters of the simulated process 
in a statistical way. In this way, it is possible to analyse 
the effects of the model–reality mismatch and the 
measurement errors on the designed controllers. 
Moreover, a Monte–Carlo analysis is also considered 
since it represents a practical approach for validating 
and verifying the features of the developed control 
schemes when applied to the considered wind turbine 
process. The same approach was for suggested for the 
first time by the same authors in [19] and applied to a 
different simulated system. The Monte–Carlo tool is 
very useful in this case since the behaviour of control 
strategies designed assuming the nominal plant 

depends on both the model–reality mismatch and the 
measurement errors. 

Under these considerations, the uncertainty values 
of the parameters and variables of the wind turbine 
simulator considered in this work are summarised in 
Table 3. Therefore, the Monte–Carlo analysis was 
achieved by modelling these parameters and variables 
as Gaussian stochastic processes, with mean values 
equal to the nominal ones, and standard deviations 
corresponding to realistic error values, typical of wind 
turbine models [16] . 

Table 4: Wind Turbine Uncertain Variables 

Model Variable Parameter Standard Deviation 

!(t)    11%  

! g (t)    18%  

! g (t)    21%  

Pg (t)    20%  

Pitch model parameters   49%  

Drivetrain model efficiency   5%  

Converter model time constant   50%  

 
Therefore, for the evaluation of the reliability and 

robustness characteristics of the designed control 
schemes, the average values of the NSSE%  index 
were computed and evaluated in simulation via 1000  
Monte–Carlo runs. Note that, as already remarked in 
Section 3, proper algorithms were exploited for 
guaranteeing the derivation of controller models that 
lead to stable closed loops. On the other hand, the 
stability of the closed loop system when adaptive 
algorithms are exploited was investigated in [9] . 

Note however that, if unstable models should be 
obtained due to large uncertainties of Table 3, gain and 
phase margin requirements have to be included in the 
controller design, as described e.g. in [8] , and the 
controller parameters can be computed using the w –
plane design. In this case, it can be shown that the 
model of Eq. (20) with na = nb = n = 2  is transformed 
into its equivalent description of Eq. (42) :  

Ts (b1Ts ! b2Ts )w
2

(a1Ts
2 !Ts

2 ! a2Ts
2 )w2 + (4a2Ts ! 4Ts )w ! 4 ! 4a2 ! 4a1

+

+
!2b1Ts + 2b2Ts +Ts (2b1 + 2b2 )( )w ! 4b1 ! 4b2

(a1Ts
2 !Ts

2 ! a2Ts
2 )w2 + (4a2Ts ! 4Ts )w ! 4 ! 4a2 ! 4a1

"

" k
w# o !1

e!wL

           (42) 
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Under the validity of the approximation of Eq. (42) , 
which neglects the fast dynamic stable modes, and 
consider only the unstable pole ! o  with the effective 
delay L  (see e.g. the approximation in [26]), the 
adaptive controller parameters are computed via the 
relations of Eq. (43):  

Kp = !" o
Am k

TI = 1
#
2
! $! 2 L $ 1

" o

! =
Am%m +

#
2
Am (Am $1)

(Am
2 $1)L

&

'

(
(
(
((

)

(
(
(
(
(

       (43) 

The relations of Eq. (43) provide the parameters Kp  
and TI  of the adaptive regulator that allow to obtain the 
gain and phase margins (Am ,!m )  for the identified 
(unstable) model of Eq. (42). Note that, even if 
approximations are used to derive the tuning formulas 
of (43), it can be seen that the achievable gain and 
phase margins can be quite close to the specified 
ones, and in general within a 5%  of maximal error. 

After these considerations, Table 4 reports the 
average NSSE%  values by considering the effects on 
the input and output measurements given by the 
alteration of the model variables and parameters 
reported in Table 3. Moreover, Table 4 shows how the 
considered control strategies, and especially the 
adaptive approach, is able to achieve excellent 
performances even in the presence of considerable 
error and uncertainty effects. 

Table 5: Monte–Carlo Analysis for the Considered 
Control Schemes 

Controller Strategy Partial load  
NSSE%  

Full load  
NSSE%  

Baseline governors  48.23%   21.75%  

Fuzzy controllers  37.19%   17.94%  

Adaptive controllers  24.52%   13.72%   

 
The achieved results highlight also that Monte–

Carlo tool represents an effective and practical 
instrument for validating and verifying in simulation the 
design reliability and robustness of the considered 
control methodologies with respect to modelling 
uncertainty and measurement errors. 

4.3. Performance Verification and Comparisons 

The evaluation of the performances of the data–
driven and model–based control strategies considered 

in this paper has been evaluated also on the basis of 
the following performance metrics, borrowed and 
modified from the fault diagnosis framework [19]: 

• False Tracking Rate (FTR): the ratio between the 
total number of wrongly reference tracking and the 
number of simulations; 

• Missed Tracking Rate (MTR): the ratio between 
the total number of missed reference tracking and the 
number of simulations; 

• Correct Tracking Rate (CTR): the ratio between 
the number of correct reference tracking and the 
number of simulations; 

• Mean Tracking Delay (MTD): the delay time 
between the reference tracking and the reference 
timing.  

With reference to the indices above, note that the 
CTR index is complementary to MTR, since they refer 
to the tracking capabilities in the presence of 
uncertainty and disturbance. In contrast, the FTR index 
describes the tracking performance achieved only by 
the control designs, without considering any errors or 
anomalities occurring in the system. On the other hand, 
the MTD index considers the average delay occurring 
during the tracking of the reference signals. 

Also in this case a proper Monte Carlo analysis has 
been performed in order to compute these performance 
metrics and to test the robustness of the considered 
control schemes. A set of 1000  Monte Carlo runs has 
been performed, during which realistic wind turbine 
uncertainties have been considered as described in 
Table 3. Moreover, in addition to the considered fuzzy 
and adaptive strategies, the performance metrics of 
other control schemes are analysed. 

The first alternative approach considered here uses 
a Support Vector machine based on a Gaussian Kernel 
(GKSV) originally developed in [13] and it was 
exploited here for control purpose. The scheme defines 
a vector of features for each working condition of the 
wind turbine, which contains relevant signals obtained 
directly from measurements, filtered measurements or 
their combinations. These vectors are subsequently 
projected onto the kernel of the Support Vector 
Machine (SVM), which provides suitable control 
sequences for all of the defined working conditions. 

The second scheme consists in an Estimation–
Based (EB) solution shown in [31]. In particular, a bank 
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of observers is designed to estimate the control signals 
that have to feed the controlled process. These 
observers were designed on the basis of a system 
linear model. 

The third method relying on Up–Down Counters 
(UDC) was addressed in [18]. These tools, are 
commonly used in the aerospace framework, and they 
provide a different approach to the decision logic 
usually applied to the control. Indeed, the design of the 
control signals involves discrete–time dynamics and is 
not simply a function of the plant working conditions. 

The fourth approach refers to Combined Observer 
and Kalman (COK) filter methods [4]. It relies on an 
observer used as a control signal residual generator, 
when the wind speed is considered a disturbance. This 
observer was designed to decouple the disturbance 
and simultaneously achieve optimal reference tracking 
in a statistical sense. 

Finally, the fifth method is a General Fault Model 
(GFM) scheme, which is a method of automatic design 

[27]. The design strategy consists of three main steps. 
In the first step, a large set of potential controllers is 
designed. In the second step, the most suitable control 
signals to be included in the final system are selected. 
The third step tests the selected set of control laws, on 
the basis of extended comparisons of the estimated 
probability distributions of the tracking errors, evaluated 
with and without uncertainty or disturbance effects. 

The results of the comparative analysis are 
summarised in Tables 6 and 7, tacking into account the 
uncertainty effects reported in Table 4. The different 
control approaches are analysed and compared. 

The results summarised in Tables 6 and 7 serve to 
highlight the efficacy of the considered control solutions 
also with respect to different schemes. In details, both 
the data–driven and model–based approaches seem to 
work better than other approaches, and they have a 
noteworthy performance level considering the mean 
delay time, which is significantly low. Also the FTR and 
the MTR indices are lower than those of other 
approaches. However, for both model–based and 

Table 6: Comparison of GKSV, EB, UDC and COK Control Strategies 

 Working Condition  Index   GKSV   EB   UDC   COK  

 FTR   0.234   0.224   0.123   0.003  

 MTR   0.343   0.333   0.232   0.029  

 CTR   0.657   0.667   0.768   0.971  

Partial  
Load  

 MTD (s)   47.24   44.65   69.03   19.32  

 FTR   0.001   0.001   0.001   0.001  

 MTR   0.002   0.003   0.002   0.003  

 CTR   0.978   0.977   0.987   0.977  

Full  
Load  

 MTD (s)   0.03   0.03   0.04   0.32  

 

Table 7: Comparison of GFM, Fuzzy, Adaptive and Baseline Control Strategies 

  Working Condition  Index   GFM   Fuzzy   Adaptive   Baseline 

 FTR   0.235   0.001   0.018   0.403 

 MTR   0.532   0.003   0.001   0.596 

 CTR   0.468   0.997   0.999   0.404 

Partial  
Load  

 MTD (s)   13.74   0.08   0.08   70.87 

 FTR   0.001   0.001   0.001   0.003 

 MTR   0.002   0.001   0.001   0.003 

 CTR   0.982   0.999   0.999   0.865 

Full  
Load  

 MTD (s)   0.05   0.02   0.01   0.89  
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data–driven designs, optimisation stages are required, 
for example for the selection of the GK clustering 
algorithm. Furthermore, the GKSV approach presents 
quite high delays, with big FTR and MTR. EB has 
comparable performance with respect to GKSV in 
terms of FTR, CTR and MTR, but with lower MTD. 
UDC can show quite high FTR in both the working 
conditions. COK and GFM have similar performances, 
with important MTD, FTR and MTR. However, in 
general, the proposed data–driven and model–based 
approaches are able to achieve good tracking 
capabilities, with minimum MTD, and higher CTR with 
respect to the other control methodologies. 

5. CONCLUSION 

 The work addressed two control examples for a 
wind turbine dynamic simulator, since it was proposed 
as benchmark representing a complex dynamic system 
driven by stochastic disturbances and uncertain load 
conditions. Moreover, the aerodynamic models of these 
processes is nonlinear, thus making their modelling a 
challenging problem. Therefore, the design of control 
strategies for these complex processes has to consider 
these aspects. In this way, the paper analysed the 
design of two data–driven and model–based control 
methodologies, which represented viable, reliable, and 
robust control schemes for the proposed wind turbine 
benchmark. Experiments with the wind turbine 
simulator and the Monte–Carlo tool were the practical 
instruments for assessing the most important 
characteristics of the developed control methodologies, 
when the model–reality mismatch and measurement 
errors were also considered. The analysed control 
methods were finally compared with respect to different 
control solutions proposed in the related literature, in 
order to highlight advantages and drawbacks of the 
developed strategies. The obtained results showed that 
the considered solutions represent viable, robust and 
reliable control applications to real wind turbine 
systems. 
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