2,551 research outputs found

    LTE and Wi-Fi Coexistence in Unlicensed Spectrum with Application to Smart Grid: A Review

    Full text link
    Long Term Evolution (LTE) is expanding its utilization in unlicensed band by deploying LTE Unlicensed (LTEU) and Licensed Assisted Access LTE (LTE-LAA) technology. Smart Grid can take the advantages of unlicensed bands for achieving two-way communication between smart meters and utility data centers by using LTE-U/LTE-LAA. However, both schemes must co-exist with the incumbent Wi-Fi system. In this paper, several co-existence schemes of Wi-Fi and LTE technology is comprehensively reviewed. The challenges of deploying LTE and Wi-Fi in the same band are clearly addressed based on the papers reviewed. Solution procedures and techniques to resolve the challenging issues are discussed in a short manner. The performance of various network architectures such as listenbefore- talk (LBT) based LTE, carrier sense multiple access with collision avoidance (CSMA/CA) based Wi-Fi is briefly compared. Finally, an attempt is made to implement these proposed LTEWi- Fi models in smart grid technology.Comment: submitted in 2018 IEEE PES T&

    Coordinated Dynamic Spectrum Management of LTE-U and Wi-Fi Networks

    Full text link
    This paper investigates the co-existence of Wi-Fi and LTE in emerging unlicensed frequency bands which are intended to accommodate multiple radio access technologies. Wi-Fi and LTE are the two most prominent access technologies being deployed today, motivating further study of the inter-system interference arising in such shared spectrum scenarios as well as possible techniques for enabling improved co-existence. An analytical model for evaluating the baseline performance of co-existing Wi-Fi and LTE is developed and used to obtain baseline performance measures. The results show that both Wi-Fi and LTE networks cause significant interference to each other and that the degradation is dependent on a number of factors such as power levels and physical topology. The model-based results are partially validated via experimental evaluations using USRP based SDR platforms on the ORBIT testbed. Further, inter-network coordination with logically centralized radio resource management across Wi-Fi and LTE systems is proposed as a possible solution for improved co-existence. Numerical results are presented showing significant gains in both Wi-Fi and LTE performance with the proposed inter-network coordination approach.Comment: Accepted paper at IEEE DySPAN 201

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    Measurement and Optimization of LTE Performance

    Get PDF
    4G Long Term Evolution (LTE) mobile system is the fourth generation communication system adopted worldwide to provide high-speed data connections and high-quality voice calls. Given the recent deployment by mobile service providers, unlike GSM and UMTS, LTE can be still considered to be in its early stages and therefore many topics still raise great interest among the international scientific research community: network performance assessment, network optimization, selective scheduling, interference management and coexistence with other communication systems in the unlicensed band, methods to evaluate human exposure to electromagnetic radiation are, as a matter of fact, still open issues. In this work techniques adopted to increase LTE radio performances are investigated. One of the most wide-spread solutions proposed by the standard is to implement MIMO techniques and within a few years, to overcome the scarcity of spectrum, LTE network operators will offload data traffic by accessing the unlicensed 5 GHz frequency. Our Research deals with an evaluation of 3GPP standard in a real test best scenario to evaluate network behavior and performance

    Design of a High Capacity, Scalable, and Green Wireless Communication System Leveraging the Unlicensed Spectrum

    Get PDF
    The stunning demand for mobile wireless data that has been recently growing at an exponential rate requires a several fold increase in spectrum. The use of unlicensed spectrum is thus critically needed to aid the existing licensed spectrum to meet such a huge mobile wireless data traffic growth demand in a cost effective manner. The deployment of Long Term Evolution (LTE) in the unlicensed spectrum (LTE-U) has recently been gaining significant industry momentum. The lower transmit power regulation of the unlicensed spectrum makes LTE deployment in the unlicensed spectrum suitable only for a small cell. A small cell utilizing LTE-L (LTE in licensed spectrum), and LTE-U (LTE in unlicensed spectrum) will therefore significantly reduce the total cost of ownership (TCO) of a small cell, while providing the additional mobile wireless data offload capacity from Macro Cell to small cell in LTE Heterogeneous Networks (HetNet), to meet such an increase in wireless data demand. The U.S. 5 GHz Unlicensed National Information Infrastructure (U-NII) bands that are currently under consideration for LTE deployment in the unlicensed spectrum contain only a limited number of 20 MHZ channels. Thus in a dense multi-operator deployment scenario, one or more LTE-U small cells have to co-exist and share the same 20 MHz unlicensed channel with each other and with the incumbent Wi-Fi. This dissertation presents a proactive small cell interference mitigation strategy for improving the spectral efficiency of LTE networks in the unlicensed spectrum. It describes the scenario and demonstrate via simulation results, that in the absence of an explicit interference mitigation mechanism, there will be a significant degradation in the overall LTE-U system performance for LTE-U co-channel co-existence in countries such as U.S. that do not mandate Listen-Before-Talk (LBT) regulations. An unlicensed spectrum Inter Cell Interference Coordination (usICIC) mechanism is then presented as a time-domain multiplexing technique for interference mitigation for the sharing of an unlicensed channel by multi-operator LTE-U small cells. Through extensive simulation results, it is demonstrated that the proposed usICIC mechanism will result in 40% or more improvement in the overall LTE-U system performance (throughput) leading to increased wireless communication system capacity. The ever increasing demand for mobile wireless data is also resulting in a dramatic expansion of wireless network infrastructure by all service providers resulting in significant escalation in energy consumption by the wireless networks. This not only has an impact on the recurring operational expanse (OPEX) for the service providers, but importantly the resulting increase in greenhouse gas emission is not good for the environment. Energy efficiency has thus become one of the critical tenets in the design and deployment of Green wireless communication systems. Consequently the market trend for next-generation communication systems has been towards miniaturization to meet this stunning ever increasing demand for mobile wireless data, leading towards the need for scalable distributed and parallel processing system architecture that is energy efficient, and high capacity. Reducing cost and size while increasing capacity, ensuring scalability, and achieving energy efficiency requires several design paradigm shifts. This dissertation presents the design for a next generation wireless communication system that employs new energy efficient distributed and parallel processing system architecture to achieve these goals while leveraging the unlicensed spectrum to significantly increase (by a factor of two) the capacity of the wireless communication system. This design not only significantly reduces the upfront CAPEX, but also the recurring OPEX for the service providers to maintain their next generation wireless communication networks

    Towards More Efficient 5G Networks via Dynamic Traffic Scheduling

    Get PDF
    Department of Electrical EngineeringThe 5G communications adopt various advanced technologies such as mobile edge computing and unlicensed band operations, to meet the goal of 5G services such as enhanced Mobile Broadband (eMBB) and Ultra Reliable Low Latency Communications (URLLC). Specifically, by placing the cloud resources at the edge of the radio access network, so-called mobile edge cloud, mobile devices can be served with lower latency compared to traditional remote-cloud based services. In addition, by utilizing unlicensed spectrum, 5G can mitigate the scarce spectrum resources problem thus leading to realize higher throughput services. To enhance user-experienced service quality, however, aforementioned approaches should be more fine-tuned by considering various network performance metrics altogether. For instance, the mechanisms for mobile edge computing, e.g., computation offloading to the edge cloud, should not be optimized in a specific metric's perspective like latency, since actual user satisfaction comes from multi-domain factors including latency, throughput, monetary cost, etc. Moreover, blindly combining unlicensed spectrum resources with licensed ones does not always guarantee the performance enhancement, since it is crucial for unlicensed band operations to achieve peaceful but efficient coexistence with other competing technologies (e.g., Wi-Fi). This dissertation proposes a focused resource management framework for more efficient 5G network operations as follows. First, Quality-of-Experience is adopted to quantify user satisfaction in mobile edge computing, and the optimal transmission scheduling algorithm is derived to maximize user QoE in computation offloading scenarios. Next, regarding unlicensed band operations, two efficient mechanisms are introduced to improve the coexistence performance between LTE-LAA and Wi-Fi networks. In particular, we develop a dynamic energy-detection thresholding algorithm for LTE-LAA so that LTE-LAA devices can detect Wi-Fi frames in a lightweight way. In addition, we propose AI-based network configuration for an LTE-LAA network with which an LTE-LAA operator can fine-tune its coexistence parameters (e.g., CAA threshold) to better protect coexisting Wi-Fi while achieving enhanced performance than the legacy LTE-LAA in the standards. Via extensive evaluations using computer simulations and a USRP-based testbed, we have verified that the proposed framework can enhance the efficiency of 5G.clos

    An adaptive LTE listen-before-talk scheme towards a fair coexistence with Wi-Fi in unlicensed spectrum

    Get PDF
    The technological growth combined with the exponential increase of wireless traffic are pushing the wireless community to investigate solutions to maximally exploit the available spectrum. Among the proposed solutions, the operation of Long Term Evolution (LTE) in the unlicensed spectrum (LTE-U) has attracted significant attention. Recently, the 3rd Generation Partnership Project announced specifications that allow LTE to transmit in the unlicensed spectrum using a Listen Before Talk (LBT) procedure, respecting this way the regulator requirements worldwide. However, the proposed standards may cause coexistence issues between LTE and legacy Wi-Fi networks. In this article, it is discussed that a fair coexistence mechanism is needed to guarantee equal channel access opportunities for the co-located networks in a technology-agnostic way, taking into account potential traffic requirements. In order to enable harmonious coexistence and fair spectrum sharing among LTE-U and Wi-Fi, an adaptive LTE-U LBT scheme is presented. This scheme uses a variable LTE transmission opportunity (TXOP) followed by a variable muting period. This way, co-located Wi-Fi networks can exploit the muting period to gain access to the wireless medium. The scheme is studied and evaluated in different compelling scenarios using a simulation platform. The results show that by configuring the LTE-U with the appropriate TXOP and muting period values, the proposed scheme can significantly improve the coexistence among LTE-U and Wi-Fi in a fair manner. Finally, a preliminary algorithm is proposed on how the optimal configuration parameters can be selected towards harmonious and fair coexistence
    corecore