7,218 research outputs found

    Learning from imbalanced data in face re-identification using ensembles of classifiers

    Get PDF
    Face re-identification is a video surveillance application where systems for video-to-video face recognition are designed using faces of individuals captured from video sequences, and seek to recognize them when they appear in archived or live videos captured over a network of video cameras. Video-based face recognition applications encounter challenges due to variations in capture conditions such as pose, illumination etc. Other challenges in this application are twofold; 1) the imbalanced data distributions between the face captures of the individuals to be re-identified and those of other individuals 2) varying degree of imbalance during operations w.r.t. the design data. Learning from imbalanced data is challenging in general due in part to the bias of performance in most two-class classification systems towards correct classification of the majority (negative, or non-target) class (face images/frames captured from the individuals in not to be re-identified) better than the minority (positive, or target) class (face images/frames captured from the individual to be re-identified) because most two-class classification systems are intended to be used under balanced data condition. Several techniques have been proposed in the literature to learn from imbalanced data that either use data-level techniques to rebalance data (by under-sampling the majority class, up-sampling the minority class, or both) for training classifiers or use algorithm-level methods to guide the learning process (with or without cost sensitive approaches) such that the bias of performance towards correct classification of the majority class is neutralized. Ensemble techniques such as Bagging and Boosting algorithms have been shown to efficiently utilize these methods to address imbalance. However, there are issues faced by these techniques in the literature: (1) some informative samples may be neglected by random under-sampling and adding synthetic positive samples through upsampling adds to training complexity, (2) cost factors must be pre-known or found, (3) classification systems are often optimized and compared using performance measurements (like accuracy) that are unsuitable for imbalance problem; (4) most learning algorithms are designed and tested on a fixed imbalance level of data, which may differ from operational scenarios; The objective of this thesis is to design specialized classifier ensembles to address the issue of imbalance in the face re-identification application and as sub-goals avoiding the abovementioned issues faced in the literature. In addition achieving an efficient classifier ensemble requires a learning algorithm to design and combine component classifiers that hold suitable diversity-accuracy trade off. To reach the objective of the thesis, four major contributions are made that are presented in three chapters summarized in the following. In Chapter 3, a new application-based sampling method is proposed to group samples for under-sampling in order to improve diversity-accuracy trade-off between classifiers of the ensemble. The proposed sampling method takes the advantage of the fact that in face re-identification applications, facial regions of a same person appearing in a camera field of view may be regrouped based on their trajectories found by face tracker. A partitional Bagging ensemble method is proposed that accounts for possible variations in imbalance level of the operational data by combining classifiers that are trained on different imbalance levels. In this method, all samples are used for training classifiers and information loss is therefore avoided. In Chapter 4, a new ensemble learning algorithm called Progressive Boosting (PBoost) is proposed that progressively inserts uncorrelated groups of samples into a Boosting procedure to avoid loosing information while generating a diverse pool of classifiers. From one iteration to the next, the PBoost algorithm accumulates these uncorrelated groups of samples into a set that grows gradually in size and imbalance. This algorithm is more sophisticated than the one proposed in Chapter 3 because instead of training the base classifiers on this set, the base classifiers are trained on balanced subsets sampled from this set and validated on the whole set. Therefore, the base classifiers are more accurate while the robustness to imbalance is not jeopardized. In addition, the sample selection is based on the weights that are assigned to samples which correspond to their importance. In addition, the computation complexity of PBoost is lower than Boosting ensemble techniques in the literature for learning from imbalanced data because not all of the base classifiers are validated on all negative samples. A new loss factor is also proposed to be used in PBoost to avoid biasing performance towards the negative class. Using this loss factor, the weight update of samples and classifier contribution in final predictions are set according to the ability of classifiers to recognize both classes. In comparing the performance of the classifier systems in Chapter 3 and 4, a need is faced for an evaluation space that compares classifiers in terms of a suitable performance metric over all of their decision thresholds, different imbalance levels of test data, and different preference between classes. The F-measure is often used to evaluate two-class classifiers on imbalanced data, and no global evaluation space was available in the literature for this measure. Therefore, in Chapter 5, a new global evaluation space for the F-measure is proposed that is analogous to the cost curves for expected cost. In this space, a classifier is represented as a curve that shows its performance over all of its decision thresholds and a range of possible imbalance levels for the desired preference of true positive rate to precision. These properties are missing in ROC and precision-recall spaces. This space also allows us to empirically improve the performance of specialized ensemble learning methods for imbalance under a given operating condition. Through a validation, the base classifiers are combined using a modified version of the iterative Boolean combination algorithm such that the selection criterion in this algorithm is replaced by F-measure instead of AUC, and the combination is carried out for each operating condition. The proposed approaches in this thesis were validated and compared using synthetic data and videos from the Faces In Action, and COX datasets that emulate face re-identification applications. Results show that the proposed techniques outperforms state of the art techniques over different levels of imbalance and overlap between classes

    Separation of pulsar signals from noise with supervised machine learning algorithms

    Full text link
    We evaluate the performance of four different machine learning (ML) algorithms: an Artificial Neural Network Multi-Layer Perceptron (ANN MLP ), Adaboost, Gradient Boosting Classifier (GBC), XGBoost, for the separation of pulsars from radio frequency interference (RFI) and other sources of noise, using a dataset obtained from the post-processing of a pulsar search pi peline. This dataset was previously used for cross-validation of the SPINN-based machine learning engine, used for the reprocessing of HTRU-S survey data arXiv:1406.3627. We have used Synthetic Minority Over-sampling Technique (SMOTE) to deal with high class imbalance in the dataset. We report a variety of quality scores from all four of these algorithms on both the non-SMOTE and SMOTE datasets. For all the above ML methods, we report high accuracy and G-mean in both the non-SMOTE and SMOTE cases. We study the feature importances using Adaboost, GBC, and XGBoost and also from the minimum Redundancy Maximum Relevance approach to report algorithm-agnostic feature ranking. From these methods, we find that the signal to noise of the folded profile to be the best feature. We find that all the ML algorithms report FPRs about an order of magnitude lower than the corresponding FPRs obtained in arXiv:1406.3627, for the same recall value.Comment: 14 pages, 2 figures. Accepted for publication in Astronomy and Computin

    On the class overlap problem in imbalanced data classification.

    Get PDF
    Class imbalance is an active research area in the machine learning community. However, existing and recent literature showed that class overlap had a higher negative impact on the performance of learning algorithms. This paper provides detailed critical discussion and objective evaluation of class overlap in the context of imbalanced data and its impact on classification accuracy. First, we present a thorough experimental comparison of class overlap and class imbalance. Unlike previous work, our experiment was carried out on the full scale of class overlap and an extreme range of class imbalance degrees. Second, we provide an in-depth critical technical review of existing approaches to handle imbalanced datasets. Existing solutions from selective literature are critically reviewed and categorised as class distribution-based and class overlap-based methods. Emerging techniques and the latest development in this area are also discussed in detail. Experimental results in this paper are consistent with existing literature and show clearly that the performance of the learning algorithm deteriorates across varying degrees of class overlap whereas class imbalance does not always have an effect. The review emphasises the need for further research towards handling class overlap in imbalanced datasets to effectively improve learning algorithms’ performance

    Concept Drift Detection in Data Stream Mining: The Review of Contemporary Literature

    Get PDF
    Mining process such as classification, clustering of progressive or dynamic data is a critical objective of the information retrieval and knowledge discovery; in particular, it is more sensitive in data stream mining models due to the possibility of significant change in the type and dimensionality of the data over a period. The influence of these changes over the mining process termed as concept drift. The concept drift that depict often in streaming data causes unbalanced performance of the mining models adapted. Hence, it is obvious to boost the mining models to predict and analyse the concept drift to achieve the performance at par best. The contemporary literature evinced significant contributions to handle the concept drift, which fall in to supervised, unsupervised learning, and statistical assessment approaches. This manuscript contributes the detailed review of the contemporary concept-drift detection models depicted in recent literature. The contribution of the manuscript includes the nomenclature of the concept drift models and their impact of imbalanced data tuples

    Cost-sensitive decision tree ensembles for effective imbalanced classification

    Get PDF
    Real-life datasets are often imbalanced, that is, there are significantly more training samples available for some classes than for others, and consequently the conventional aim of reducing overall classification accuracy is not appropriate when dealing with such problems. Various approaches have been introduced in the literature to deal with imbalanced datasets, and are typically based on oversampling, undersampling or cost-sensitive classification. In this paper, we introduce an effective ensemble of cost-sensitive decision trees for imbalanced classification. Base classifiers are constructed according to a given cost matrix, but are trained on random feature subspaces to ensure sufficient diversity of the ensemble members. We employ an evolutionary algorithm for simultaneous classifier selection and assignment of committee member weights for the fusion process. Our proposed algorithm is evaluated on a variety of benchmark datasets, and is confirmed to lead to improved recognition of the minority class, to be capable of outperforming other state-of-the-art algorithms, and hence to represent a useful and effective approach for dealing with imbalanced datasets
    corecore