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Abstract

Real-life datasets are often imbalanced, that is, there are significantly more
training samples available for some classes than for others, and consequently
the conventional aim of reducing overall classification accuracy is not appropri-
ate when dealing with such problems. Various approaches have been introduced
in the literature to deal with imbalanced datasets, and are typically based on
oversampling, undersampling or cost-sensitive classification. In this paper, we
introduce an effective ensemble of cost-sensitive decision trees for imbalanced
classification. Base classifiers are constructed according to a given cost matrix,
but are trained on random feature subspaces to ensure sufficient diversity of
the ensemble members. We employ an evolutionary algorithm for simultane-
ous classifier selection and assignment of committee member weights for the
fusion process. Our proposed algorithm is evaluated on a variety of benchmark
datasets, and is confirmed to lead to improved recognition of the minority class,
to be capable of outperforming other state-of-the-art algorithms, and hence to
represent a useful and effective approach for dealing with imbalanced datasets.

Keywords: machine learning, multiple classifier system, ensemble classifier,
imbalanced classification, cost-sensitive classification, decision tree, classifier
selection, evolutionary algorithms, classifier fusion

1. Introduction

Numerous approaches have been introduced in the literature aiming to pro-
vide effective and efficient classification systems [19]. However, it is also well
known that according to the no free lunch theory there is no universal classifier
that performs best for all decision problems [41].
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Canonical machine learning methods are based on the idea of selecting the
single best classifier from a set of available models. However, making a decision
based on solely a single classifier also discards the possibility that other models
may also offer a valuable contribution. Methods that are trying to exploit the
strengths of several models are known as multiple classifier systems (MCSs) or
classifier ensembles [29], and are one of the most promising research directions
in the current field of machine learning and pattern recognition.

There are typically two main challenges when constructing MCSs: how to
select classifiers to form an ensemble, and how to fuse the individual decisions
of the base classifiers into a single decision. Poor selection may undermine the
whole process of designing MCSs, while a good strategy for building an ensem-
ble should guarantee an improvement in its diversity. This can be achieved by
using different partitions of the dataset or by generating a number of datasets
through data splitting, a cross-validated committee, bagging, or boosting [29],
so that the generated base classifiers, since trained on different inputs, would
be complementary. Among the employed approaches, constructing random sub-
spaces [17] is one of the most generic ones, and typically works well with various
types of classifiers.

Classifier fusion methods can be categorised into approaches that are based
on classifier labels and those that utilise discriminant analysis. The former
includes various voting algorithms [4; 46]. While (majority) voting schemes are
among the most popular fusion methods, often better results are obtained by
approaches that consider the importance of decisions coming from particular
committee members [28; 39].

For methods based on discriminant analysis, the main form of discriminants
is a posterior probability, although outputs of neural networks or other functions
whose values are used to establish the decision of the classifier (so called sup-
port functions) can also be considered. While simple aggregation methods (like
minimum, maximum, product, mean) can be used, they are typically subject to
rather restrictive conditions [12] which limit their practical use. Better results
can be achieved by designing fusion models based on a training procedure to
arrive at so-called trained fusers [44].

The underlying class distribution can play a crucial role in the derivation of
effective classifiers. In many cases the distribution is roughly equal among all
the classes but this does not hold for every application. When one of the classes
(referred to as the majority class) significantly outnumbers the remaining (mi-
nority) class(es), we deal with a problem known as imbalanced classification [16]
which occurs in a variety of domains including anomaly detection [20], fault di-
agnosis [47], medical data analysis [23], drug design [22], SPAM detection [48]
and face recognition [32]. While the performance of classification algorithms
is typically evaluated using predictive accuracy, clearly this is not appropriate
when the data is imbalanced as it would favour the correct identification of
majority class samples.

In this paper, we propose, based on our earlier work [25; 27], a classifier
ensemble design algorithm which is built on the basis of a cost matrix for im-
proved minority class prediction. As base classifiers we utilise cost-sensitive
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decision trees due to their susceptibility to improvement via the ensemble ap-
proach, while we employ an evolutionary algorithm to simultaneously perform
classifier selection and fusion.

Instead of using a fixed cost matrix we derive its parameters via ROC anal-
ysis. To gain a deeper insight into the influence of cost matrices on the minority
class recognition, we investigate several imbalanced datasets with different levels
of imbalance to identify a useful pattern for setting the cost matrix.

The main contributions of this paper are as follows:

• A new ensemble pruning method based on the combination of decision
trees trained on different sets of features.

• Use of an evolutionary algorithm for simultaneous classifier selection and
fusion to promote the best base classifiers and boost the recognition rate
of the minority class.

• In-depth analysis of the influence of the cost matrix parameters and data
imbalance ratio on the performance of the proposed ensemble based on
ROC analysis.

The remainder of the paper is organised as follows. In Section 2 we present
the pattern recognition background that our approach is based on, while Sec-
tion 3 discusses the problem of imbalanced classification. Our new algorithm
is introduced in detail in Section 4. Experimental results are reported and
discussed in Section 5, while Section 6 concludes the paper.

2. Model of pattern recognition task

The aim of pattern recognition is to assign a given sample to one of a number
of pre-defined categories. A pattern recognition algorithm Ψ thus maps the
feature space X to the set of class labels M

Ψ : X → M. (1)

This mapping is typically established on the basis of examples from a training
set which contains learning examples, i.e. observations of features together with
their correct classifications. Although it is important for the performance of a
classifier, we do not focus on feature selection in this paper, but assume that
the set of features is given by an expert or chosen by an appropriate feature
selection method [11].

Let’s assume that we have n classifiers Ψ(1), Ψ(2), ..., Ψ(n). For a given
object x, each of them makes a decision regarding class i ∈ M = {1, ..., M}.
The combined classifier Ψ̄ then makes a decision according to a weighted voting
rule

Ψ̄
(

Ψ(1)(x), Ψ(2)(x), ..., Ψ(n)(x)
)

= arg max
j∈M

n
∑

l=1

δ
(

j, Ψ(l)(x)
)

w(l), (2)
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where

δ (j, i) =

{

0 if i 6= j

1 if i = j
, (3)

and w(l) is the weight assigned to the l-th classifier. The weights used in Eq. (2)
play a key-role in establishing the quality of Ψ̄ [42]. In this paper, we construct
an ensemble with decision tree classifiers as base classifiers. Therefore, it is not
possible to use support functions [45] and we consequently revert to a weighted
voting approach which has been shown to behave better than canonical voting
methods [43].

3. Imbalanced classification

The performance and quality of machine learning algorithms is convention-
ally evaluated using predictive accuracy. However, this is not appropriate when
the data under consideration is strongly imbalanced, since the decision boundary
may be strongly biased towards the majority class, leading to poor recognition
of the minority class as illustrated in Fig. 1.

Figure 1: Example of bias towards the majority class in linear classification of an imbalanced
problem. The established decision boundary (line) would give poor prediction for minority
class samples.

Class imbalance not only makes the learning task more complex [38], it is
usually accompanied also by other difficulties such as:

• Small sample size: In many cases the number of minority class samples
is insufficient to properly train a classifier, hence resulting in poor gen-
eralisation and possibly leading to overfitting. Even though it has been
shown, that when the number of minority samples is sufficient the uneven
class distribution itself does not cause a significant drop in recognition
rate [10], often this is not possible for real-life classification problems.

• Small disjuncts: This problem is connected to the previous one, as it
may happen that the minority class is represented by a number of subcon-
cepts, meaning that its objects form several spread “chunks” of data [34].
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This leads to difficulties due to the lack of uniform structure in the mi-
nority class and low sample count in each of the subconcepts.

• Class overlapping: When discriminative rules are constructed in such a
way as to minimise the number of misclassified instances, this may lead to
poor performance for objects in the overlap area to the minority class [14].

Techniques that address the problems associated with imbalanced datasets
can in general be divided into three groups [33]:

• Data level approaches work, in a pre-processing stage, directly on the
data space, and attempt to re-balance the class distributions. They are
independent of the actual classification stage, and hence can be employed
flexibly. The most popular approaches employ an oversampling strategy
that introduces artificial objects into the data space. The best known tech-
nique here is SMOTE [7], although more recently, improved alternatives
such as ADASYN [15] (which also considers which objects are the most
difficult to learn) or RAMO [9] (which uses a probabilistically directed
approach) have been proposed. Oversampling methods however may also
lead to other problems, such as class distribution shift when running too
many iterations (since new artificial objects are being created on the basis
of previously introduced samples).

• Classifier level approaches try to adapt existing algorithms to the prob-
lem of imbalanced datasets and bias them towards favouring the minority
class. Here, some more in-depth knowledge about the nature of the used
predictors and factors that cause its failure in minority class recognition
is required. One possibility is to perform one-class classification, which
can learn the concepts of the minority class by treating majority objects
as outliers [26].

• Cost-sensitive approaches can use both data modifications (by adding a
specified cost to the misclassification) and modifications of the learning al-
gorithms (to adapt them to the possibility of misclassification). A higher
misclassification cost is assigned for minority class objects and classifica-
tion performed so as to reduce the overall learning cost. Costs are often
specified in form of cost matrices such as the one presented in Table 1.
The main disadvantage of cost-sensitive methods is the lack of knowledge
on how to set the actual values in the cost matrix, since in most cases this
is not known from the data nor given by an expert.

MCSs have also been adapted to account for possible class imbalances [40],
and typically combine an MCS algorithm with one of the above techniques. Ex-
amples of a combination of oversampling and classifier ensembles are SMOTE-
Bagging [40] and SMOTEBoost [8] which introduce new objects into each of
the bags / boosting iterations separately. IIvotes [5] is another interesting ap-
proach which fuses a rule-based ensemble with a SPIDER pre-processing scheme
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Table 1: Example of a cost matrix for binary problems. C(1,0) stands for cost associated with
a minority class object assigned to the majority class, while C(0,1) represents the opposite
misclassification scenario.

X
X

X
X

X
X

X
X

X
X

true
predicted

majority class minority class

majority class C(0,0) C(0,1)
minority class C(1,0) C(1,1)

so as to be more robust with respect to atypical data distributions in minor-
ity classes and to automatically find an optimal number of bags. A fusion of
MCSs and one-class classifiers constructed with respect to maintaining their
diversity has been shown to be effective for imbalanced classification [21]. Cost-
sensitive MCSs are mostly based on adjusting the object weights in a boosting
schema [37], although schemes based on cost-sensitive decision trees have also
been exploited [24]. EasyEnsemble [31] uses bagging as the main concept, but
since for each of the bags AdaBoost is used as the base model, it can be viewed
as an ensemble of ensembles.

4. Proposed cost-sensitive MCS

The problem we are addressing in this paper is how to select and combine
individual classifiers of an ensemble with respect to misclassification cost. Our
aim is to create an ensemble with minimal classification error P within the
cost bounds of a cost matrix C. For this purpose, we require a pool of base
classifiers at our disposal. For this, we propose a method to create a start-up
pool of classifiers for further evaluation using an evolutionary approach.

As base classifier we have chosen a cost-sensitive classification tree, that has
its roots in the idea of the EG2 algorithm [35] whose decision tree induction is
based on the misclassification cost rate proposed in [6]. A local sequential search
at each node is performed [30]. This way, we can boost the recognition rate of
the majority class by assigning a greater cost to a situation when a minority
object is misclassified. An example of the differences in outputs of canonical and
cost-sensitive decision trees for an imbalanced problem is illustrated in Fig. 2.

To create a representative pool of classifiers, we use a random subspace
approach [17], which randomly divides the feature space into several subspaces
and trains individual classifiers in each of them. This ensures that the pool is
diverse and contains heterogeneous rather than homogenous classifiers.

In order to select individual classifiers for the ensemble, we employ an evo-
lutionary algorithm (EA). An individual in the EA population represents a
classifier ensemble

Ch = [W ], (4)

where component W represents the weights assigned to each of the base classi-
fiers

W = [W1, W2, ..., WL], (5)

6



Figure 2: An example of improvement of minority class recognition using a cost-sensitive
decision tree for a toy problem (the same data as in Fig. 1).

and is a real-valued vector with values in [0;1]. When a classifier is not se-
lected in a particular individual its weight is automatically set to 0. In earlier
work [27], we have used a maximal size of the ensemble, which required the
number of ensemble members as a parameter. Our proposed algorithm lifts this
restriction. The chromosome always have size equal to L, but when the weight
assigned to the l-th classifier drops to 0, the classifier takes no part in the final
decision (hence by this we apply the classifier selection procedure). Therefore,
the algorithm automatically adjusts the size of the committee.

Our proposed algorithm is given, in pseudo-code form, in Algorithm 1.
The control parameters of the EA are as follows:

• Nc - the upper limit of algorithm cycles,

• Np - the population quantity,

• β - the mutation probability,

• γ - the crossover probability,

• ∆m - the mutation range factor,

• V - the upper limit of algorithm iterations without quality improvement.

In the following, we detail each of the steps of the algorithm:
Population generation: We generate a set of members in such a way that

all constraints and implications resulting from the model’s logic and the input
parameter values are preserved.

Population assessment: At the beginning, for each member of the popula-
tion, the value of the fitness function is calculated according to Eq. (2).

Choosing elite members: Members with the highest fitness values are taken
from the population and carried over to the descendant population without
mutation, crossover or selection.
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Algorithm 1 Evolutionary ensemble algorithm.

Input:

U → set of classifiers

Output:

Q → ensemble after pruning
W → set of weights assigned to classifiers

P = 1.0
B = empty

Create initial population
Select individuals for evaluation
for all selected individuals do

if fitness(W) < P then

Replace the overall ensemble error with the lower one
Replace the best solution with the current one

end if

end for

while termination conditions not satisfied do

Select pairs for crossover from best-ranked individuals
Apply crossover operator
Apply mutation operator
Select new individuals
for all selected individuals do

if fitness(W) < P then

Replace the overall ensemble error with the lower one
Replace the best solution with the current one

end if

end for

Create new population
end while
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Mutation: The mutation operator changes a selected (one at a time) member
of the population by applying some random changes to its chromosome. The
chromosome is altered with a probability that is changed during the optimisation
progress. In the early phase of the optimisation, a special emphasis is put on
searching for possibly best areas of the weights values, while later on attention
is shifted to exploring the most promising area for optimal settings. Mutation
involves adding a vector of numbers randomly generated according to a normal
density distribution (with mean of 0 and standard deviation of ∆m).

Crossover: The crossover operator generates one offspring member from two
parents. Offsprings are obtained according to the two-point rule.

Selection of new population: A selection of individuals from the population is
formed by merging the descendant population and a set of individuals created by
mutation and crossover. The probability of selection Ps of a particular individual
is proportional to the value of its fitness. A tournament selection scheme is
employed [3].

The weighted voting rule is used to combine the base classifiers following
Eq. (2). The ensemble classification error, calculated on the training set, serves
as fitness function. Termination conditions can be adjusted; we use the num-
ber of iterations without result improvement. The number of classifiers in the
committee after the pruning procedure is automatically adjusted by the EA.

5. Experimental investigations

In this section, we present a thorough experimental investigation to examine
the behaviour of our proposed cost-sensitive ensemble. Besides a comparison
between our new algorithm and several state-of-the-art methods, we also exam-
ine the influence of the cost matrix setting on the overall classification accuracy.
For this purpose, we apply ROC analysis [13] where as the cut-off points we
use the parameter assigned as misclassification cost of the minority class, de-
noted as Cminority . This way we may search for correlations between the cost
parameter and the overall classification accuracy. The employed cost matrix is
given in Table 2. We investigate the performance of our algorithm with three
different imbalance ratios to see if there is any correlation between the object
distribution disproportion and the optimal value of Cminority in Table 2.

Table 2: Cost matrix used for the experiments.
X

X
X

X
X

X
X

X
X
X

true
predicted

majority class minority class

majority class 0 1
minority class Cminority 0

5.1. Datasets

For our experiments, we have selected six benchmark binary imbalanced
datasets taken from the KEEL Repository [1]. Details of the employed datasets
are given in Table 3.
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Table 3: Datasets used in the experiments.

dataset # objects # features
Pima 768 8
Yeast1 1484 8
Vehicle2 846 18
Segment0 2308 19
Page-blocks0 5472 10
Shuttle-c0-vs-c4 1829 9

5.2. Experimental setup

A total of 50 cost-sensitive decision trees classifiers were trained using the
random subspace approach, consisting of 40% of the original feature space.

As the ensemble pruning procedure is based on an EA, the employed pa-
rameters may have a crucial impact on its quality. Therefore, to establish the
values of optimisation parameters we ran a grid search procedure [36] over the
following intervals of parameters values:

• Nc ∈ [100, 2000], with step-size 100;

• Np ∈ [10, 200], with step-size 5;

• β ∈ [0.1, 0.9] with step-size 0.1;

• γ ∈ [0.1, 0.9] with step-size 0.1;

• ∆m ∈ [0.1, 0.9] with step-size 0.1;

• V ∈ [10, 100] with step-size 10.

The intervals for the examined parameter values were dictated by our pre-
vious experience with evolutionary-based ensembles [18; 24; 27]. The values,
which returned the best final results for the weights optimisation, were as fol-
lows: Nc = 1000, Np = 50, β = 0.7, γ = 0.3, ∆m = 0.2, and V = 20.

We compared our method to SMOTEBagging, SMOTEBoost, IIvotes and
EasyEnsemble. In addition, we implemented a single cost-sensitive tree, and
the cost-sensitive ensemble from our previous work [27], in which the classifiers
weights were set according to their individual accuracies and with a maximum
ensemble size of 5. Both of these used the same cost matrices as derived for the
proposed committee.

A combined 5x2 CV F test [2] was carried out to assess the statistical sig-
nificance of the obtained results with classifier sensitivity as the tested value.

Since we would like to examine the behaviour of our proposed method at
different levels of imbalance, we derived three new datasets using a random
undersampling method so that each of the six datasets were examined at levels
of imbalance ratios of 1:10, 1:25, and 1:50.

10



5.3. Experimental results

In the following, we present the classification results for the three imbalance
ratios and the results of the ROC analysis for each of the benchmarks from
which we derive the Cminority parameter used then in the classifier comparison
step. The tested values were taken from the range [5;100] with a stepsize of 5.

The search for the optimal cut-off parameter was performed by measuring
the distance from the point on the ROC curve represented by this parameter
to the point representing the optimal performance (i.e., 100% sensitivity and
specificity - the left top corner of the ROC plot). The cut-off point with the
minimal distance was selected as the optimal setting for the cost matrix.

5.3.1. Imbalance ratio 1:10

The ROC plots for an imbalance ration of 1:10 are given in Fig. 3. From
the ROC analysis we can derive the best value of Cminority for each of the
benchmarks; the derived values are listed in Table 4.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
ru

e 
po

si
tiv

e 
ra

te

False positive rate

ROC for Pima

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
ru

e 
po

si
tiv

e 
ra

te

False positive rate

ROC for Yeast1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
ru

e 
po

si
tiv

e 
ra

te

False positive rate

ROC for Vehicle2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
ru

e 
po

si
tiv

e 
ra

te

False positive rate

ROC for Segment0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
ru

e 
po

si
tiv

e 
ra

te

False positive rate

ROC for Page-blocks0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
ru

e 
po

si
tiv

e 
ra

te

False positive rate

ROC for Shuttle-c0-vs-c4

Figure 3: ROC plots for the six benchmark datasets with imbalance ratio 1:10.
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Table 4: Optimal Cminority values derived from the ROC analysis (imbalance ratio 1:10).

Name Cminority

Pima 20
Yeast 25
Vehicle 30
Segment 20
Page-blocks 25
Shuttle 20

Table 5: Classification results on the benchmark datasets with imbalance ratio 1:10. Every sec-
ond line indicates the methods compared to the examined one was found to be statistically sig-
nificantly better (ST=Single cost-sensitive tree, WE=MCS from [27], SBg=SMOTEBagging,
SBst=SMOTEBoost, IIV=IIvotes, EE=EasyEnsemble, PE=Proposed, ALL means all other
methods).

Dataset Single CSTree [30] MCS from [27] SMOTEBagging [8] SMOTEBoost [8] IIvotes [5] EasyEnsemble [31] Proposed
SE SP SE SP SE SP SE SP SE SP SE SP SE SP

Pima 65.21 87.12 76.35 94.21 84.01 96.12 84.01 96.12 82.43 95.13 81.87 98.45 85.23 97.10
- ST ST,WE,IIV,EE ST,WE,IIV,EE ST,WE,EE ST,WE ALL

Yeast 59.23 93.11 67.21 96.42 69.00 98.32 70.25 97.23 69.65 95.32 68.23 96.34 70.25 97.23
- ST ST,WE,IIV,EE ST,WE,IIV,EE ST,WE ST,WE ST,WE,IIV,EE

Vehicle 78.87 84.86 82.11 86.75 85.46 87.65 89.80 90.04 90.12 89.32 87.10 87.67 88.23 89.23
- ST ST,WE ALL ST,WE,SBg,EE,PE ST,WE ST,WE,SBg,EE

Segment 67.21 78.35 70.01 83.11 71.09 82.32 73.40 83.73 73.54 82.89 74.02 083.73 75.24 81.94
- ST ST,WE ST,WE,SBg ST,WE,SBg SBg,ST,WE ALL

Page-blocks 73.22 79.89 75.25 79.59 77.43 77.89 77.98 79.34 81.87 79.00 80.26 82.56 82.95 80.23
- ST ST,WE ST,WE,SBg ST,WE,SBg,SBst ST,WE,SBg,SBst ALL

Shuttle 80.87 86.64 84.24 89.68 87.56 90.23 89.54 90.23 88.34 87.57 89.31 89.23 92.31 89.23
- ST ST,WE ST,WE,SBg ST,WE,SBg ST,WE,SBg ALL

The values of misclassification costs from Table 4 are then used for the pro-
posed ensemble comparison with other methods. Results in terms of sensitivity
(SE - predictive accuracy on the minority class) and specificity (SP - predictive
accuracy on the majority class) are given in Table 5.

5.3.2. Imbalance ratio 1:25

For the experiments with an imbalance ratio of 1:25, the ROC plots are given
in Fig. 4, the derived Cminority values in Table 6, and the resulting classification
results in Table 7.

Table 6: Optimal Cminority values derived from the ROC analysis (imbalance ratio 1:25).

Name Cminority

Pima 55
Yeast 40
Vehicle 50
Segment 45
Page-blocks 50
Shuttle 55
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Figure 4: ROC plots for the six benchmark datasets with imbalance ratio 1:25.

5.3.3. Imbalance ratio 1:50

For the experiments with an imbalance ratio of 1:50, the ROC plots are given
in Fig. 5, the derived Cminority values in Table 8, and the resulting classification
results in Table 9.

5.4. Discussion

Let us first discuss the cost parameter properties. Interestingly, for all three
levels of imbalance a similar pattern emerges with the optimal cost tending to
oscillate around twice the reciprocal imbalance ratio (e.g., for an imbalance ratio
of 1:25, the optimal Cminority value was around 50). Deviations from this are
surprisingly small, so that this trend was found to be stable and to hold for
all datasets. This leads to the conclusion that for the proposed method, the
optimal results are given when the cost is correlated to the imbalance ratio with
the associated misclassification cost about twice the ratio. This is an interesting
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Table 7: Classification results on the benchmark datasets with imbalance ratio 1:25, given in
the same fashion as those of Table 5.

Dataset Single CSTree [30] MCS from [27] SMOTEBagging [8] SMOTEBoost [8] IIvotes [5] EasyEnsemble [31] Proposed
SE SP SE SP SE SP SE SP SE SP SE SP SE SP

Pima 67.34 88.24 72.67 90.11 75.21 92.32 75.43 94.35 74.32 92.33 73.67 93.94 77.13 94.50
- ST ST,WE,IIV,EE ST,WE,IIV,EE ST,WE,EE ST,WE ALL

Yeast 54.34 92.67 60.46 97.45 63.21 97.82 66.31 97.82 66.31 97.82 63.21 97.82 67.78 98.11
- ST ST,WE ST,WE,SBg,EE ST,WE,SBg,EE ST,WE ALL

Vehicle 69.56 91.65 72.11 93.04 74.12 92.25 76.98 94.34 77.02 93.89 78.03 92.95 77.67 93.45
- ST ST,WE ST,WE,SBg ST,WE,SBg ST,WE,SBg ST,WE,SBg

Segment 65.64 87.65 69.03 87.11 70.12 88.54 72.89 90.11 71.15 91.06 72.89 90.11 72.89 90.11
- ST ST,WE ST,WE,SBg,IIV ST,WE,SBg ST,WE,SBg,IIV ST,WE,SBg,IIV

Page-blocks 69.77 79.08 72.98 82.35 71.25 83.65 73.89 82.97 59.98 80.21 68.12 80.23 70.76 81.23
- ST ST,WE ST,WE,SBg,PE ST,WE,SBg,PE ALL ST,WE

Shuttle 77.47 86.35 82.04 88.98 83.10 90.58 85.02 91.89 84.90 90.66 85.02 91.89 86.28 91.05
- ST ST,WE ST,WE,SBg ST,WE,SBg ST,WE,SBg ALL
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Figure 5: ROC plots for the six benchmark datasets with imbalance ratio 1:50.

finding since setting an appropriate cost matrix is a difficult task and in most
cases there is no direct information on how to do it [33].
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Table 8: Optimal Cminority values derived from the ROC analysis (imbalance ratio 1:50).

Name Cminority

Pima 90
Yeast 95
Vehicle 100
Segment 95
Page-blocks 100
Shuttle 100

Table 9: Classification results for benchmark datasets with imbalance ratio 1:50, given in the
same fashion as those of Table 5.

Dataset Single CSTree [30] MCS from [27] SMOTEBagging [8] SMOTEBoost [8] IIvotes [5] EasyEnsemble [31] Proposed
SE SP SE SP SE SP SE SP SE SP SE SP SE SP

Pima 59.56 90.43 66.45 89.43 70.02 90.11 71.43 92.67 70.95 92.33 72.00 93.05 71.43 92.67
- ST ST,WE ST,WE,SBg ST,WE,SBg ST,WE,SBg ST,WE,SBg

Yeast 53.73 93.16 55.47 96.11 58.56 95.32 59.76 94.33 59.54 96.32 58.99 96.21 60.34 96.22
- ST ST,WE ST,WE,SBg ST,WE,SBg ST,WE,SBg ALL

Vehicle 58.72 88.56 62.54 88.86 64.49 89.75 66.12 92.43 66.48 89.76 67.00 88.86 67.37 90.98
- ST ST,WE ST,WE,SBg ST,WE,SBg ST,WE,SBg ST,WE,SBg

Segment 59.45 90.64 65.05 93.08 68.43 92.05 68.97 94.15 68.52 94.11 69.68 93.86 70.02 93.43
- ST ST,WE ST,WE,SBg ST,WE,SBg ST,WE,SBg ST,WE,SBg,IIV

Page-blocks 51.22 85.29 55.22 86.03 58.98 57.00 86.37 61.78 89.09 61.00 88.20 59.19 88.04 87.64
- ST ST,WE ST,WE,SBg,EE,PE ST,WE,SBg,EE,PE ST,WE,SBg,PE ST,WE

Shuttle 64.48 89.51 71.06 90.33 72.13 91.21 73.16 93.97 73.94 92.56 74.17 94.03 75.98 92.98
- ST ST,WE ST,WE,SBg ST,WE,SBg ST,WE,SBg,IIV ALL

As for the comparison with the other four state-of-the-art ensembles, the
proposed method displays a quite satisfactory performance. For a small imbal-
ance ratio it outperforms in most cases the other methods.

For more extreme imbalance ratios, the performance of the tested methods
tended to converge to similar results. Still, for an imbalance ratio of 1:50, our
proposed method was statistically better on two of the datasets, while on three
others there was no significant difference to competing methods. The achieved
results thus indicate the high quality of our proposed approach as even in cases
of highly imbalanced datasets it still delivers good results, comparable, or even
better than, other well-known ensembles.

All ensemble methods outperform significantly a single cost-sensitive tree
and the previous simpler version of the cost-sensitive ensemble. This is due to
the high levels of imbalance in the tested dataset; to cope with such a difficulty
more sophisticated methods are required.

6. Conclusions

Imbalanced classification constitutes a major challenge in machine learning.
In this paper, we have introduced a novel ensemble dedicated to imbalanced
classification problems. Combining cost-sensitive decision trees with random
subspace based feature space partitioning results in the creation of a pool of in-
dividual classifiers capable of improved recognition of the minority class. From
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the classifier pool, complementary classifiers are selected with the aid of an evo-
lutionary algorithm while at the same time, the assignment of classifier weights,
used in the fusion step, is treated as an optimisation problem and also embed-
ded into the evolutionary approach. Consequently, simultaneous selection and
weighted fusion is performed to exploit the individual strengths of classifiers
available at hand.

One of the major issues in cost-sensitive classification is the derivation of
cost-matrices. In our approach, we addressed this based on ROC analysis, and
showed that there exists a direct correlation between the dataset imbalance ratio
and the optimal cost matrix settings.

We evaluated our method on six binary imbalanced benchmarks and with
three different levels of data imbalance. Our results conclusively show that our
proposed method provides an effective tool for the classification of imbalanced
datasets, often outperforming other state-of-the-art ensembles.
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