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Abstract

The 5G communications adopt various advanced technologies such as mobile edge computing and

unlicensed band operations, to meet the goal of 5G services such as enhanced Mobile Broadband

(eMBB) and Ultra Reliable Low Latency Communications (URLLC). Specifically, by placing

the cloud resources at the edge of the radio access network, so-called mobile edge cloud, mobile

devices can be served with lower latency compared to traditional remote-cloud based services.

In addition, by utilizing unlicensed spectrum, 5G can mitigate the scarce spectrum resources

problem thus leading to realize higher throughput services.

To enhance user-experienced service quality, however, aforementioned approaches should be

more fine-tuned by considering various network performance metrics altogether. For instance,

the mechanisms for mobile edge computing, e.g., computation offloading to the edge cloud,

should not be optimized in a specific metric’s perspective like latency, since actual user sat-

isfaction comes from multi-domain factors including latency, throughput, monetary cost, etc.

Moreover, blindly combining unlicensed spectrum resources with licensed ones does not always

guarantee the performance enhancement, since it is crucial for unlicensed band operations to

achieve peaceful but efficient coexistence with other competing technologies (e.g., Wi-Fi).

This dissertation proposes a focused resource management framework for more efficient 5G

network operations as follows. First, Quality-of-Experience is adopted to quantify user satisfac-

tion in mobile edge computing, and the optimal transmission scheduling algorithm is derived

to maximize user QoE in computation offloading scenarios. Next, regarding unlicensed band

operations, two efficient mechanisms are introduced to improve the coexistence performance

between LTE-LAA and Wi-Fi networks. In particular, we develop a dynamic energy-detection

thresholding algorithm for LTE-LAA so that LTE-LAA devices can detect Wi-Fi frames in a

lightweight way. In addition, we propose AI-based network configuration for an LTE-LAA net-

work with which an LTE-LAA operator can fine-tune its coexistence parameters (e.g., CAA

threshold) to better protect coexisting Wi-Fi while achieving enhanced performance than the

legacy LTE-LAA in the standards. Via extensive evaluations using computer simulations and a

USRP-based testbed, we have verified that the proposed framework can enhance the efficiency

of 5G.
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I Introduction

The 5G network has been recently launched in some countries starting with South Korea, and is

going to prevail in the world by 2020. Moreover, the number of 5G connections is expected to take

15 percent of the global connections [1]. Compared to its predecessors, 5G is designed to meet the

requirements of various services, which are divided into three main categories; massive Machine

Type Communications (mMTC), enhanced Mobile Broadband (eMBB), and Ultra Reliable Low

Latency Communications (URLLC) [2]. In addition, 5G will more aggressively apply various

AI techniques to its architecture and network management to realize more enhanced efficiency.

MEC, one of the key enablers of URLLC, provides computing resources at the edge of the

radio access network to the mobile users via virtualization. Traditionally, cloud computing ser-

vices have been provided by remote clouds in the Internet, and thus it was hard to provide more

customized and low-latency services. On the contrary, MEC can realize new business opportu-

nities such as location-aware services, augmented reality, and computation offloading [3], thanks

to its proximity to the mobile devices. Among them, computation offloading is a promising

application to promote the lifetime and performance of mobile devices by migrating a mobile

device’s tasks to the edge cloud over the 5G network. One of the challenges, however, is that

multiple devices should share spectrum and cloud resources, thus necessitating two kinds of

resource management, computation resource management and spectrum resource management.

The 5G network tries to aggressively use all available spectrum bands, including not only

its own licensed spectrum bands but also unlicensed spectrum bands, to cope with eMBB. In

the unlicensed spectrum, multiple technologies can coexist and hence a peaceful coexistence

mechanism with them is essential for 5G. To address the concern, Licensed-Assisted Access

(LAA) was first introduced in 3GPP Release 13 [4] based on the listen-before-talk mechanism

to utilize the unlicensed spectrum as a supplement to the licensed spectrum, and later on LTE

based LAA, called LTE-LAA, was successfully standardized. As the successor to LTE-LAA, 5G

NR based unlicensed spectrum access, called NR-U, is under development and is expected to be

published with 3GPP Release 16. According to the 3GPP document [5], the specification of NR-

U operation considers LTE-LAA as the baseline in terms of the coexistence method. Therefore,

the LTE-LAA centric research is still compelling and can be further extended to the future 5G

NR-U operations.

1.1 Main Contributions

This dissertation aims to provide the resource management framework for more efficient 5G

network, where the main contributions are:

• Quality-of-Experience aware Computation Offloading Strategy to Capture Energy-

Latency-Pricing Tradeoff. A mobile device makes a computation offloading strategy

based on the time-varying wireless channel state and the performance of the mobile edge
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cloud. The most crucial part of the strategy is considering the tradeoff relationship be-

tween energy consumption, latency, and monetary cost. For resolving this issue, we have

proposed Quality-of-Experience based optimization algorithms in [6,7], to decide whether

to perform computation offloading, which edge cloud resources are used, and how to effi-

ciently transmit the offloading data.

• Improving the spatial efficiency of LTE-LAA network through the lightweight

Wi-Fi frame detection method. LTE-LAA adopts the listen-before-talk mechanism to

avoid a collision in unlicensed spectrum bands. The criterion of LTE-LAA to determine

the channel state varies with a coexistence situation. For example, the threshold of -52

dBm is applied at the absence of other technologies on a long-term basis, and otherwise -72

dBm is used. Because Wi-Fi is already pervasive, LTE-LAA sacrifices its spatial efficiency

for peaceful coexistence, even though LTE-LAA is designed to operate at a high level of

interference. To improve spatial efficiency, we have proposed the adaptive thresholding

algorithm for clear channel assessment (CCA) with a lightweight Wi-Fi frame detection

method in [8], which improves the performance of both LTE-LAA and Wi-Fi networks.

• Enhancing the coexistence in unlicensed spectrum bands using AI. The goal

of an LTE-LAA network is peacefully coexisting with Wi-Fi networks in the unlicensed

spectrum. However, with a static configuration of LTE-LAA’s network parameters, the

goal is hard to be achieved in various environments. We, therefore, propose an AI-based

mechanism to cope with the issue. Specifically, reinforcement learning is adopted to adjust

the LAA’s control parameters dynamically, and being integrated with a discriminator

neural network, the proposed algorithm shows that the performance of both LTE-LAA

and Wi-Fi can be improved.

1.2 Organization of the Dissertation

The rest of the dissertation is organized as follows. Chapter 2 proposes a computation offloading

strategy that decides how the mobile device transmits offloading data to a mobile edge cloud.

Chapter 3 presents a dynamic but lightweight Wi-Fi frame detection algorithm to improve

the spatial efficiency of the LTE-LAA network. Chapter 4 introduces an adaptive control of

coexistence parameters of an LTE-LAA network to improve its own performance while protecting

coexisting Wi-Fi networks. Finally, the dissertation is concluded in Chapter 5.
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II QoE-aware Computation Offloading to Capture Energy-Latency-

Pricing Tradeoff in Mobile Clouds

2.1 Introduction

Mobile devices have become the center of our daily lives, running various applications. The

number of mobile devices is expected to reach 11.6 billion by 2021 due to the emerging mobile

technologies like wearable devices and Internet of Things (IoT) [9]. Nevertheless, the usability of

mobile devices is still limited by the slow evolution of battery capacity, e.g., the energy density

of Li-ion batteries has increased three times in 23 years [10] while the mobile CPU performance

has improved tenfold in 7 years [11]. Accordingly, it has been reported that customer satisfaction

in mobile usage relies heavily on the battery life [12].

Computation offloading is a promising technology to promote the lifetime and performance

of mobile devices, by migrating local computational tasks to the cloud over wireless channels

[13–17]. One of its key challenges is optimal mobile-to-cloud transmission scheduling of the

task’s data (e.g., task’s code to run remotely), for which an offloading scheduler optimizes the

per-slot number of bits to transmit. Among various approaches to tackle the problem, one

possible direction is to focus on minimizing the transmit energy consumption while satisfying

some delay constraints, e.g., application deadline, as found in [18, 19]. Such schemes, however,

tend to penalize the latency by deferring transmission until ‘good’ time slots [18] or by extending

the transmission period with lowered transmit power [19].

Considering that mobile users value not only battery life but also the processing speed

and service pricing [20], it is desirable to properly model the tradeoff between them. In such a

vein, [21] proposed uplink-scheduling multiple applications in bundles at high-power states while

considering how much they are postponed, and [22] proposed scheduling for video streaming

that optimizes when to download based on the predicted user location and channel quality. In

addition, [23,24] tried to capture the tradeoff via Lyapunov optimization. Nevertheless, [21,22,

24] ignored the impact of time-varying wireless channel quality, while [23] only considered delay-

tolerant applications and used the transmit queue size as an indirect measure of the application

delay. Moreover, none of them considered the issue of pricing in offloading service provisioning.

Although [25] jointly considered energy, delay, and pricing in deciding which tasks to offload, it

did not consider transmission scheduling nor the time-varying nature of a wireless channel.

In addition, it is important to consider local-cloud interactions in computation offloading to

come up with practical offloading solutions. In this sense, [26, 27] proposed offloading decision

schemes for an application consisting of multiple dependent tasks, to make per-task offloading

decisions. [28] tried to pick the best cloud-network service provider pair to improve the qual-

ity of service, based on the cloud-specific and network-specific characteristics. [29] considered

multi-broker based mobile cloud computing networks where the brokers pay for reserving cloud

resources and assign them to mobile users, and proposed a game-theoretic approach to minimize
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the total incurred price. However, [26, 27, 29] considered the latency cost only as a constraint

and ignored its impact on user satisfaction, and [27–29] overlooked the influence of time-varying

channel quality.

This chapter addresses the tradeoff between energy consumption, application latency, and

offloading service pricing using the concept of quality of experience (QoE), which is a blueprint

of subjective and objective human needs and experiences in a given context [30]. For instance,

at a high remaining battery level, a mobile user may put more weight on latency than energy,

and thus such a control knob should be designed to be aware of users’ QoE. In particular, we

propose a computation offloading service framework, based on which three offloading problems

are formulated: decision making of local vs. offloaded computing, optimal selection of the

offloading service class, and optimal transmission scheduling of the offloaded task’s data.

The optimal scheduling problem is formulated as dynamic programming (DP) considering

a time-varying wireless channel, based on which we propose the database-assisted optimal DP

algorithm and two suboptimal but computationally-efficient approximate DP (ADP) algorithms

(called ADP and ADPe) by adopting the limited lookahead technique [31]. In addition, the

service class selection problem is formulated such that it can determine the best service class

(or service plan) from the ones offered by the cloud service provider where each class provides

distinct computing power and service charge.

Via an extensive numerical analysis, we evaluated the performance of the proposed schemes

in various QoE scenarios. Especially, ADPe is shown to achieve near-optimal performance with

only 2.1% deviation from the optimal cost on average and enhance the QoE-aware cost by up

to 2.38 times compared to the energy-minimal scheduling. Moreover, the analysis confirms that

the class selection algorithm dynamically selects the service class according to user preference

and the remaining battery level under the given monetary constraint.

The rest of this chapter is organized as follows. Section 2.2 introduces the system model

and assumptions, and Section 2.3 elaborates the proposed computation offloading framework.

Section 2.4 presents the DP, ADP and ADPe formulations of the optimal transmission scheduling

problem, and Section 2.5 presents the optimal service class selection problem and the decision

making problem. Section 2.6 evaluates the performance of the proposed schemes, and the chapter

concludes with Section 2.7.

2.2 System Model

We consider a mobile edge system (MES) [32] located at the edge of a mobile network (e.g.,

eNB in LTE-A), through which mobile edge computing (MEC) [33] capabilities are provided to

the mobile users. Specifically, a mobile user can offload its task (which is a part of a mobile

application) to the MES as follows: the user transmits the task’s data (e.g., code, inputs, etc.) to

the MES over the wireless channel, and then the MES assigns a virtual machine (VM) running

on its resources (e.g., CPU) to the task for offloaded processing [34, 35]. We also assume that

the MES provides multiple service classes with varying computing power and service charge,
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Offloadable Task

Decision Maker

Offloaded Task Manager Local Task Scheduler

Computation Offloading Local Computing

Figure 1: Computation Offloading Architecture

so that a mobile user can choose the most suitable one. Therefore, the MES and its resources

can be considered as ‘the cloud’ in this chapter. Note that Section 2.3 will further describe our

proposed computation offloading framework.

In a mobile device, computation offloading is performed by three major components: a

decision maker, a local task scheduler, and an offloaded task manager, as shown in Fig. 1. To

process a task, the decision maker chooses the most efficient method between local computing

and computation offloading by comparing their incurred costs. When local computing is chosen,

the local task scheduler optimizes the operation of local processors using various scheduling

techniques [36,37]. When computation offloading is chosen, the offloaded task manager performs

two functions, service class selection and transmission scheduling. The former is to choose the

optimal service class to achieve the minimal QoE-aware cost, and the latter is to determine

when and at which rate the task’s data is transferred from the mobile device to the cloud.

Therefore, the decision maker interacts with the two other components to collect the costs of

local computing and offloaded computing, so that it can make a decision.

Note that this chapter first focuses on the offloaded task manager and its functionalities (e.g.,

transmission scheduling) in Section 2.4, assuming that the decision maker has decided to offload

a given task. Next, in Section 2.5, the chapter will discuss the service class selection problem

based on the results in Section 2.4, and then provide further details on the mechanism of the

decision maker and local task scheduling in Section 2.5 via comparison of the local computing

cost with that of the offloading cost derived in Section 2.5.

Wireless Channel Model

We assume a Rayleigh fading channel with slow block fading, which is modeled as a finite-

state Markov chain (FSMC) with K states as shown in Fig. 2 [38]. In the model, a state

Sk ∈ {S1, . . . , SK} represents a distinct interval of nominal received SNR γnom ∈ [Γk−1,Γk)

according to the nominal transmit power Pnomtx , with Γ0 = 0 and ΓK =∞. This means that we

have γnom = Pnomtx g/(N0W ) where g is the channel gain, N0 is the noise power spectral density,

and W is the channel bandwidth. Therefore, the nominal SNR γnom is one-to-one mapped to

the channel gain g. In addition, when the actual transmit power is Ptx, the actual received SNR

is given as (Ptx/P
nom
tx )γnom.

5



SKSk+1SkSk-1S1
... ...

P1,1 Pk-1,k-1 Pk,k Pk+1,k+1 PK,K

Pk-1,k Pk,k+1

Pk,k-1 Pk+1,k

Figure 2: Finite-state Markov chain (FSMC)

For state Sk, we designate γk as the representative (nominal) SNR, which is the average

SNR of the corresponding interval. For k < K, we have γk = (Γk−1 + Γk)/2. For k = K, we

define γk = ΓK−1 + (ΓK−1 − ΓK−2)/2.

The transition probabilities between adjacent states are approximated as [38,39]

Pk,k+1 ≈ N(Γk) · Tp/πk, k = 1, 2, . . . ,K − 1, (1)

Pk,k−1 ≈ N(Γk−1) · Tp/πk, k = 2, 3, . . . ,K, (2)

where Tp is the packet duration, N(Γk) is the level crossing rate of γnom over the SNR threshold

Γk such as [38]

N(Γk) =

√
2πΓk
γ0

fm exp

(
−Γk
γ0

)
, (3)

and πk is the steady-state probability of Sk such as

πk =

∫ Γk

Γk−1

p(γnom)dγnom = exp

(
−Γk−1

γ0

)
− exp

(
−Γk
γ0

)
, (4)

where γ0 is the average (nominal) received SNR, fm is the maximum Doppler frequency, and

p(γnom) is the Rayleigh distribution.

Note that this chapter adopts the time-slotted architecture, using which a mobile user tries

to determine how many bits to transmit at each slot until the whole necessary information for

offloading is transmitted to the MES. Hence, the channel state of the FSMC model implies the

state of a slot, assuming the coherence time of the channel is larger than the slot duration.

Section 2.2 will provide further justification on the practicality of the time-slotted architecture.

QoE Factors

To capture the tradeoff between energy, latency, and pricing, we consider four QoE domains

discussed in [30], human, contextual, technological, and business domains, as shown in Fig. 3.

The human domain represents a human entity with various attributes like age, gender, role,

and can be further categorized into subjective (e.g., feelings) and objective (e.g., biological

parameters) QoE factors. The technological domain deals with every possible technological

aspect during a service including network resources, devices, and quality-of-service (QoS). The

business domain is related to commercial aspects of service provisioning such as pricing, which
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Figure 3: QoE factors considered in the chapter
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<
<
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<
<

(b) Sensitivity to QoS metrics varies with users

Figure 4: Two QoE scenarios

influence a customer’s decision of choosing a service. Lastly, the contextual domain concerns

with how all the domains interact with each other in given circumstances.

In this chapter, we consider nine QoE-related factors, each belonging to one of the four QoE

domains as shown in Fig. 3. We first introduce a factor in the human domain, latency sensitivity

α ∈ [0, 1], which reflects a user’s preference to latency — a user with larger α prefers earlier

completion of a task at the expense of energy; a user with small α desires to save more energy

rather than minimizing latency. Regarding the contextual domain, we consider four factors,

normalized battery level B ∈ (0, 1], offloaded data size L (bits), task-specific deadline DL (sec),

and user’s monetary budget FL.1 In terms of the technological domain, we consider two factors,

per-slot energy consumption Et and per-slot latency Dt. Lastly, regarding the business domain,

we consider two factors, per-slot monetary cost Ft and per-bit monetary cost µ, where the former

captures the time-based service charge by the offloading service provider and the latter models

the charge by the network provider for data traffic transmitted over the wireless network.

To capture diverse user behaviors due to the tradeoff between energy and delay, we employ

αB as a weighting factor using which the QoE-aware cost function is to be defined in Section 2.4.

This approach can be better justified by two exemplifying scenarios in Fig. 4. In Fig. 4a, the
1DL is assumed to be given by the offloaded task.
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user’s preference varies with the current battery level: the user desires high performance with a

sufficient battery level, but wants to save energy when the battery is running out. In Fig. 4b, the

two mobile users present different tendency in the same situation: User 1 prefers early completion

of a task to extended battery lifetime, while User 2 has an opposite preference. Hence, when

α is large (thus latency sensitive) but B is minimal (i.e., the battery is almost depleted), it is

more reasonable to increase the sensitivity to energy.

Slotted Time Structure

This chapter adopts the time-slotted architecture (which will be further described in Section 2.3)

due to its ability to model some practical scenarios. For instance, LTE has Physical Resource

Block (PRB) with a duration of 0.5 ms as a basic unit of time-frequency resources, where such

resources are allocated once every 1 ms, referred to as Transmission Time Interval (TTI). In

TDD-LTE, per-UE uplink resource allocation could happen once every 10 ms (which is a frame

duration), since 10 subframes in a frame are configured differently among D/U/S. Then, the slot

duration in our model can be set as either 1 ms or 10 ms. In addition, in some applications like

VoIP and machine type communications [40], an eNodeB employs semi-persistent scheduling in

which PRBs can be allocated in advance over multiple TTIs to reduce the scheduling overhead.

The whole duration of semi-persistent scheduling can then be set to DL, so that a mobile

device can periodically transmit data once every slot without interruption until the completion

of offloading.

One remaining issue is that such a slot duration would be proper to be modeled as the FSMC.

For fm = 5 Hz, which is commonly assumed in LTE’s performance evaluation scenarios [41], the

channel’s coherence time is determined as 0.423/fm = 84.6 ms [42] which is much larger than 1

ms and 10 ms. Moreover, in soon-to-come 5G, TTI will be further shortened to 0.1 ms, which

will make the slot duration reduced by 10 times (i.e., 0.1 ms or 1 ms).

2.3 MECOS Framework and Computation Offloading Procedure

In this section, we propose the Mobile Edge Computation Offloading Service (MECOS) frame-

work, a customized cloud service model, which has the following characteristics.

• MECOS employs an MES that possesses a variety of virtualized resources, and offers them

through multiple service classes. Each class is mapped to a distinct type of resources (e.g.,

a specific CPU type like quad-core CPU) and has its own service charge. The service tariff

is advertised to mobile users in advance, and not changing while an offloading process is

in action.

• MECOS is ready to serve computation offloading whenever requested by a user, i.e., the

VM startup time is unnecessary, by maintaining a pool of pre-booted VMs dedicated to

the offloading service.

8
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Figure 5: A procedure for computation offloading

• Once a service request is received from a mobile user, MECOS denies the service if there

exist insufficient resources to allocate; otherwise, the requested resources are allocated to

the user and secured until the offloaded computation is complete.

• The service charge is proportional to the total usage duration, where the charge starts

at the allocation of the requested resources and ends at the completion of the requested

computation.

Based on the MECOS framework, we introduce our computation offloading procedure, which

is also illustrated in Fig. 5, as follows.

(a) Initialization phase: In this phase, a mobile user sends an initialization request to MECOS

(at time treq), specifying which class of the virtualized resources is required. On receipt of the

request, MECOS allocates the requested resources (at time talloc), transmits an initialization

response back to the device, and starts to charge the usage fee.

(b) Data transmission phase: After the request granted, the user starts to transmit (at time

ttx) L bits of offloading data according to its transmit schedule, and thus the transmis-

sion completion time t′tx varies with how transmission scheduling is performed. Note that

transmission scheduling will be discussed in Section 2.4.

(c) Processing phase: After full reception of the offloading data, MECOS processes the of-

floaded task from time tproc till time t′proc = tproc +Dproc, where Dproc depends on the char-

acteristics of the task and the computing power of the allocated resources and will be derived

in Section 2.5. Afterwards, the allocated resources are retrieved at time t′proc at which the

service charge finishes. Then, the total time of cloud service becomes Dserv = t′proc − talloc.

(d) Response phase: The computation results are transmitted back to the user, with a dura-

tion of Drx = t′rx − trx.

In addition, we consider major properties that have a substantial effect on computation

offloading as follows.
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Figure 6: Discrete-time model with slot time τ

Application Properties

To characterize an offloaded task, we focus on following application properties. First, RMapp
denotes the number of required cycles on a mobile device per unit input data, e.g., 31,680

cycles/bit for a face recognition application [43] and 330 cycles/byte for a gzip application [44].

The number of required cycles, however, may vary with the type of a processor, such as x86

or ARM, even if the same application is executed [45]. Therefore, we also define the number

of required cycles on the MECOS framework as Rapp = θ · RMapp, where θ (0 < θ ≤ 1) is the

weighting factor to reflect how fast the processor at MECOS is compared to the mobile processor.

Second, the data transmission phase should be completed before T (slots) as shown in Fig. 6,

where each slot has a duration of τ (sec). The value of T is determined by two factors, the task-

specific deadline DL and the monetary budget of the user, which will be discussed later in

Section 2.5. Third, during the data transmission phase, a mobile user transmits L (bits) of task-

specific data to the cloud, whose amount varies from a few KB in the code partition case [14]

to tens of MB in the virtual machine migration case [16]. Finally, we denote by Lrx (bits) the

size of the offloaded computation’s result to be delivered back to the user during the response

phase.

MECOS Properties

We assume that MECOS has a set of Q service classes such as Q = {1, . . . , Q}, where each class

q ∈ Q has a different usage charge and computing power. Such a multi-class model can be easily

found at today’s data centers which are equipped with heterogeneous hardware (e.g., various

CPUs with different specifications). We also assume that the usage fee of MECOS is charged

on a time-block basis, as found from Microsoft Azure [46] and Amazon EC2 [47].

Accordingly, we model that MECOS charges δq every ε seconds for the usage of class q,

where ε = λτ, λ ∈ Z+ and ε can be in the order of seconds or milliseconds to provide fine-

grained pricing for real-time offloading service. Note that a duration of ε (sec) will be referred

to as a (charging) period in the sequel. In addition, we denote the computing power of class q

by Hq (cycles/period).2

All the properties are assumed known when a task is offloaded. Then, we focus only on

data transmission and processing phases due to the following reasons. First, the initialization
2‘cycle’ means a computation cycle and ‘period’ means a charging period.
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phase is negligible due to small propagation delay (since single-hop) and small packet sizes of the

initialization request/response. Second, the cost incurred in the response phase is un-controllable

by the mobile device since Lrx is transmitted by the mechanism of a base station.

2.4 QoE-aware Transmission Scheduling of Offloaded Task’s Data

This section defines the QoE-aware cost function and proposes three scheduling algorithms.

First, we present the DP algorithm to derive the optimal solution of QoE-aware scheduling,

whose complexity is non-trivial. Then, we propose the ADP and the ADPe algorithms that

produce suboptimal solutions with much reduced complexity, whose near-optimal performance

will later be shown in Section 2.6.

Frequently-used notations are summarized in Table 1. Note that this section reserves t as

the time slot index, and assumes that the mobile user has leased the MECOS class q without

loss of generality.

QoE-aware Cost Function

To determine the optimal amount of transmit data (in bits) at each slot, we define a QoE-aware

cost function by combining energy consumption, communication latency, and monetary costs.

First, we define the energy cost function according to the model proposed in [48], which

approximates the piecewise linear power-rate curve in practical systems. Specifically, denoting

by st the amount of transmit data (in bits) at slot t, the energy consumption Et(st) at slot t is

given as

Et(st) = Ptx · τ =
m · stn
τn−1gt

' ust
n

Zt
, u =

mPnomtx

N0Wτn−1
, (5)

where gt is the channel gain at slot t, n > 1 and m > 0 are given design parameters to best

approximate the power-rate curve [48], and Ptx is the actual transmit power introduced earlier

in Section 2.2. The approximation at the third equality comes from replacing the nominal SNR

corresponding to gt with the representative nominal SNR Zt ∈ {γ1, . . . , γK}. Physically, this

model adapts Ptx to transmit st bits at slot t, for given Zt. This chapter assumes that the

current channel state is measured and known at the beginning of a slot, and the term ‘channel

state’ will refer to either Zt or Sk.

We define the latency cost function Dt(lt) at slot t as

Dt(lt) = τ1{lt>0}, (6)

where lt is the remaining bits to transmit, and 1{·} is the indicator function which returns 1 if

the statement inside the curly brackets is true and 0 otherwise. That is, as long as lt is nonzero,

the slot t should be utilized and thus an additional delay of τ is incurred. Note that lt+1 = lt−st.
In addition, the monetary cost function Ft(lt) at slot t is defined similar to Dt(lt), such as

Ft(lt) =
δq
λ
1{lt>0}, (7)
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which is caused by the service charge by MECOS during [talloc, tproc].

Finally, the QoE-aware cost function ξt at slot t is defined as a weighted combination of the

three costs with weighting factors αB, wQoE ∈ (0, 1), and wm, such as

ξt(lt, st) = (1− αB)
Et(st)

EL
+ wQoE

{
αB

Dt(lt)

DL
+ wm

Ft(lt)

FL

}
= a

snt
Zt

+ b1{lt>0}, (8)

where EL = B ·CBatt (CBatt: the battery capacity in Joules), and FL is the maximum monetary

budget within which a user is willing to pay for offloading. That is, EL, DL, and FL are

normalizing factors to achieve unit-less combination of energy, latency, and monetary cost,

where Et(st)/EL implies the ratio of per-slot energy consumption to the total energy budget,

Dt(lt)/DL indicates the ratio of per-slot delay to the total time budget, and Ft(lt)/FL represents

the ratio of the per-slot monetary cost to the maximum monetary budget. In addition, a =

(1− αB)u/(B · CBatt) and b = wQoE{αBτ/DL + wmδq/(λFL)}.3

The weighting factors wQoE and wm are introduced to strike a balance between energy, delay,

and monetary costs. At each slot, the energy cost is proportional to stn whereas the delay and

monetary costs are either zero or constant. As a result, the gap between the costs gets wider as

st grows, which is affected by L and T . Hence, wQoE plays a role in maintaining a balance in

the weighted sum, which is adjusted properly for a given pair of (L, T ).4 In addition, wm means

the relative weight of the monetary cost to the latency cost. For example, when wm = 0, Eq. (8)

represents the energy-latency tradeoff relationship.

Our criterion of determining wQoE and wm is to make all three costs (i.e., energy, latency,

and monetary costs) equally contribute to the total cost in the case when the mobile user faces a

value-neutral situation. More specifically, we set wQoE and wm such that the three costs coincide

(in their values or in the order of their magnitudes) when the mobile user equally cares energy

and delay (i.e., α = 0.5) and has half of the battery life (i.e., B = 0.5).5

Optimal Scheduling via Dynamic Programming

Our objective is to find the optimal number of bits to transmit per each slot that minimizes

the expected total cost E [
∑

t ξt(lt, st)]. Since the choice of st determines lt+1 and thus affects

the future decision st+1, the problem is suitable for being formulated as dynamic programming.

Designating lt as the system state, the cost-to-go function Jt(lt), which is the sum of the cost at
3Note that we assume B is constant during the scheduling process since T is usually in the order of seconds.
4In practice, wQoE can be pre-adjusted offline for each possible (L, T ) and stored in a table, which can be

looked up at runtime.
5This implies that the three costs are treated to have the same level of ‘importance’, since Eq. (8) deals with

the normalized costs.
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t and the expected cost from (t+ 1) to T , is expressed as

Jt(lt) =


min

0≤st≤lt

{
a st

n

Zt
+ b1{lt>0} + E

Zt+1

[Jt+1 (lt − st)]
}
, when 1 ≤ t < T,

a lt
n

Zt
+ b1{lt>0}, when t = T.

(9)

Denoting by s∗t the optimal number of bits to transmit at t,

s∗t (lt) =


argmin
0≤st≤lt

{Jt(lt)} , when 1 ≤ t < T,

lt, when t = T.

(10)

Therefore, the optimal policy set, {s∗1, . . . , s∗T }, is obtained by recursively solving Eq. (9) back-

wards. Then, the achieved total cost by the optimal policy set, J∗DP , is determined as

J∗DP =
T∑
t=1

{
a

(s∗t )
n

Zt
+ b1{l∗t>0}

}
, (11)

l∗t = l∗t−1 − s∗t−1, ∀t > 1, l∗1 = L. (12)

Generally, a backward iterative method induces high complexity and is often NP-hard. To

mitigate the complexity, we propose a database-driven algorithm, called database-DP, that re-

moves the duplicate calculations in the backward iterations by pre-building all possible combina-

tions in the form of a database. The database consists of two types of T -by-(L+1) matrices, the

cost-to-go matrix M1 and the optimal-st matrix M2, as shown in Fig. 7. For each type, there

exist K distinct copies such as Mk
1, Mk

2, k = 1, 2, . . . ,K, where Mk
1 and Mk

2 assume Zi = Sk,

∀i. In the i-th row and the j-th column, we store Mk
1(i, j) = Ji(j− 1) and Mk

2(i, j) = s∗i (j− 1).

The database construction algorithm is shown in Fig. 1 and summarized as follows. Starting

from i = T , we decrement i one by one until it reaches i = 1. At each i, we enumerate all

possible Sk’s, and for each chosen Sk we set Zi = Sk and generate the i-th row entries Mk
1(i, j)

and Mk
2(i, j), ∀j, according to Eqs. (9) and (10). Since the database entries for the rows larger

than i have been already created, the two equations can be solved via simple table lookup.

Once the database is constructed, the transmission scheduler (of the offloaded task manager)
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can utilize it online by simply looking up the corresponding s∗t in the right matrix according to

the given set of t, lt, and Zt.

Algorithm 1 A pseudocode for database construction
Database L, T

1: procedure Database(L, T )

2: for i← T, 2 do . For 1 < t ≤ T
3: for k ← 1,K do

4: Zi ← Sk

5: for j ← 1, L+ 1 do

6: li ← j − 1

7: Mk
1(i, j)← Ji(li)

8: if i = T then

9: Mk
2(i, j)← lT

10: else

11: Mk
2(i, j)← si that minimizes Ji(li)

12: end if

13: end for

14: end for

15: end for

16: for k ← 1,K do . For t = 1

17: Z1 ← Sk

18: Mk
1(1, L)← J1(L)

19: Mk
2(1, L)← s1 that minimizes J1(L)

20: end for

21: end procedure

Complexity Analysis of Original DP and Database-DP We compare the computational

complexity of the original DP and the proposed database-DP. The number of iterations required

for DP, denoted by ΨDP , is determined as

ΨDP = K(L+ 1)T ∈ O(LT ), (13)

since each slot has at most (L + 1) possible choices of st, i.e., 0, 1, . . . , L. On the other hand,

the number of iterations required for the database-DP, denoted by ΨDB, is given as

ΨDB = K

2(L+ 1) + (T − 2)

L+1∑
j=1

j

 ∈ O(L2T ), (14)

In Eq. (14), the first term is related to the slot t = T which has (L+ 1) cases to consider since

0 ≤ lT ≤ L and s∗T = lT , and the slot t = 1 which has l1 = L thus leading to (L + 1) possible
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Figure 8: Time slot aggregation for approximate dynamic programming

choices of s1. The second term concerns with 1 < t < T , i.e., a total of (T − 2) slots, where

the sum implies that when lt = j − 1 (corresponding to the j’s column of a matrix), there are j

ways of choosing st such that st = 0, 1, . . . , (j − 1).

Eqs. (13) and (14) show that database-DP much enhances the complexity of the original DP

from O(LT ) to O(L2T ).6 The computational requirement, however, still increases fast as L and

T grow. To further reduce the complexity while maintaining reasonably good performance, we

propose an approximate DP algorithm in the next subsection.

ADP: One-step Lookahead Approximation of DP

The one-step lookahead approach is one of the approximation methods to mitigate the complexity

of DP computation, by making a decision based on lookahead of a limited number of stages with

approximate cost-to-go functions [31]. In Eq. (9), the cost-to-go function Jt(lt) incorporates the

time slots from t to T , and hence it should consider all possible combinations according to lt′ ’s

and Zt′ ’s for t′ ≥ t, whose number grows rapidly as t gets smaller. The one-step lookahead

scheme, however, replaces the expectation of future unknown behaviors, i.e., E
Zt+1

[Jt+1 (lt − st)]
in Eq. (9), with an approximate cost-to-go function, thus eliminating the need for enumerating

all of the combinatorial cases.

To describe the proposed one-step lookahead approximate DP (ADP) algorithm, we define

three concepts – virtual completion time, virtual time slot, and virtual channel state. The virtual

completion time, denoted by T̃ , is the time slot at which the offloading process is believed to

be completed, i.e., l
T̃
> 0 and l

T̃+1
= 0. The virtual time slot, denoted by [t; T̃ ], aggregates

(T̃ − t+ 1) time slots t, t+ 1, . . . , T̃ into one, as shown in Fig. 8. Then, the virtual channel state,

denoted by 1/ζ
t;T̃

, is the channel state of the virtual time slot, reflecting the combined effect of

the channel states from slots t, . . . , T̃ .

6Note that O(L2T ) < O(LT ) as long as T > 2 and L > 3, which is mostly likely in practical scenarios.
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Theorem 1 ζ
t;T̃

is derived as7

ζ
t;T̃

=


(
Zt

1
n−1 + E

[
ζ
t+1;T̃

]− 1
n−1

)1−n
, when t < T̃ ,

Zt
−1, when t = T̃ .

(15)

Proof 1 We assume that the offloading process is completed exactly at slot T̃ , and define ζ
t;T̃

as a reciprocal of the virtual channel state combining slots t, . . . , T̃ . For t = T̃ , it is certain that

ζ
t;T̃

= 1/Z
T̃
, and thus the approximate cost-to-go becomes the exact cost-to-go such as

J̃
T̃

(l
T̃

) = a · l
T̃
n
/(

ζ
T̃ ;T̃

)−1
+ b. (16)

When t = T̃ − 1, the approximate cost-to-go is given as8

J̃
T̃−1

(l
T̃−1

) = min
0≤s

T̃−1
<l

T̃−1

{
a
s
T̃−1

n

Z
T̃−1

+ b+ E
ζ
T̃ ;T̃

[
J̃
T̃

(
l
T̃−1
− s

T̃−1

)]}

= min
0≤s

T̃−1
<l

T̃−1

{
a
s
T̃−1

n

Z
T̃−1

+ a
(l
T̃−1
− s

T̃−1
)n

1
/

E
ζ
T̃ ;T̃

[
ζ
T̃ ;T̃

] + 2b

}
(17)

where the function inside the curly brackets is minimized at

s̃
T̃−1

= l
T̃−1

/{
1 +

(
Z
T̃−1

Eζ
T̃ ;T̃

[
ζ
T̃ ;T̃

])− 1
n−1

}
(18)

which can be easily shown via differentiation. Note that Eq. (18) satisfies the range 0 ≤ s
T̃−1

<

l
T̃−1

. By applying Eq. (18) to Eq. (17), we obtain

J̃
T̃−1

(l
T̃−1

) = a · l
T̃−1

n
/(

ζ
T̃−1;T̃

)−1
+ 2b, (19)

ζ
T̃−1;T̃

=

(
Z
T̃−1

1
n−1 + Eζ

T̃ ;T̃

[
ζ
T̃ ;T̃

]− 1
n−1

)−(n−1)

. (20)

In addition, (18) is rewritten using (20) as

s̃
T̃−1

= l
T̃−1

(Z
T̃−1

ζ
T̃−1;T̃

)
1

n−1 . (21)

By repeating the steps for t = T̃ − 2, we obtain

J̃
T̃−2

(l
T̃−2

) = a · l
T̃−2

n
/(

ζ
T̃−2;T̃

)−1
+ 3b, (22)

ζ
T̃−2;T̃

=

(
Z
T̃−2

1
n−1 + Eζ

T̃−1;T̃

[
ζ
T̃−1;T̃

]− 1
n−1

)−(n−1)

. (23)

It can be shown by induction that the same structure in Eqs. (20) and (23) appears for any

slot index within t, . . . , T̃ − 1. This implies that the virtual time slot [t; T̃ ] can be modeled to

have a channel state given in Eq. (15) and the latency cost of (T̃ − t+ 1)b, which completes the

derivation.
7The proof of the theorem is inspired by [18].
8Note that the range 0 ≤ sT̃−1 < lT̃−1 excludes lT̃−1 since offloading should complete at slot T̃ .
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Using the FSMC model, E[ζ
t+1;T̃

] in Eq. (15) is derived for Zt = γk as

E
[
ζ
t+1;T̃

]
=



1{k 6=1}Pk,k−1

(
γk−1

1
n−1 + E

[
ζ
t+2;T̃

]− 1
n−1

)1−n

+ Pk,k

(
γk

1
n−1 + E

[
ζ
t+2;T̃

]− 1
n−1

)1−n

+ 1{k 6=K}Pk,k+1

(
γk+1

1
n−1 + E

[
ζ
t+2;T̃

]− 1
n−1

)1−n
, when t < T̃ − 1

1{k 6=1}Pk,k−1
1

γk−1
+ Pk,k

1
γk

+ 1{k 6=K}Pk,k+1
1

γk+1
, when t = T̃ − 1

(24)

Note that we determine E[ζ
t+1;T̃

] in Eq. (15) only by Eq. (24), not by recursively applying

Eq. (15) to itself.

Based on the aforementioned concepts, we now sketch the steps in the proposed ADP algo-

rithm.

• At slot t, we consider (T − t+ 1) possible cases: the transmission of the remaining lt bits

would be completed at slot T̃ , where T̃ = t, . . . , T .

• For each possible T̃ , we aggregate slots t+ 1, . . . , T̃ into a virtual time slot [t+ 1; T̃ ]. We

treat the virtual slot as a single slot with a channel state 1/ζ
t+1;T̃

incurring the latency

cost of (T̃ − t)b, which has been proven in Theorem 1. Then, the problem reduces to

the system consisting of two slots, t and [t + 1; T̃ ], eliminating the need for the recursive

iterations in the original DP.

• We find the optimal st for each possible T̃ , and compare thus-derived st’s to find the one

with the minimal (approximate) cost-to-go. The resulting st becomes the (suboptimal)

solution of the ADP for slot t.

The algorithm is now formally described as follows.

Deriving the T̃ -dependent solution ŝ∗t The first step is to find the suboptimal value for a

fixed virtual completion time. Let’s define J̃
t;T̃

(lt) as the approximate cost-to-go function for a

fixed T̃ , such as

J̃
t;T̃

(lt) =


min

0≤st<lt

{
a st

n

Zt
+ b+ Eζ

t+1;T̃

[
J̃t+1(lt − st)

]}
, when t < T̃

a lt
n

Zt
+ b, when t = T̃

(25)

where J̃t+1(lt− st) assumes that the transmission of the remaining (lt− st) bits is completed at

slot T̃ . In Theorem 1, J̃t+1(lt − st) has been derived as

J̃t+1(lt − st) = a · (lt − st)n/
(
ζ
t+1;T̃

)−1
+ (T̃ − t)b. (26)
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By applying Eq. (26) to Eq. (25) and taking derivative with st, we obtain st that minimizes the

approximate cost-to-go, denoted by ŝ∗
t;T̃

, such as

ŝ∗
t;T̃

=

lt ·
(
Zt · ζt;T̃

) 1
n−1

, when 1 ≤ t < T̃ ,

lt, when t = T̃ .
(27)

By applying Eq. (27) to Eq. (25), we finally obtain

J̃
t;T̃

(lt) = a · ltn/
(
ζ
t;T̃

)−1
+ (T̃ − t+ 1)b. (28)

Deriving the suboptimal solution s̃∗t The second step is to compare J̃
t;T̃

(lt), ∀T̃ to find

the optimal T̃ minimizing the approximate cost-to-go. Denoting such T̃ by T̃ ∗, we have

T̃ ∗ = argmin
t≤T̃≤T

{
J̃
t;T̃

(lt)
}
. (29)

Then, the (sub)optimal amount of bits to transmit according to ADP at slot t, denoted by s̃∗t ,

is determined as

s̃∗t = ŝ∗
t;T̃ ∗

(30)

Finally, the achieved total cost by the (sub)optimal policy set, J∗ADP , is determined as

J∗ADP =

T∑
t=1

{
a

(s̃∗t )
n

Zt
+ b1{l̃∗t>0}

}
, (31)

l̃∗t = l̃∗t−1 − s̃∗t−1,∀t > 1, l̃∗1 = L. (32)

Complexity Analysis of Approximate-DP The complexity of ADP consists of two parts:

offline complexity in building the lookup table of all possible ζt;T ’s by Eqs. (15) and (24), and

online complexity at time t to determine s̃∗t by Eq. (29). Specifically, the number of iterations

required for ADP is

ΨADP = 2KT +
T∑
t=1

(T − t+ 1) ∈ O(T 2), (33)

where the first term is the offline complexity in calculating ζt;T in the descending order of t, with

K possible channel states in each of Eqs. (15) and (24).9 The second term is the total online

complexity combining each t’s complexity in solving Eq. (29). That is, the ADP algorithm runs

fast in real-time since at each t only (T − t+ 1) iterations are necessary to run.

The ADP’s complexity does not depend on L and thus large tasks won’t degrade the perfor-

mance. Considering that L2 � T,K in practice, e.g., L = 81, 920 bits in code offloading [14], the

ADP’s offline complexity in building the lookup table (2KT ) is much less than the database-DP

(O(L2T )). In addition, the lookup table is lightweight to store in a mobile device since 2KT is

also related to the size of the table. Moreover, although the lookup table is built for T̃ = T , it

can be reused by any other T̃ because ζ
t;T̃

depends only on the number of time slots between t

and T̃ . For example, ζt;T = ζ
t′;T̃ when T − t = T̃ − t′.

9E[ζt+1;T̃ ] is determined by Eq. (24) via table lookup of pre-built entries for larger t.
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and an approximate line of ζ̆
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ADPe: Further Enhancement of ADP

Even though ADP alleviates complexity from O(L2T ) to O(T 2), it is still desirable to further

reduce the complexity for real-time operations. Since ADP’s complexity mostly arises when

obtaining T̃ ∗, we present an enhanced approximate DP (ADPe) algorithm that can reduce the

complexity in Eq. (29) in case of slow-fading where the channel state tends to remain the same

with high probability. The slow-fading assumption becomes reasonable in some practical cases,

such as pedestrians walking along the street. In LTE, for example, one of the recommended

performance evaluation scenarios is to set the maximum Doppler frequency to 5 Hz [41], which

corresponds to the situation where a person takes a walk at 0.8 m/s while using a Band 3 network

that is the most popular band in the world [49].

The ADPe algorithm consists of three steps. The first step is to build a table of ζ
t;T̃

for all

channel states by Eqs. (15) and (24), while approximating ζ
t;T̃

as follows. Assuming Pk,k ≈ 1,∀k,
Eq. (24) can be approximated for Zt = γk as

E
[
ζ
t+1;T̃

]
≈


(
γk

1
n−1 + E

[
ζ
t+2;T̃

]− 1
n−1

)1−n
, when t < T̃ − 1

γk
−1, when t = T̃ − 1

(34)

and hence ζ
t;T̃

can be approximated to a power function as

ζ
t;T̃
≈ ζ̆

t;T̃
,

1

Zt

(
T̃ − t+ 1

)1−n
. (35)

Fig. 9 presents an illustrative example of such an approximation which confirms that ζ̆
t;T̃

shows

a similar tendency to ζ
t;T̃

with a reasonable degree of accuracy. Please note that the gap between

the two cases for large (T̃ − t+ 1) is in fact insignificant since the figure is drawn in log scale.

The second step is to derive T̃ ∗ in Eq. (29) using ζ̆
t;T̃

such as

T̃ ∗ ≈ T̆ ∗ , argmin
t≤T̃≤T

{
J̆
t;T̃

(lt)
}

(36)

where J̆
t;T̃

is the approximate cost-to-go function by replacing ζ
t;T̃

with ζ̆
t;T̃

in Eq. (28), such as

J̃
t;T̃

(lt) ≈ J̆t;T̃ , a · ltn/
(
ζ̆
t;T̃

)−1
+ (T̃ − t+ 1)b. (37)
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Then, T̆ ∗ is obtained as follows by differentiating Eq. (37):

T̆ ∗ =


t, when Ṫ < t

Ṫ , when t ≤ Ṫ ≤ T
T, when Ṫ > T

(38)

where

Ṫ = t− 1 +

(
b · Zt

a(n− 1) · ltn
)− 1

n

. (39)

Lastly, based on Eq. (30), the (sub)optimal value of s̃∗t is approximately obtained as

s̃∗t ≈ s̆∗t , ŝ∗
t;[T̆ ∗]

(40)

where [T̆ ∗] is round-half-to-even of T̆ ∗ that is necessary since the table of ζ
t;T̃

allows only integers

as its indices. By the same token, we define the approximate cost-to-go function provided T̆ ∗ as

J̆t;T̆ ∗(lt) = a · ltn/
(
ζt;[T̆ ∗]

)−1
+ (T̆ ∗ − t+ 1)b. (41)

Then, the achieved total cost by the (sub)optimal policy set, J∗ADPe, is determined as

J∗ADPe =
T∑
t=1

{
a

(s̆∗t )
n

Zt
+ b1{l̆∗t>0}

}
, (42)

l̆∗t = l̆∗t−1 − s̆∗t−1,∀t > 1, l̆∗1 = L. (43)

Complexity Analysis of Enhanced Approximate-DP The ADPe algorithm incurs low

complexity because all the parameters except ζ
t;T̃

are derived in their closed forms. Therefore,

its computational complexity originates only from building the tables, and we obtain

ΨADPe = 2KT ∈ O(T ). (44)

In other words, unlike in ADP, ADPe does not incur any computation in the middle of offloading.

2.5 QoE-aware Service Class Selection

This section focuses on which MECOS service class should be selected for computation offloading

to achieve best QoE. In particular, the offloaded task manager (introduced earlier in Section 2.2)

needs to choose the MECOS class to incur the minimum cost during the overall computation

offloading procedure. To do so, Sections 2.5 and 2.5 derive the QoE-aware cost at the processing

and data transmission phases, and then Section 2.5 formulates the optimal strategy of choosing

the best service class for computation offloading.
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Offloading Cost at Processing Phase

We hereby derive each of energy, latency, and monetary costs in the processing phase. First, the

latency Dproc(q) and energy consumption Eproc(q) are determined as

Dproc(q) =
Rapp · L
Hq

× ε, (45)

Eproc(q) = Dproc(q) · Pproc, (46)

where Pproc is the consumed power by the mobile device during the processing phase. In what

follows, we assume Pproc = 0 because the local device may consume energy during the processing

of an offloaded task at the cloud not for the task’s application but for some other applications

like background tasks, for which the offloaded task is not responsible.

The processing phase may start in the middle of an ε period, and thus the monetary cost

Fproc(q) due to the service charge of MECOS is derived as

Fproc(q) =

(
u(ε) +

⌈
Rapp · L
Hq

− u(ε)

⌉)
× δq, (47)

u(ε) =
λ− (T̆ ∗ mod λ)

λ
, (48)

where u(ε) is the ratio of the remaining portion of the period to ε, and mod indicates the modulo

operation.

Then, similar to the definition of Eq. (8), the total cost at the processing phase is determined

as

φproc(q) = w1
Eproc(q)

EL
+ w2

Dproc(q)

DL
+ w3

Fproc(q)

FL
(49)

where w1 = 1− αB, w2 = wQoE · αB, and w3 = wQoE · wm.

Offloading Cost at Data Transmission Phase

The mobile user has to pay the usage charge for two types of services: one provided by the cloud

service provider, and the other by the wireless carrier for the network usage to exchange data

with the cloud service provider. When the charging rate of the wireless carrier is µ per bit, the

monetary cost is determined as

Ftx = L · µ. (50)

Hence, the total cost at the data transmission phase becomes

φtx(q) = J̆1;T̆ ∗(L) + w3
Ftx
FL

. (51)

Note that J̆1;T̆ ∗(L) is a function of q, because the monetary cost function in Eq. (7) depends on

q, and the deadline for the transmission phase (i.e., T ) is also a function of q as shown later in

Eq. (54) of Section 2.5.
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Optimal Service Class Selection Problem

Now we consider an optimal selection problem where a mobile user wants to determine the

best of Q MECOS classes to lease so as to minimize the overall cost incurred by computation

offloading. We first determine the deadline for the data transmission phase, and then find the

best strategy based on the computation offloading cost of the data transmission and processing

phases.

For given class q, φproc becomes constant while φtx varies with transmission scheduling. In

addition, the transmission deadline T depends on q, as shown as follows. First, the transmission

deadline due to the task-specific time constraint DL, denoted by T1(q), is given as

T1(q) =

⌊
DL − (Dproc(q) +Drx)

τ

⌋
. (52)

Next, the transmission deadline due to the monetary constraint FL, denoted by T2(q), is given

as

T2(q) =

⌊
{FL − (Ftx + Fproc(q) + Frx)} λ

δq

⌋
(53)

where Frx = Lrx · µ. Finally, the deadline of the transmission phase is determined as

T (q) = min {T1(q), T2(q)} . (54)

For given T (q), the best class q∗ is determined as

q∗ = argmin
q∈Q

(φtx(q) + φproc(q)) . (55)

where T (q) is applied to φtx(q).

Finally, the overall QoE-aware cost by computation offloading performed with class q∗, de-

noted by ΦC(q∗), is given as

ΦC(q∗) = φtx(q∗) + φproc(q
∗). (56)

Local Computing vs. Offloaded Computing

The decision maker, introduced earlier in Section 2.2, determines whether a given task should

be offloaded or not by comparing the overall cost of local computing with that of offloading, i.e.,

ΦC(q∗) in Eq. (56). This section completes the discussion on the decision maker by deriving the

local computing cost and by describing how to decide between local and offloaded computing.

In fact, deriving the local computing cost is not trivial due to the heterogeneous character-

istics of mobile processors and various existing algorithms to assign tasks to the processors. A

mobile processor usually possesses multiple heterogeneous cores such as high-performance cores

for computation-intensive tasks and energy-efficient cores for other types of tasks [50], so that

it can carry out numerous background/user applications simultaneously. Moreover, there exist
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various algorithms on how to utilize such cores, such as dynamic voltage and frequency scaling

(DVFS) and dynamic power management (DPM) [36,37,51].

Considering aforementioned aspects, we assume that the offloadable task is assigned a high-

performance core which processes the task exclusively until the completion of the task (not until

the completion of the task’s application, though). We believe the assumption is reasonable to

some extent because the offloadable task is usually latency-sensitive (i.e., with a specific time

deadline) and thus the mobile device needs to process it with higher priority, e.g., by assigning

a dedicated core with high performance. In this case, the processing delay is derived as

DM = (RMapp × L)/HM , (57)

where HM is the frequency of a core in Hertz. In addition, the energy consumption during the

processing is given as

EM = DM × PM , (58)

where PM is the power consumption when the core is fully utilized to process the offloadable

task. Then, the QoE-aware local computing cost is defined similar to ΦC as

ΦM = (1− αB)
EM
EL

+ wQoEαB
DM

DL
, (59)

where the monetary cost is excluded since local computing does not incur any MECOS-related

charges.

Finally, the decision maker decides whether computation offloading is performed or not,

according to the following criterion:local computing, when ΦM ≤ ΦC(q∗),

offloading to q∗, when ΦM > ΦC(q∗).
(60)

In Section 2.6, we will consider the proposed decision making in Eq. (60) for a couple of real

mobile applications.

2.6 Performance Evaluation

In this section, we evaluate the performance of the proposed DP, ADP, and ADPe algorithms

and the service class selection algorithm via extensive simulations. Our simulation environment

is presented as follows.

• Wireless Channel: We consider a wireless channel with the bandwidth of 20 MHz, the

maximum Doppler frequency fm of 5 Hz, andN0W = −96 dBm (according to the Johnson-

Nyquist noise with 5 dB noise figure [41,52]). We also consider γ0 = 16 dB, τ = 1 ms, and

Pnomtx = 100 mW. Then, the channel is modeled as an FSMC with 15 states.

• Mobile Device: We assume a mobile device has CBatt = 11.55 Wh [53], HM = 1.8

GHz [54], and PM = 750 mW [55].
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Table 2: T (q) of APP1 and APP2

APP1 APP2

q = 1 623 1719

q = 2 699 1936

q = 3 754 2091

Table 3: Transmission deadline of APP2∗

T1(q) T2(q) T (q)

q = 1 1719 2037 1719

q = 2 1936 806 806

q = 3 2091 276 276

• MECOS Service Classes: Based on a commercial cloud service [56], we consider three

service classes (Q = 3) where q = 1 is the cheapest but slowest whereas q = 3 is the

most expensive but fastest, such as Hq = 2.5, 3, 3.5 GHz, respectively. We set δq =

4.37× 10−32 ×Hq
3 by adopting the Cobb-Douglas demand model [57] which provides the

relationship between the consumer demand for a service, price, and delivery lead time

while assuming the same demand for all of the Q classes.10 Note that the equation of δq
has been set up according to the price introduced in [56], and we assume θ = 1/1.7 [45]

and ε = 100 ms.

• Application Characteristics: Based on [43] and [58], we consider two applications,

a face recognition application with L = 7.5 KB and Rapp = 31, 680 (cycles/bit) and a

video game application with L = 256 KB and Rapp = 2, 640 (cycles/bit), each of which

represents a resource intensive application and a latency sensitive application, respectively

[14]. Regarding Lrx, we set Lrx = 1 KB for the face recognition application since its result

includes lightweight information like the face’s location in the image and the person’s name,

and Lrx = 256 KB for the video game application (which is the same as L) considering

that the application’s state takes a major portion of both input and output data [14].

Also, we assume that the task-specific deadline DL equals to the processing delay of local

computing DM .

• Misc.: Based on [48] and [59], we adopt n = 2.67 and m = 1.054× 10−33 to calculate the

transmission power. To calculate Drx of each application, we consider the downlink data

rate of 39 Mbps which corresponds to one of the achievable data rates at γ0 = 16 dB [60].

We also consider FL = 0.01 which represents a situation where a user pays $9/month for

computation offloading service and performs offloading 30 times per day on average. In

addition, µ = 10 $/GB [61].

Based on this environment, we consider three experimental scenarios, APP1, APP2, and

APP2∗, in Section 2.6 and thereafter. APP1 indicates the face recognition application with

FL = 0.01, whereas APP2 and APP2∗ represent the video game application with FL = 0.01 and
10The equal-demand assumption becomes realistic when the cloud service provider wants to evenly utilize its

resources.
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Figure 10: Performance loss of ADP and ADPe compared to optimal DP

FL = 0.004906, respectively. Note that APP2∗ is considered only in Section 2.6 to show the

impact of the monetary budget on class selection, where FL = 0.004906 is a fine-tuned condition

at which APP2∗ starts to behave differently from APP2. According to Eq. (54), the transmission

phase deadlines of APP1 and APP2 are always decided by the task-specific time constraint DL

(i.e., by T1(q)) as presented in Table 2, whereas the transmission phase deadline of APP2∗ is

decided by either T1(q) or T2(q) as presented in Table 3. As a result, in APP1 and APP2, a

faster service class (i.e., larger q) assures a more extended time budget. On the contrary, in

APP2∗, a faster class more restricts the time budget.

For each scenario, we generated 1,000 realizations of the described channel and observed the

average behavior. To properly capture the tradeoff relationship, we considered a user tendency

range of 0.1 ≤ α ≤ 0.9 excluding extreme cases like α = 0 and α = 1, and a battery state range

of 0.1 ≤ B ≤ 1. For any combination of α and B, it turns out that the decision maker always

decides to perform computation offloading by applying Eq. (60), regardless of APP1, APP2,

and APP2∗. This is primarily because the chosen γ0 helps computation offloading achieve

smaller energy and latency costs than local computing; local computing, however, would be

chosen when the average channel condition deteriorates (i.e. small γ0). Therefore, in the sequel,

we concentrate on the performance of the offloaded task manager, service class selection, and

transmission scheduling.

Goodness in Performance of ADP and ADPe

To evaluate how much deviated the performance of the proposed suboptimal transmission al-

gorithms is from the optimal performance, we compare the database-DP with ADP and ADPe

algorithms with a sample application11 with L = 1 KB, T = 1,000 slots, DL = 2 seconds, and

wQoE = 7.77× 10−16. The performance loss in total achieved cost is measured by the loss ratio,
11Due to the complexity of the database-DP, APP1, APP2, and APP2∗ are inadequate to consider for this

type of evaluation.
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Figure 11: An optimal schedule: DP vs. ADPe (when B = 0.5)

which is defined as

loss ratio (%) =

∣∣∣∣J∗sub − J∗DPJ∗DP

∣∣∣∣× 100 (61)

where J∗sub is either J
∗
ADP or J∗ADPe.

Fig. 10 illustrates the measured loss ratio, by varying α andB such that α ∈ {0.1, 0.25, 0.5, 0.75, 0.9}
and B ∈ {0.1, 0.25, 0.5, 0.75, 1.0}. As observed, the performance deviations of ADP and ADPe

due to approximation are only 0.35% and 2.1% on average and well bounded below 0.77% and

4.21% respectively, confirming their near-optimal performance. The ADP and ADPe are shown

to perform worse with larger αB, which is because in the delay-sensitive case (i.e., large α), the

two algorithms try to transmit more data at “good” slots than the DP does, aiming at shorten-

ing the completion time — which is well illustrated in Fig. 11. From now on, we use the ADPe

algorithm to evaluate the impact of QoE factors on real applications.

MECOS Class Selection

In this subsection, we evaluate the impact of energy, latency, and monetary costs on the MECOS

class selection problem for the three aforementioned experimental scenarios. First, Fig. 12

presents APP1’s results, where sub-figure (a) shows the selected service class with various com-

binations of 0.1 ≤ α ≤ 0.9 and 0.1 ≤ B ≤ 1, and sub-figures (b), (c), (d) show the related

offloading costs according to varying αB along the solid straight line in Fig. 12a.12 In particular,
12Note that the straight line implies the one between (α = 0.1, B = 0.1) and (α = 0.9, B = 1). In addition, the

same color convention is applied in Figs. 12, 13, and 14 as follows: blue for q = 1, red for q = 2, yellow for q = 3.
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Figure 12: APP1: class selection and offloading cost
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Figure 14: APP2∗: class selection and offloading cost
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Fig. 12b presents the overall offloading cost φ(q), Fig. 12c presents the total data transmission

phase cost φtx(q) and its two most significant contributors, energy cost13 and monetary cost14,

and Fig. 12d presents the total processing phase cost φproc(q) and its major contributor, latency

cost.15 It can be seen from Fig. 12a that except when αB is extremely small, the larger αB is,

the more expensive class is chosen because latency becomes more important than energy, where

q = 1 is chosen by 54.62% of the cases, followed by q = 2 (42.17%) and q = 3 (3.21%). When αB

is very small, however, each MECOS service class incurs the almost same amount of φproc(q) as

presented in Fig. 12d; therefore φtx(q) is critical to making a decision. In the data transmission

phase, a more expensive class provides more room to save energy (e.g., q = 3 consumes the

least energy) but incurs more charges, as presented in Fig. 12c. Due to this trade-off, q = 2 is

accordingly selected, which consumes moderate energy and requires a moderate cost.

Next, Figs. 13 and 14 present the results of APP2 and APP2∗ in a similar way to Fig. 12. We

can first notice that APP2 always selects q = 3 as shown in Fig. 13a. On the contrary, APP2∗

diversifies its choice as shown in Fig. 14a, which is caused by the difference in φ(q) at small αB

as seen from Figs. 13b and 14b. The main reason for this change is that APP2∗ consumes more

energy than APP2 at small αB, as seen from Figs. 13c and 14c, due to its smaller monetary

budget and in turn tighter deadline T (q).

Impact of QoE Factors

To evaluate the impact of QoE factors on the total achieved cost, we ran two versions of the

ADPe algorithm: wQoE = 0 (i.e., energy-only case) vs. wQoE > 0 (i.e., QoE case), for the
13More specifically, the energy-related part in the first term of Eq. (51).
14More specifically, the monetary-related part in the first term of Eq. (51) plus the second term of Eq. (51).
15Note that we later omit the latency cost plot in Figs. 13 and 14 because the gap between φproc(q) and the

latency cost gets even narrower.
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APP1 scenario. Then, we measured how much times the QoE-based scheme can enhance the

cost compared to the energy-only counterpart via the enhancement ratio, which is defined as

enhancement ratio =
J∗ADPe when wQoE = 0

J∗ADPe when wQoE > 0
. (62)

Fig. 15 illustrates the measured enhancement ratio with 0.1 ≤ α ≤ 0.9 and 0.1 ≤ B ≤ 1. As

shown, the QoE-based scheme achieves up to 2.38 times smaller (thus better) cost when both α

and B are large, i.e., the user is more delay-sensitive and has enough energy, since there is more

room in balancing energy with latency. Such enhancement gets less prominent as either α or B

decreases eventually converging to the ratio equal to 1, which is expected since energy saving

becomes most important in such a situation.

Fig. 16 also presents ADPe’s performance with varying α and B. Figs. 16a, 16b, and 16c plot

the ratio between wQoE = 0 and wQoE > 0 in terms of the completion time slot, energy cost,

and monetary cost, respectively.16 As seen in Fig. 16a, as α and B gets larger, the completion

time gap between the two cases gets wider resulting in up to 2.81 times faster completion in the

QoE case. In addition, Fig. 16b shows that the QoE case always consumes more energy and

the gap between the two cases gets larger as α and/or B grows. This is because, for the sake

of minimizing the energy-latency combined cost, the QoE scheme is willing to sacrifice more

energy as the device has larger remaining battery and/or the user’s delay-sensitivity is stronger.

Finally, Fig. 16c reveals that the ratio of monetary cost is always larger than 1, implying that

the QoE scheme spends less money than the energy-only scheme while achieving QoE-aware

scheduling. Note that several dramatic drops in the cost can be observed, which originate from

the change in the optimal service class decision.

Fig. 17 compares the QoE-aware scheme (α = 0.25, 0.75) with the energy-only scheme when

B = 0.5, in terms of the optimized transmission scheduling. Because each scheme selects a

different service class, such as q = 1 for α = 0.25, q = 2 for α = 0.75, and q = 3 for the

energy-only scheme, their transmission time budgets are also different. Fig. 17a presents a good

channel condition, where the two QoE scheme completes the offloaded task as early as at slot

178 out of 623 slots (the α = 0.25 case) and at slot 109 out of 699 slots (the α = 0.75 case)

by exploiting the favorable environment, whereas the energy-only scheme consumes all the slots

resulting in the worst delay performance. Fig. 17b, on the other hand, presents a bad channel

condition, where the QoE scheme with α = 0.75 completes the task earlier than others (at slot

495) to cope with the delay-sensitivity even though it has more room for transmission than

small α, while the QoE scheme with α = 0.25 consumes all the slots reflecting the preference to

energy saving. In fact, such behavior of α = 0.25 shows the same tendency with the energy-only

scheme, in the sense that they tend to defer transmission until the last moments resulting in

rapidly rising st towards the end.
16That is, J∗ADPe in Eq. (62) is replaced by the metric in consideration.
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Summary of Findings

We hereby summarize major findings in Section 2.6. Section 2.6 confirmed that the proposed

ADPe algorithm achieves near-optimal performance while much reducing computational com-

plexity. Section 2.6 presented that the decision maker may choose the MECOS service class quite

differently according to the nature of the given task, user tendency α, the remaining battery

level, and the monetary budget. Section 2.6 further showed that QoE-aware scheduling always

achieves lower total cost than energy-saving-only scheduling, which gets more prominent as α

and B becomes larger. It has also revealed that QoE-aware scheduling well captures the user

tendency by completing offloading faster for larger α, and adapts to the time-varying channel

conditions.

As a result, we validate that energy, latency, and monetary costs are all crucial factors in

computation offloading, where each can affect user’s QoE significantly.

2.7 Conclusion and Future Work

In this chapter, we proposed optimal transmission scheduling and optimal service class selection

of computation offloading while capturing the tradeoff between energy, latency, and pricing. The

transmission scheduling problem has been formulated as DP, and its optimal scheduling and two

suboptimal scheduling algorithms have been derived. The service class selection problem has

been also introduced for a mobile user to choose the best service to use for offloading. Through

extensive simulations, the proposed transmission scheduling has been shown to effectively re-

duce the latency while enhancing the performance against the existing energy-only scheme. In

addition, the proposed service class selection method has been shown to select the optimal

class according to user tendency and the remaining battery level while satisfying the monetary

constraint.

In the future, we would like to consider more diverse applications, e.g., the ones that allow

parallel processing of the offloaded task at the cloud while its data is still being transmitted.

In addition, we would like to investigate how to fine-tune the QoE-related weighting factors to

reflect actual human behaviors and experience, based on the feedback provided by mobile users

like Mean Opinion Score (MOS).
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III Lightweight Wi-Fi Frame Detection for Licensed Assisted Ac-

cess LTE

3.1 Introduction

Licensed Assisted Access (LAA) LTE (LAA-LTE) is a 3GPP standard that combines unlicensed

bands with LTE’s licensed bands via carrier aggregation [62]. LAA-LTE (henceforth referred to

as LAA) adopts energy detection (ED) based Clear Channel Assessment (CCA) to peacefully

coexist with legacy devices in the unlicensed spectrum (e.g., Wi-Fi). Using CCA, an LAA

device senses a channel busy when other co-channel devices are transmitting, and postpones its

transmission if the energy of the received signal is stronger than the ED threshold.

According to 3GPP Release 15 [62], LAA’s maximum ED threshold should be −52 dBm

given that there is a long-term guarantee of the absence of other legacy technologies, or −72

dBm otherwise.17 In reality, however, Wi-Fi is already pervasive everywhere, and hence LAA

devices will mostly have to consider −72 dBm. This will in turn lead to severely degraded spatial

reuse due to too conservative transmission by LAA devices, since their ED thresholds can no

longer be set beyond −72 dBm even when the Wi-Fi devices in the vicinity temporarily stay

inactive.

Spatial efficiency of LAA could be much enhanced if LAA is allowed to set the ED threshold

dynamically, e.g., −72 dBm when nearby Wi-Fi stations are transmitting but −52 dBm during

when only LAA devices are active in the area temporarily. Unfortunately, however, with ED

alone, LAA cannot distinguish whether the received signal is originated from LAA or Wi-Fi,

since ED does not capture the unique feature of Wi-Fi’s transmission. Although one might

argue that an LAA device can recognize an LAA frame once it decodes the first OFDM symbol

of the received signal, Wi-Fi frames cannot be protected at the moment they appear since the

duration of one OFDM symbol (66.7 µs [63]) is much larger than LAA’s CCA delay requirement

(4 µs [62]), and we cannot still apply a Wi-Fi specific ED threshold by only identifying LAA

frames. Therefore, we need a more lightweight Wi-Fi frame detection mechanism so that LAA

devices can instantly determine whether the received signal is from Wi-Fi or not.

There have been several approaches to enable LAA to differentiate Wi-Fi frames from LTE

frames. [64–68] proposed making LAA devices equipped with Wi-Fi interface, using which Wi-

Fi frames can be decoded. Such approaches, however, incur a non-trivial extra cost due to the

increased complexity in combining two technologies seamlessly. Another possible approach is to

exchange control packets among LAA nodes to indicate their transmission intention so that any

unannounced received signals can be considered as non-LAA-compliant, at the expense of huge

signaling overhead.

To detect Wi-Fi frames without Wi-Fi interfaces, inter-technology detection algorithms have

been also proposed. First, [69] adopts the artificial neural network, with which a Wi-Fi device can
17Provided that the channel bandwidth is 20 MHz and the transmit power is 23 dBm.
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detect the presence of an LTE-U signal by examining the error pattern of a received Wi-Fi signal.

The proposed method, however, works only after a collision occurs. In addition, [70] presents

an LTE-U algorithm to detect the number of coexisting Wi-Fi APs based on the distribution of

the received signal power. The work, however, requires prior knowledge on the distribution and

one second measurement period for detection.

Without implementing Wi-Fi frame detection, [71] shows that the performance of LAA can

still be improved by lowering Wi-Fi’s energy detection threshold, but at the expense of the

degradation of Wi-Fi throughput. On the other hand, [72] proposed an integrated network of

LTE-A and WLAN, and considered centralized scheduling of underlay transmissions to maximize

their sum throughput while guaranteeing the minimum per-network throughput. Although

such an approach might avoid listen-before-talk based channel access by allowing inter-network

interference, it requires centralized coordination between the two networks.

This chapter tries to fill the gap by proposing a lightweight but effective method, using which

LAA can detect the existence of a Wi-Fi frame and recognize the duration of the frame. The

proposed method is built upon a popular Wi-Fi preamble detection method called Schmidl-Cox

detection (SCD), which has been carefully modified to overcome the critical difference between

LAA and Wi-Fi. Specifically, we have fine-tuned the SCD parameters via extensive experiments

using USRP, and then shown that the developed method satisfies the CCA time requirement of

the 3GPP standard [62] and the IEEE 802.11 standard [73]. Our contribution is four-fold:

• The proposed Wi-Fi preamble detection is built upon a correlator utilizing LAA’s own time

domain samples, thus incurring low complexity and requiring no extra Wi-Fi interface.

Moreover, the proposed scheme can be performed at LAA devices in a distributed way

without necessitating any coordination between them, and also satisfies the required time

constraint of 4 µs.

• The proposed energy tracking algorithm can capture the start and the end of a Wi-Fi

frame, by tracking the energy pattern of the signal identified by the proposed preamble

detection.

• Combining the two mechanisms, an LAA device can differentiate Wi-Fi frames from LAA

frames, thus allowing LAA to dynamically vary the ED threshold according to the type of

a coexisting signal. Moreover, we can better protect Wi-Fi stations from LAA by applying

even smaller ED threshold to them than the current LAA standard specifies. By doing so,

LAA can significantly enhance its spatial reuse efficiency.

• We have confirmed the accuracy of the proposed methods via MATLAB simulations and

USRP-based experiments, and further evaluated via NS-3 based simulations how much

spatial reuse can be enhanced by our methods. In addition, we also revealed that the

proposed mechanism can protect Wi-Fi better than the legacy LAA.
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Figure 18: Structure of a Wi-Fi frame

The remainder of the chapter is organized as follows. Section 3.2 introduces preliminaries

including the Schmidl-Cox detection, and Section 3.3 elaborates our proposed LAA mechanism.

Section 3.4 evaluates the performance of the proposal in a multi-cell LAA-WLAN coexistence

scenario, and finally Section 3.5 concludes the chapter.

3.2 Preliminaries

Wi-Fi Preamble Structure

Fig. 18 illustrates the structure of a Wi-Fi frame, where its PLCP preamble consists of L-STF

and L-LTF [73]. L-STF further consists of 10 identical short symbols, each comprised of 16 time

domain samples, whereas L-LTF consists of two long symbols. In particular, L-STF is designed

to help a Wi-Fi station detect the start of a Wi-Fi frame, for which L-STF’s 160 time domain

samples can be utilized to capture its periodic pattern repeated every 16 samples.

Schmidl-Cox Detection for Wi-Fi Preamble Detection

The Schmidl-Cox detection (SCD) is one of the most common methods for Wi-Fi preamble

detection in WLAN [74], which is described as follows. Let srecv(k), 1 ≤ k ≤ NW, be the

samples taken from the L-STF part of a received Wi-Fi frame, where NW is referred to as the

SCD window size and is assumed an even number. The SCD detector splits the group of NW

samples into two disjoint subgroups, each with NW/2 samples, and measures the correlation

between them such as

CW =

∣∣∣∣∣∣
NW/2∑
k=1

srecv(k) · s∗recv(k + NW
2 )∑NW/2

k=1 |srecv(k)|2

∣∣∣∣∣∣
2

, (63)

where
∑NW/2

k=1 |srecv(k)|2 is a normalization factor and s∗recv(·) is the complex conjugate of srecv(·).
For a given threshold Cth, CW > Cth implies that the samples are periodic with the period of

NW/2, thus suggesting the existence of a Wi-Fi preamble (more specifically, its L-STF). Con-

sidering L-STF’s repeating pattern with the period of 16, we have NW ∈ {32, 64, 96, 128, 160}.

3.3 SCD-based Wi-Fi Preamble Detector Design for LAA-LTE

Implementing SCD using off-the-shelf LAA devices confronts a unique challenge due to the

difference in the sampling frequency between Wi-Fi and LAA. When utilizing a 20 MHz channel,

the sampling frequency of Wi-Fi is set to fW = 20 MHz [73], whereas that of LAA is set to
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fL = 30.72 MHz [63].18 Hence, when an LAA device receives a Wi-Fi frame, the Wi-Fi preamble

is upsampled. Each symbol of L-STF in the Wi-Fi preamble is designed to have the same 16

samples when sampled at 20 MHz by Wi-Fi for periodicity. If sampled at 30.72 MHz by LAA,

however, each symbol of L-STF has 24 or 25 samples, which are in general different from those

of other symbols in L-STF. Thus, the periodicity is not guaranteed in the sampled signals by

LAA.

Fortunately, since fL is much larger than fW, an LAA device extracts more samples from

the received signal than a Wi-Fi station does. Therefore, the samples obtained by LAA include

more details of the signal structure, from which we deduce that the LAA device could preserve

the periodicity of a Wi-Fi preamble despite the incompatibility in the PHY design. We there-

fore revisit the SCD algorithm to redesign its parameters for LAA, and then obtain the best

parameter values via USRP-based experiments.

Proposed Framework for Wi-Fi Preamble Detection by LAA

The Schmidl-Cox detection (SCD) is employed as for Wi-Fi preamble detection by LAA. After

being upsampled by LAA, the original 160 samples of L-STF become NSTF = d160×30.72/20e =

246 samples. Immediate conversion of the correlation window size would be NL = dNW ×
30.72/20e, which, however, is not always an even number. In pursuit of making the two blocks

to be correlated have the same number of samples, we choose to make NL be the closest even

number of NW × 30.72/20 such as19

NL = round
(
NW × 30.72/20

2

)
× 2, (64)

which results in NL ∈ {50, 98, 148, 196, 246} considering NW ∈ {32, 64, 96, 128, 160}. A proper

choice of NL will be determined in Section 3.3.

To check the periodicity of the upsampled L-STF, the correlation is computed with the

window size NL starting from the first sample to the last (i.e., NSTF-th) sample of the L-STF.

Specifically, the correlation metric at the k-th window, k ∈ [0, NSTF −NL], is defined by

C
(k)
L :=

∣∣∣∣∣∣
NL/2+k∑
k1=1+k

sL(k1) · s∗L(k1 +NL/2)∑NL/2+k
k1=1+k |sL(k1)|2

∣∣∣∣∣∣
2

, (65)

where sL(u) denotes the u-th sample of the L-STF sampled at 30.72 MHz. Then, an LAA device

acknowledges the presence of a Wi-Fi signal if

CL = max
k

C
(k)
L > Cth, (66)

where Cth is the threshold value to be determined in Section 3.3.

Using the aforementioned procedure, the start of a Wi-Fi frame can be detected. Neverthe-

less, SCD alone cannot determine until when the Wi-Fi’s transmission must be protected. Once
18The sampling frequency implies the sampling rate of a received signal at the baseband.
19In fact, we have confirmed this choice is the best via computer simulations.

39



Id
en

ti
fi

ca
ti

o
n

 o
f 

th
e 

p
re

se
n

ce
 o

f 
a
 W

i-
F

i 
si

g
n

a
l

:
C

a
lc

u
la

te
C

L
u
si

n
g

E
q
.

(4
).

Id
en

ti
fi

ca
ti

o
n

 o
f 

a
n

 L
A

A
 f

ra
m

e

C
L
 >

 C
th

E
L
>

-7
2
d
B

m
L

A
A

 s
ig

n
al

?
E

L
>

-5
2
d
B

m

C
h
an

n
el

 S
ta

te
: 

B
U

S
Y

C
h
an

n
el

 S
ta

te
: 

ID
L

E

C
h
an

n
el

 S
ta

te
: 

B
U

S
Y

E
L
>

E
st

o
p

C
h
an

n
el

 S
ta

te
: 

ID
L

E

C
h

ec
k
 i

f 
th

e 
W

i-
F

i 
si

g
n

a
l 

is
 s

tr
o
n

g
 :

 C
a
lc

u
la

te
 E

L
 d

u
ri

n
g
 t

h
e 

fi
rs

t 
4
 u

s 
o
f 

m
-t

h
 t

im
e 

sl
o
t

D
y
n
am

ic
 E

D
 T

h
re

sh
o
ld

 S
el

ec
ti

o
n

S
C

D
-b

as
ed

 W
i-

F
i 

P
re

am
b
le

 D
et

ec
ti

o
n

In
it

ia
l 

S
ta

te
C

u
rr

en
t 

p
h
y
si

ca
l 

sl
o
t 

=
 m

Y
es

Y
es

Y
es

Y
es

Y
es

N
o

N
o

N
o

N
o

N
o

C
h
an

n
el

 S
ta

te
: 

B
U

S
Y

C
h

ec
k
 i

f 
th

e 
L

A
A

 s
ig

n
a
l 

is
 s

tr
o
n

g
 :

 C
a
lc

u
la

te
 E

L
 d

u
ri

n
g
 t

h
e 

fi
rs

t 
4
 u

s 
o
f 

m
-t

h
 t

im
e 

sl
o
t

C
h

ec
k
 i

f 
th

e 
en

er
g
y 

le
ve

l 
is

 s
tr

o
n

g
 :

 C
a
lc

u
la

te
 E

L
 d

u
ri

n
g
 t

h
e 

fi
rs

t 
4
 u

s 
o
f 

m
-t

h
 t

im
e 

sl
o
t

E
n
er

g
y
 T

ra
ck

in
g
 f

o
r 

W
i-

F
i 

si
g
n
al

m
-1

m
m

+
1

..
.

..
.

C
u
rr

en
t 

sl
o
t 

m

�

m
+

1

L
A

A
 P

h
y
si

ca
l 

S
lo

t 
M

o
d

el

{

9
 u

s

m

�

m
+

1

m

�

m
+

1

m

�

m
+

1

m

�

m
+

1

F
ig
ur
e
19

:
P
ro
po

se
d
lig

ht
w
ei
gh

t
W

i-F
if
ra
m
e
de

te
ct
io
n
m
ec
ha

ni
sm

fo
r
LA

A
de

vi
ce
s

40



Table 4: E[C
(k)
L ] and V ar(C(k)

L ) under the perfect channel

NL 50 98 148 196 246

E[C
(k)
L ] 0.80 0.977 0.928 0.911 0.980

V ar(C
(k)
L ) 10−5 7 ×10−7 5 ×10−7 4 ×10−7 0

a Wi-Fi signal is acknowledged, we propose employing the Energy Tracking algorithm, where

the LAA device measures the energy EL of the received signal at every slot, and if EL ≤ Estop

occurs at a slot, the device treats the slot as the end of the Wi-Fi frame. A proper value of Estop

will be determined in Section 3.3.

Note that 3GPP requires that the energy detection be conducted for the first 4 µs of each 9

µs physical slot [62], which is set similar to Wi-Fi. Hence, we propose that an LAA transmitter

performs SCD with the window size of NL for the first 4 µs at every slot, and if CL > Cth, the

device concludes that the received signal has a Wi-Fi preamble. In the 4 µs period, the SCD

window is sliding such that the first SCD is performed by using the first sample of the period

combined with the previous NL − 1 samples, whereas the last SCD is performed by using the

last NL samples within the period. Accordingly, the energy detection by the Energy Tracking

algorithm is also performed for the first 4 µs at every slot.

The proposed Wi-Fi frame detection mechanism is illustrated in Fig. 19. Assuming slot m

is the current physical slot, an LAA device first tries to detect whether a Wi-Fi preamble exists

via the proposed SCD-based Wi-Fi preamble detection method (shown as a blue-colored box

in the figure). If detected, the proposed Energy Tracking method is performed (shown in the

dotted green box). Otherwise (i.e., no Wi-Fi preamble), the algorithm tries to determine whether

there exists an LAA signal (via LAA decoding) or a signal other than Wi-Fi and LAA, and the

channel is determined idle if no signal exists. The red boxes constitute the proposed Dynamic

ED threshold selection method, where the thresholds of Estop, −72 dBm, and −52 dBm are

applied selectively depending on the type of the detected signal. Note that m← m+ 1 implies

the algorithm moves to the next slot. In addition, LAA’s DCF-like channel access mechanism20

operates in accordance with the state update by Fig. 19, e.g., channel access is deferred if the

channel state is decided busy, and the backoff procedure is resumed if the channel state is decided

idle.

Proposed LAA-WiFi coexistence scenario: An LAA device improves its spatial efficiency

by relaxing the requirement of the 3GPP standard such that it applies (1) a higher ED threshold

of −52 dBm for received LAA signals, and (2) a lower ED threshold of −82 dBm for received

Wi-Fi signals. For any other signal, the standard CCA threshold of −72 dBm is applied. On

the other hand, a Wi-Fi device works in accordance with the IEEE 802.11 specification. For

example, if a Wi-Fi AP receives and detects a Wi-Fi signal (via its legacy preamble detection
20LAA performs channel access in a similar way to Wi-Fi’s Distributed Coordination Function (DCF).
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Figure 20: LAA and Wi-Fi samples for the first 4.264 µs of L-STF

mechanism), the preamble detection CCA threshold is applied (e.g., −82 dBm for 20 MHz

channel). Otherwise, the energy detection CCA threshold (e.g., −62 dBm for 20 MHz channel)

is applied. Therefore, a Wi-Fi device applies −62 dBm to a received signal originated from an

LAA device.

Feasibility check: To ascertain whether the upsampled signal preserves the periodicity of L-

STF, we performed a MATLAB simulation with a Wi-Fi transmitter and an LAA device. In

doing so, we assumed the perfect channel between the two devices,21 to focus on the impact

of the sampling frequency mismatch. The Wi-Fi transmitter constructs a Wi-Fi frame and

transmits it over the channel; then, the LAA device upsamples the received preamble at 30.72

MHz, and calculates C(k)
L for various NL and k. Table 4 presents the mean E[C

(k)
L ] and the

variance V ar(C(k)
L ) with respect to k, for each NL, where it reveals that E[C

(k)
L ] is very close to

1 (except when NL = 50) while V ar(C(k)
L ) is negligible.

In fact, the results suggest using NL = 246 and large Cth for achieving the best accuracy in

the periodicity check. Nevertheless, wireless environments encounter various uncertainties and

thus (NL, Cth) should be determined via real experiments. Moreover, the chosen NL should fit

into the 4 µs duration. In the sequel, it will turn out a proper configuration is quite different

from what the above simulation suggests.

Nevertheless, we want to provide experimental evidence on the periodicity of L-STF preserved

by LAA’s upsampling. We generated and transmitted a Wi-Fi signal with a USRP, and captured

the signal by another USRP acting as either a Wi-Fi device or an LAA device.22 Fig. 20 presents

the signal amplitude of thus-obtained samples for the first 4.264 µs of L-STF, clearly showing

that LAA samples closely follow the trend of Wi-Fi samples. That is, the periodicity of L-STF

is indeed preserved in LAA samples even in a real noisy channel environment.
21A perfect channel is the channel without channel distortion or noise.
22The signal is sampled by the USRP at 25M samples per second and then is properly up/down-sampled to

match with the sampling frequencies of 20 MHz and 30.72 MHz respectively.
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Figure 21: (left) Implemented Wi-Fi and LAA transmitters based on USRP N210 and (right)

experiments scenario, where 1© is the Wi-Fi transmitter transmitting Wi-Fi signals and 2© is

the LAA transmitter or another Wi-Fi transmitter attempting to detect the Wi-Fi frame while

they are performing CCA-based backoff.

Configuration of SCD Parameters: NL, Cth, Estop

For successful adoption of SCD to LAA, proper configuration of SCD parameters is crucial. In

what follows, we present how we performed a series of experiments in a real environment with

an LAA transmitter implementing SCD, and suggest the best NL, Cth, Estop to use for the LAA

transmitter to detect Wi-Fi frames accurately.

For our experiments, we utilized two USRP N210s, implementing a usual Wi-Fi transmitter

and an LAA transmitter with the proposed Wi-Fi frame detection, as shown in Fig. 21. For

comparison, another N210 was used to implement a Wi-Fi transmitter with conventional Wi-Fi

frame detection and energy detection. Each USRP was equipped with an XCVR2450 daughter-

board [75] and used the same 20 MHz channel in 5 GHz unlicensed bands. In addition, a USRP

is connected to its host PC running MATLAB which sends a generated Wi-Fi preamble to the

USRP and performs SCD using the received samples by the USRP [76].

Best NL To determine the best NL, we located two devices 1© and 2© as shown in Fig. 21,

where 1© is a Wi-Fi transmitter, and 2© is either another Wi-Fi transmitter running conventional

SCD or an LAA transmitter running its customized SCD. Then, we considered two scenarios

regarding the channel between 1© and 2©: S1 for a non-line-of-sight (NLOS) channel and S2 for

a line-of-sight (LOS) channel. That is, S1 corresponds to the case when 2© is placed at P2 or

P4, whereas S2 corresponds to the case when 2© is placed at P1 or P3. The same scenario has

been repeated around 500 times with varying SNR, where the minimum SNR was set to 8.8 dB

which corresponds to the minimum required receiver sensitivity of −82 dBm in WLAN [73,74].23

Fig. 22 shows CW and CL measured under S1 and S2. In Figs. 22(a) and 22(c), Wi-Fi’s CW

generally tends to enhance as NW decreases, and thus NW = 32 achieves the best performance.

LAA’s CL in Figs. 22(b) and 22(d), however, presents different behaviors. First, the correlation of
23Please refer to [74] for −82 dBm being mapped to 9 dB. Note that we chose 8.8 dB rather than 9 dB due to

the difficulty in perfectly setting the desired SNR under channel fluctuation.
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Figure 22: SCD performance of Wi-Fi and LAA under S1 (NLOS) and S2 (LOS). (a) CW in S1.

(b) CL in S1. (c) CW in S2. (d) CL in S2.
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Figure 23: PM and PFA of the proposed SCD mechanism, with NL = 98 and various Cth

the sampled preamble is relatively low in the LAA case due to the sampling frequency mismatch.

Unlike Wi-Fi, which shows the strongest correlation with NW = 32, the best NL is 98 (not 50)

for both S1 and S2, showing almost the same performance as Wi-Fi in the high SNR regime. It

is seen from the figure that the LOS case, S2, shows a higher correlation than the NLOS case

thanks to better channel condition and less delay spread.

Considering the above observations, we suggest using NL = 98. Note that NL = 98 corre-

sponds to 98/246× 8 = 3.18 µs, which is within the CCA delay requirement of 4 µs.

Best Cth Our next objective is to determine Cth via experiments that minimizes the false-

alarm probability PFA, while suppressing the miss-detection probability PM less than 0.1 at the

minimum required receiver sensitivity of −82dBm, as required by the Wi-Fi standard [73]. Here,

PM is measured as the ratio of the number of undetected preambles to the number of transmitted

preambles, and PFA is measured as the ratio of the number of falsely-detected preambles to the

number of performed SCDs during when no preambles exist. Note that by considering −82 dBm

as the ED threshold of LAA, instead of −72 dBm, our proposed scheme can better protect Wi-Fi

transmissions.

A USRP-based experiment has been conducted under S1 (i.e., NLOS) with the received SNR

of 8.8 dB for 0.2 dB margin, corresponding to −82.2 dBm. Note that S1 is chosen as it is a

more challenging environment than S2. In addition, our experimental setup is similar to the

way Wi-Fi sets Cth [74]. Fig. 23 presents PM and PFA of the proposed method with NL = 98

and various Cth, which shows that PM ≤ 0.1 is achieved for Cth ≤ 0.7, within which PFA is

minimized at Cth = 0.7. Combined with the result in Section 3.3, the best SCD configuration

becomes NL = 98 and Cth = 0.7.

Using NL = 98 and Cth = 0.7, we performed another USRP-based experiment while varying

the received SNR from 7.5 to 19.3 dB, which is intended to evaluate the efficacy of the proposed

SCD configuration. Fig. 24 shows PD and PFA, where PD = 1 − PM.24 As shown, PD becomes

larger than 0.9 for SNR greater than 9 dB, while PFA is upper-bounded by 33 × 10−6 for all
24Please note that Fig. 24(b) omits PFA at a few SNR values where the measured PFA was zero.
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Figure 24: PD and PFA of the proposed SCD mechanism, with varying SNR. (a) PD. (b) PFA.

Figure 25: Concept of IoU and IoA

SNR. Therefore, it is noticed that an LAA device can reliably detect Wi-Fi preambles by using

the proposed scheme while much suppressing the false alarm.

Best Estop In what follows, we discuss how to determine Estop considering its impact on the

accuracy of the duration detection. Here, we determine SNRstop that corresponds to Estop,

through an experiment using a Wi-Fi transmitter and an LAA transmitter performing the

proposed algorithm with (NL, Cth) = (98, 0.7). In addition, we varied the received SNR as

{7.5, 8, 8.4, 8.8, 10, 13, 14, 15.7, 17, 19.3}, and the same test was repeated around 500 times for

each SNR value.

We measured the performance of the proposed algorithm via the following two metrics:

• Intersection over Union (IoU): IoU is obtained by dividing “Intersection” by “Union” in

Fig. 25, which shows how accurately the algorithm can identify the start and the end of

a frame. IoU equal to 1 implies the perfect capture of the frame in terms of timing and

duration.

• Intersection over Actual duration (IoA): IoA is obtained by dividing “Intersection” by

“Actual duration" in Fig. 25, which indicates how well a Wi-Fi frame can be protected

against LAA. IoA equal to 1 means that LAA will not interfere with Wi-Fi’s transmission

(but does not mean that LAA perfectly recognizes timing and duration).

We conducted the experiment with varying SNRstop ∈ {7, 8, 8.8} dB due to the following

reason. For the received SNR larger than 9 dB (which corresponds to −82 dBm, the minimum

required receiver sensitivity), we need to reliably identify a received signal. Therefore, SNRstop
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Figure 26: IoU, and IoA of frame detection scheme. (a) IoU. (b) IoA.

Table 5: Evaluation with the signals from vendor’s Wi-Fi devices

Channel number PD (%) PFA (%) IOU IOA

36 93.8 4.05 ×10−6 0.964 0.968

44 94.2 1.11 ×10−6 0.980 0.982

153 98.7 0.03 ×10−6 0.974 0.975

has to be set smaller than 9 dB, but as large as possible so that the end of a frame can be

accurately recognized. In this regard, we have chosen the aforementioned values of SNRstop as

reference cases, among which the most desirable choice will be discussed. Note that, however,

detailed adjustment of SNRstop may require more fine grained candidate values below 9 dB.

Fig. 26 presents IoU and IoA with varying SNR. When SNRstop = 8.8 dB, IoU and IoA

at SNR = 9 dB become around 0.7, indicating that LAA neither accurately detects the Wi-Fi

frame’s duration nor fully protects the frame. When SNRstop = 7 dB, although IoU and IoA at

SNR = 9 dB become large enough (0.9 and 0.95 respectively), the two metrics stay at high values

even for SNR smaller than 9 dB indicating that an LAA device would unnecessarily protect Wi-

Fi frames weaker than −82 dBm. On the other hand, SNRstop = 8 dB seems desirable in the

sense that IoU and IoA are around 0.9 and 0.95 at SNR = 9 dB, and then sharply decrease for

SNR smaller than 9 dB.

As a result, we suggest using SNRstop = 8 dB since it can fully protect a Wi-Fi frame stronger

than −82 dBm while tends to ignore weaker signals.

Real-world Performance of the Proposed Mechanism

To further show the practicality of our proposal, we performed an evaluation using the real

captured signals from various Wi-Fi vendors existing on our campus. The evaluation configured

two USRPs as an LAA transmitter and a Wi-Fi transmitter, each using SCD with Energy

Tracking, where both of them detect Wi-Fi frames for 5 seconds simultaneously. The experiment
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was performed in WLAN channels 36, 44, and 153, in each of which the test was repeated

120 times with an inter-test pausing period of 60 seconds. The frames detected by the Wi-Fi

transmitter were used as the ground truth for calculating the four performance metrics, PD,

PFA, IoU, and IoA. Table 5 presents that all three channels achieve PD > 90 %, negligible

PFA, IoU ≈ 1, and IoA ≈ 1, and thus confirms that our proposal performs really well in actual

environments.

Discussion on Practical Issues

We have followedWi-Fi’s frame format in generating the Wi-Fi signal at the transmitter side, and

varied the SNR of the received Wi-Fi signal at the receiver side. Then, we studied the detection

performance via SCD based on each given SNR level. Since the aforementioned experimental

setup and the SCD method do not depend on any chipset-specific features, we believe the derived

SCD configuration is chipset-agnostic and thus generic. We admit, however, the suggested

configuration relies on the indoor LOS/NLOS channel environment we have chosen, and thus it

should not be applied to outdoor scenarios without further verification.

3.4 Spatial Reuse Enhancement by the Proposal

In this section, we evaluate how much the proposed scheme helps LAA achieve better perfor-

mance and what impact it has on coexisting Wi-Fi devices. Assuming an LAA network coexists

with a Wi-Fi network, we implemented our proposed mechanism by modifying the NS-3 LAA

and Wi-Fi simulators [77] as follows.

• If a Wi-Fi preamble is detected (by the proposed SCD-based scheme), the ED threshold

of -82 dBm is applied. In other words, a Wi-Fi signal is protected by LAA devices in the

same way it is by other Wi-Fi devices. In this way, our scheme provides stronger protection

to Wi-Fi compared to the standard LAA with the constant ED threshold of -72 dBm.

• If an LAA transmitter detects an LAA signal, the ED threshold of -52 dBm is applied. By

doing so, LAA transmitters can access the channel more aggressively than the standard

LAA during when Wi-Fi devices are less active.

In addition, we implement the proposed schemes such that an LAA device detects a Wi-Fi

preamble (during CCA) with the probability presented in Table 5.

Based on 3GPP TR 36.889 [78], which defines methodologies for LAA coexistence evalua-

tions, we configure the simulation environment as follows.

• Coexistence Scenario: We consider a multi-BS(Base Station) LAA network managed

by Operator L, co-existing with a multi-AP(Access Point) Wi-Fi network managed by

Operator W . We assume both networks use channel 36 with the center frequency of

5180 MHz and the bandwidth of 20 MHz. In addition, we assume both networks use the

transmission power of 23 dBm.
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• Channel Model: We consider the Indoor Hotspot (InH) model in [79] which defines the

pathloss and shadow fading parameters for both line-of-sight (LOS) and nonline-of-sight

(NLOS) channels as follows. When a receiver is d meters away from a transmitter, the

pathloss is determined as

PL (dB) =

16.9 log10(d) + 32.8 + 20 log10(fc), for LOS,

43.3 log10(d) + 11.5 + 20 log10(fc), for NLOS,

where fc is the center frequency in GHz, and the applicability ranges are 3 < d < 100

for LOS and 10 < d < 150 for NLOS. The shadow fading is given by the log-normal

distribution with zero mean and the standard deviation of 3 dB for LOS and 4 dB for

NLOS. In addition, the channel between a given transmitter-receiver pair is determined as

LOS with probability PLOS such as

PLOS =


1, when d ≤ 18,

exp (−(d− 18)/27) , when 18 < d < 37,

0.5, when d ≥ 37,

and the channel is determined as NLOS with probability (1− PLOS).

• Network Topology: We assume each of the two networks L and W consists of 19

hexagonal cells as shown in Fig. 27. Operator L deploys either an LAA network with

the legacy CCA (henceforth referred to as ‘Standard LAA’) or an LAA network with the

proposed schemes (henceforth referred to as ‘Proposed LAA’), and operator W deploys a

Wi-Fi network (henceforth referred to as ‘Wi-Fi’). The distance between two adjacent cells

of the same network is 40 meters, at which their inter-cell received power lies between -72

dBm and -52 dBm in case of an NLOS channel, thus enabling concurrent channel access by

adjacent LAA BSs. In addition, the two operator networks are apart by 3 meters along the

x-axis, i.e., one network is a shifted version of another.25 We deploy 190 User Equipments

(UEs) for network L and 190 Wi-Fi stations (STAs) for network W , which are uniformly

distributed within the whole coverage area of each network so that 10 user devices are

associated with each cell on average.

• Traffic Model: Based on 3GPP TR 36.814 [79],26 the traffic model we consider follows

the Poisson distribution where 0.5 MB files arrive at each cell with an arrival rate λ ∈
{0.25, 0.5, 0.75, 1.0, 1.25, 1.5}. The first four arrival rates are obtained from [79], and the

last two (i.e., λ = 1.25, 1.5) are added in our simulation to test heavier traffic environments.

Note that we consider downlink traffic only in this evaluation.27 In the sequel, we denote
25Note that 3GPP TR 36.889 [78] also suggests a simulation scenario that deploys two coexisting networks

with the same topology but shifted to each other.
26Note that [78] includes [79].
27Consideration to uplink/downlink combined traffic is our future work. Our model, however, provides good

intuition since downlink traffic would become 8 times larger than uplink traffic by 2020 [80].
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BS of Operator L

AP of Operator W
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Figure 27: Hexagonal deployment of the two coexisting networks
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λ of operators L and W by λL and λW , respectively.

Under the aforementioned simulation environment, we generate 20 random realizations of

UE/STA deployment and run both networks with their traffic generated according to the simula-

tion model. Then, we evaluate the performance of Operator L to show how much Proposed LAA

improves the performance compared to Standard LAA, and the performance of Operator W to

show how Wi-Fi is affected by the coexisting (Standard or Proposed) LAA network. Among the

19 cells of each operator, we focused on the performance of the two center cells (i.e., the center

BS and the center AP) because they experience most unbiased interferences from surrounding

cells, i.e., interferences come from virtually every direction.

The considered performance metrics are throughput and delay, measured per packet basis

as described in [81]. Specifically, throughput is calculated by averaging per-packet throughput,

where per-packet throughput is the amount of correctly received bits (which is either the packet

size or zero) divided by the time consumed for sending a given packet. Next, delay is calcu-

lated by averaging per-packet delay, where per-packet delay includes channel access delay and

transmission delay (including retransmissions).

Performance Improvement of LAA

In this section, we compare the performance of Proposed LAA with Standard LAA in terms of

throughput and delay. Note that in Figs. 28 and 29, the results of Standard LAA and Proposed

LAA are denoted by Standard and Proposed, respectively. Please remind that Operator L

deploys only standard LAA schemes in ‘Standard LAA’, and only proposed LAA schemes in

‘Proposed LAA’.

Fig. 28 shows the throughput performance with varying λL and λW . As shown, both through-

puts are inversely proportional to λL and λW , and thus the maximum throughput is achieved

when λL = λW = 0.25 (76.92 Mbps for Standard, 83.00 Mbps for Proposed) and the minimum

throughput is achieved when λL = λW = 1.5 (9.38 Mbps for Standard, 10.74 Mbps for Pro-

posed). Table 6 shows that the throughput improvement of Proposed LAA against Standard

LAA for varying (λL, λW ), which is calculated as

Throughput improvement =
TL,P − TL,S

TL,S
× 100, (67)

where TL,S is the throughput of Standard LAA, and TL,P is the throughput of Proposed LAA.

When λW ≤ 0.75, Proposed LAA always achieves higher throughput than Standard LAA re-

gardless of λL, where the gain tends to increase with λL (with very few exceptions). When

λL ≥ 1.25, Proposed LAA always achieves better throughput than Standard LAA regardless

of λW . In general, performance improvement tends to grow with increasing λL and decreasing

λW , achieving as much as 23.68%. Moreover, Proposed LAA improves the LAA throughput by

5.89% on average, and by 9.29% on average if we only consider the blue entries (which are the

cases with improvement).
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Figure 28: Throughput of the center LAA BS

Table 6: LAA throughput improvement by Proposed LAA (in %)

Operator W (λW )

0.25 0.5 0.75 1.0 1.25 1.5

O
pe

ra
to
r
L

(λ
L
)

0.25 7.92 5.59 2.60 -1.62 -2.00 -13.72

0.5 10.31 6.95 0.88 1.42 1.59 -6.13

0.75 13.72 7.83 4.97 -0.09 -4.00 -6.78

1.0 13.51 7.77 1.90 0.41 -1.47 -2.90

1.25 19.15 10.18 6.01 11.37 8.44 3.45

1.5 23.68 17.50 19.89 14.16 15.16 14.47

Note: Blue means improvement. Higher value the better.
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Table 7: LAA delay improvement by Proposed LAA (in %)

Operator W (λW )

0.25 0.5 0.75 1.0 1.25 1.5
O
pe

ra
to
r
L

(λ
L
)

0.25 10.44 2.23 -1.28 -7.84 -7.27 -17.75

0.5 11.74 6.48 -0.47 -0.74 -2.25 -7.28

0.75 10.48 8.98 4.57 0.62 -0.76 -3.84

1.0 12.00 7.80 3.20 0.29 -1.78 -1.81

1.25 10.80 11.79 6.46 12.20 13.20 9.22

1.5 16.35 27.10 27.11 42.70 35.44 14.73

Note: Blue means improvement. Higher value the better.

Fig. 29 shows the delay of Proposed LAA and Standard LAA with varying λL and λW ,

and Table 7 presents how much Proposed LAA reduces delay against Standard LAA which is

calculated as

Delay improvement =
DL,S −DL,P

DL,S
× 100, (68)

where DL,S is the delay of Standard LAA, and DL,P is the delay of Proposed LAA. Based on

Fig. 29, the delay sharply increases as λL grows for both Proposed LAA and Standard LAA.

Proposed LAA, however, achieves up to 42.70% smaller delay as presented in Table 7. The

delay performance of Proposed LAA is improved by 7.02% on average, and for the blue entries

by 12.75% on average.

Discussion: If we can selectively apply the proposed mechanism depending on (λL, λW ),

we can utilize the mechanism only when it’s beneficial. Based on Tables 6 and 7, 23 out of 36

cases (almost 2/3 of the total cases) improve both throughput and delay against Standard LAA,

which are roughly corresponding to the cases when λL ≥ λW . In addition, the performance

improvement tends to get larger with larger λL and smaller λW . This confirms that, when LAA

has more active traffic than Wi-Fi and as the ratio of traffic heaviness of LAA to Wi-Fi gets

larger, the proposed mechanism becomes more advantageous in improving the spatial efficiency

of an LAA network. Moreover, even though selective use between Proposed LAA and Standard

LAA is not applicable, Proposed LAA achieve better performance in throughput and delay, on

average.

Performance Improvement of Wi-Fi

In this section, we consider the performance of Wi-Fi in terms of throughput and delay, and

compare the performance of Wi-Fi coexisting with Proposed LAA with the performance of Wi-Fi
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Figure 29: Delay of the center LAA BS

coexisting with Standard LAA. By such comparison, we would like to show that Proposed LAA

not only improves the LAA performance but also is more beneficial to Wi-Fi. In Figs. 30 and

31, we denote the case of Wi-Fi coexisting with Standard LAA by ‘Standard’, and the case of

Wi-Fi coexisting with Proposed LAA by ‘Proposed’.

Fig. 30 shows the throughput of Wi-Fi with varying λL and λW . Similar to Fig. 28, the Wi-

Fi throughput is inversely proportional to λL and λW . Table 8 presents how much the Wi-Fi

throughput is improved when it is coexisting with Proposed LAA, against when it is coexisting

with Standard LAA, which is calculated as

Throughput improvement =
TW,P − TW,S

TW,S
× 100, (69)

where TW,S is the throughput of Wi-Fi coexisting with Standard LAA, and TW,P is the through-

put of Wi-Fi coexisting with Proposed LAA. For λL ≤ 0.75, it is always more beneficial for

Wi-Fi to coexist with Proposed LAA, regardless of λW . In addition, for λW = 0.25, 0.5, the

Wi-Fi throughput gets improved by Proposed LAA regardless of λL except one case. Overall,

the Wi-Fi throughput is improved by as much as 22.87%, by 4.14% on average, and by 8.35%

on average for the blue entries.

Fig. 31 shows the delay of Wi-Fi with varying λL and λW , and Table 9 presents how much

Proposed LAA reduces the delay of coexisting Wi-Fi against Wi-Fi coexisting with Standard

LAA, which is calculated as

Delay improvement =
DW,S −DW,P

DW,S
× 100 (70)
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Figure 30: Throughput of the center Wi-Fi AP

Table 8: Wi-Fi throughput improvement by Proposed LAA (in %)

Operator W (λW )

0.25 0.5 0.75 1.0 1.25 1.5

O
pe

ra
to
r
L

(λ
L
)

0.25 2.68 3.71 4.73 1.53 10.73 9.52

0.5 0.97 8.60 12.63 6.92 3.52 9.19

0.75 11.17 22.87 13.69 8.32 4.79 4.58

1.0 4.64 -6.50 -1.89 8.68 -3.45 -3.83

1.25 21.12 10.32 -0.17 3.60 -1.89 1.30

1.5 22.19 5.17 -12.60 -13.98 -17.87 -5.78

Note: Blue means improvement. Higher value the better.
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Figure 31: Delay of the center Wi-Fi AP

where DW,S is the delay of Wi-Fi coexisting with Standard LAA, and DW,P is the delay of

Wi-Fi coexisting with Proposed LAA. As shown in Fig. 31, the delay sharply increases at

λW = 1.0 and beyond. Specifically, the average values of DW,S and DW,P are 84.84 and 83.77

ms when λW < 1.0, but 397.36 and 408.13 ms when λW ≥ 1.0; that is, the delay DW,S and

DW,P at λW ≥ 1.0 are 4.68 and 4.87 times larger than the ones at λW < 1.0. In the meantime,

Table 9 shows that the delay improvement by Proposed LAA is −0.61% on average, i.e., choosing

between Standard LAA and Proposed LAA has a minimal impact on the average-sense Wi-Fi

delay. Combined together, the results suggest that Proposed LAA does not affect the Wi-Fi

delay much, while the arrival rate of Wi-Fi has more significant influence.

Discussion: The results on Wi-Fi’s throughput and delay revealed that Proposed LAA can

help Wi-Fi enhance its throughput by 8.35% (if Proposed LAA is adopted selectively, as discussed

earlier in Section 3.4), while maintaining similar delay performance. Based on Tables 8 and 9,

Proposed LAA can improve throughput in 26 out of 36 cases (more than 2/3 of the total cases)

and both throughput and delay in 13 out of 36 cases, compared to Standard LAA. Combining all

the results in Tables 6, 7, 8, and 9, 14 out of 36 cases can improve LAA’s throughput and delay

and Wi-Fi’s throughput, while achieving similar performance in Wi-Fi’s delay. In summary, we

can conclude that Proposed LAA can bring enough benefits for both LAA and Wi-Fi if it is

adopted either exclusively or together with Standard LAA.
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Table 9: WiFi delay improvement by Proposed LAA (in %)

Operator W (λW )

0.25 0.5 0.75 1.0 1.25 1.5
O
pe

ra
to
r
L

(λ
L
)

0.25 9.12 8.10 4.09 8.65 2.80 4.72

0.5 4.33 -1.83 -0.54 -1.42 6.35 -3.85

0.75 6.59 -3.05 -6.18 -2.00 -19.60 -3.37

1.0 2.28 7.52 12.20 10.11 -5.70 0.10

1.25 -24.57 3.19 -3.13 -1.32 -31.67 -20.37

1.5 -1.86 8.11 2.92 19.95 18.02 -30.70

Note: Blue means improvement. Higher value the better.

3.5 Conclusion and Future Work

We proposed SCD-based Wi-Fi preamble detection for LAA, along with Wi-Fi frame dura-

tion detection and dynamic ED threshold selection. The proposed methods were evaluated via

MATLAB simulations and USRP-based experiments, from which we conclude that our proposal

allows LAA to reliably recognize the existence and the timing of Wi-Fi frames by only utilizing

LAA’s own time domain samples. Moreover, via extensive NS-3 based simulations, we have

further shown that the proposed LAA mechanism not only enhances the spatial efficiency of

LAA, but also protects coexisting Wi-Fi better than the legacy LAA.

In the future, we would like to apply the developed methods to more diverse usage scenarios

such as indoor/outdoor combined environments, uplink/downlink mixed traffic, etc.
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IV AI-powered Unlicensed Bands Communication for Enhanced

Coexistence Performance

4.1 Introduction

LTE Licensed Assisted Access, also known as LTE-LAA, is first introduced in 3GPP Release

13 [82] to make LTE more versatile in utilizing the spectrum. LTE is originally developed for

usage in the licensed spectrum, and thus does not consider the coexistence with other wire-

less technologies. Therefore, LTE-LAA has defined additional mechanisms to operate in the

unlicensed spectrum, such as listen-before-talk and the exponential backoff mechanism. More-

over, to peacefully coexist with other technologies like Wi-Fi, 3GPP TR 36.889 [83] specifies

the following guideline: LTE-LAA should not have an influence on the services of coexisting

Wi-Fi networks more than an additional Wi-Fi network would have, in terms of throughput and

latency.

Such a guideline, however, is not always achievable because the influence varies with many

factors including the location of devices, building structures, etc. As a result, LTE-LAA specifies

its standard in a conservative way, e.g., [84] revealed that the performance of Wi-Fi is even

improved when coexisting with LTE-LAA rather than another Wi-Fi. In other words, the

standard LTE-LAA has room to improve its performance by slightly deteriorating the Wi-Fi’s

performance while still limiting its impact on the coexisting Wi-Fi network as initially intended.

We believe machine learning techniques can help to solve the aforementioned problem, e.g.,

reinforcement learning with the adversarial concept. The adversarial approach with a discrimi-

nator network has been widely used since the Generative Adversarial Network (GAN) introduced

the adversarial concept in the machine learning domain [85,86]. A key strength of the discrimina-

tor neural network is learning the distribution of the input data by approximating a distribution

function via a neural network.

Motivated by such a strength, there exist several pieces of research combining reinforcement

learning with a discriminator network, such as using a discriminator output as a reward by

comparing the distribution of genuine data with the resulting data of reinforcement learning [87,

88]. More specifically, [87] proposes an adversarially trained agent that takes actions of an

image editor to generate images based on input images. In addition, [88] presents a model-free

imitation learning algorithm to train an agent that mimics export demonstrations under a given

situation.

In this chapter, we propose the Reinforcement Learning Algorithm for Coexistence in Unli-

censed spectrum bands (RLA-CU). Specifically, RLA-CU improves the performance of coexisting

networks via reinforcement learning while satisfying the guidelines of 3GPP through reinforce-

ment learning with a discriminator network. We evaluate the performance of RLA-CU and

compare it with the standard LAA.

This chapter is organized as follows. Section 4.2 explains some prerequisite knowledge includ-
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ing LTE-LAA and IEEE 802.11. Then, Section 4.3 introduces the system model and considered

scenarios, and Section 4.4 proposes the proposed RLA-CU. Section 4.5 evaluates the proposed

algorithm, and finally the chapter concludes with Section 4.6.

4.2 Preliminaries

In this section, we briefly explain the difference between IEEE 802.11 and LTE-LAA in terms

of their coexistence mechanisms in unlicensed spectrum bands.

IEEE 802.11

One of the key features of IEEE 802.11 [89] is Carrier Sense Multiple Access with Collision

Avoidance (CSMA/CA) to coexist not only with other IEEE 802.11 devices but also with other

incompatible technologies in the unlicensed spectrum. Before initiating transmission, an IEEE

802.11 device determines the wireless channel state between Busy or Idle, where the former

implies another device is transmitting in the same channel with non-trivial received power. In

addition, a threshold for the channel state is varying according to whether an IEEE 802.11

preamble is detected or not from the received signal. More specifically, when the bandwidth of

20 MHz is being utilized, the threshold of −82 dBm is applied when a preamble is detected and

−62 dBm is used otherwise. Please note that in this chapter we do not modify any specifications

of the IEEE 802.11 standard.

LTE Licensed-Assisted Access (LAA)

LTE-LAA [90] adopts the listen-before-talk mechanism with energy detection to determine the

channel state before initiating transmission. Contrary to IEEE 802.11, LTE-LAA only considers

the strength of the received power to decide the channel state, where the detection threshold

is varying according to whether LTE-LAA coexists with other technologies or not. To be more

specific, when LTE-LAA coexists with WLAN, the threshold of −72 dBm is used when it utilizes

the bandwidth of 20 MHz and has the transmission power of 23 dBm; otherwise, −52 dBm is

applied. The detailed information about the relationship between the energy detection threshold

and the transmission power will be further described in Section 4.3.

4.3 System Model

In this section, we define our considered coexistence scenarios and describe the method for

exchanging data, which will be used for the proposed algorithm in Section 4.4.

Coexistence Scenarios

In this chapter, we consider a network operator’s perspectives, especially for the downlink traffic.

Let an LAA operator refer to a network operator that deploys LTE-LAA eNBs, and let a Wi-Fi

59



operator refer to a network operator that deploys 802.11n APs.28 Also, we assume that an LAA

operator manages nl eNBs for nue UEs, while a Wi-Fi operator manages nw APs for nsta stations

(STAs). Note that we focus on the coexistence between LTE-LAA and IEEE 802.11 which is

the most significant coexistence issue in the unlicensed spectrum.

We define three coexistence scenarios as follows.

• LAA–WiFi: legacy LTE-LAA devices (that follow the current LTE-LAA standard) co-

exist with IEEE 802.11 devices.

• LAA+–WiFi: LTE-LAA devices controlled by RLA-CU coexist with IEEE 802.11 de-

vices.

• WiFi–WiFi: Only IEEE 802.11 devices exist in the network.

In the above, the LAA-WiFi scenario serves as a baseline to present how much the proposed

RLA-CU in the LAA+–WiFi scenario can enhance the performance of the LAA network against

the legacy LAA. In addition, comparison between LAA-WiFi and WiFi-WiFi can measure how

much the Wi-Fi operator is affected by the coexisting legacy LAA network.

Data Exchange Method

We assume that each of LAA and Wi-Fi operators monitors and controls its own devices, as

described in detail below.

Network Monitoring A Wi-Fi operator periodically monitors the achieved throughput

and the latency of each Wi-Fi STA associated with the operator’s APs. On the other hand,

an LAA operator collects not only the achieved throughput and the latency, but also average

Received Signal Strength Indicator (RSSI) and the channel occupancy values which are newly

presented in 3GPP Release 13 to support communications in the unlicensed spectrum band [91].

Average RSSI is used to estimate the overall channel load condition such as interference, and

channel occupancy is defined as the ratio of the channel’s busy duration to the measurement

duration, based on the measured RSSI. The measurement duration and the measurement period

are configured through RSSI measurement timing configuration (RMTC) [92]. For example, the

measurement duration can be set in the range of 1 to 5 milliseconds, while the measurement

period can be one of 40, 80, 160, 320 milliseconds.

Controlling an LTE-LAA Network Based on the collected information, an LAA oper-

ator changes LTE-LAA configurations, such as the energy detection threshold and the transmis-

sion power.According to [90], the maximum energy detection threshold Emax (in dBm) varies
28IEEE 802.11n is used for evaluating the coexistence performance of LTE-LAA [83], while IEEE 802.11ac is

adopted for evaluating the coexistence performance of NR-U [5].
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Figure 32: Variation of Emax with varying Pmax

with the maximum transmission power Pmax (in dBm) as follows:

Emax = max


− 72 + 10 · log10 (B/20)

min

TT + 13 + 10 · log10 (B/20)− Pmax


 (71)

where T = 10 · log10

(
3.16228 · 10−8 ·B

)
and B is the channel bandwidth in MHz, when the

transmission includes PDSCH. Fig. 32 shows the variation of Emax according to Pmax. Finally,

we assume that the transmission power Ptx is in the range of [Pmin, Pmax], and the energy

detection threshold Eth is in the range of [Emin, Emax].

4.4 Proposed Algorithm

In this section, we propose the Reinforcement Learning Algorithm for Coexistence in Unli-

censed spectrum bands (RLA-CU) that enhances the coexistence between LTE-LAA and Wi-Fi

by adjusting the control parameters of LTE-LAA through machine learning techniques. More

specifically, the proposed algorithm trains an agent that administers all the eNBs of the LAA

operator to improve the level of coexistence with a Wi-Fi operator, while maintaining the per-

formance of the LAA operator. To achieve this goal, we install an agent on the LAA operator’s

server and a discriminator network on the Wi-Fi operator’s server. An overview of the proposed

model is presented in Fig. 33.

Discriminator on the Wi-Fi Operator

The goal of the discriminator on the Wi-Fi operator is to measure the coexistence level based

on the performance of the Wi-Fi operator. The coexistence level is measured in the following

manner. First, all stations connected to the Wi-Fi operator report the achieved throughput

and latency to the operator’s server every dw seconds. The gathered information is defined as a
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Figure 33: Overview of RLA-CU

vector Ow = [ow;t
1 , . . . , ow;t

nsta , o
w;l
1 , . . . , ow;l

nsta ] where ow;t
n and ow;l

n are the throughput and latency

of station n normalized by mt and ml, respectively, and mt and ml are normalization values of

throughput and latency. The discriminator analyzes Ow to determine the level of coexistence

Rd. For example, the coexistence level is high when the distribution of Ow is similar to the

distribution measured in the WiFi-WiFi scenario. Otherwise, the level is judged as low.

Reinforcement Learning Agent on the LAA Operator

The goal of the agent on an LAA operator is to control eNBs according to the operator’s policy.

The agent works in the order of observation and execution. First, similar to a Wi-Fi operator,

all UEs connected to the LAA operator notify the measurements such as average RSSI, channel

occupancy, throughput and latency to the operator’s server every dl seconds. The agent uses the

information vector as a input to the reinforcement learning algorithm, where the information

vector is defined as Ol = [ol;r1 , . . . , ol;rnue , o
l;c
1 , . . . , o

l;c
nue , o

l;t
1 , . . . , o

l;t
nue , o

l;l
1 , . . . , o

l;l
nue ] where o

l;r
n is an

average RSSI normalized by mr, o
l;c
b is a channel occupancy ratio, and ol;tn and ol;ln are the

throughput and latency of UE n normalized by mt and ml, respectively. This information is

used to understand the wireless channel environment such as estimating the performance of a

coexisting Wi-Fi operator.

Based on this observation, the agent tasks an action Cl = [Ptx, Eth] that should satisfy

Eq. (71). In addition, an action is applied to all eNBs in an LAA operator. Finally, we define

the reward function as

R = Rd ×
(

1

nue

nue∑
n=1

ol;tn −
1

nue

nue∑
n=1

ol;ln

)
, (72)

which means that the reward is larger when the level of coexistence is high and an LAA operator

achieves high average throughput with low average latency.
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Figure 34: Simulator System for RLA-CU

4.5 Experiment

In this section, we first introduce the simulation system for evaluating the coexistence scenarios.

After that, we present the design of RLA-CU with evaluation results.

Simulation System Architecture

The simulation system consists of three layers, RLA-CU, OpenAI Gym Interfaces (NS-3 Gym

and Wrapper for RLA-CU) and NS-3 Simulation Environment as presented in Fig. 34. Each

layer is briefly described as follows.

NS-3 for LAA-WiFi Coexistence Simulation NS-3 [77] is a network simulator based on

discrete-time events. In this chapter, we adopt a modified version of NS-3 to simulate a situation

where LTE-LAA and Wi-Fi networks coexist.

OpenAI Gym OpenAI Gym [93] is the popular framework for reinforcement learning provid-

ing an interface between a reinforcement learning algorithm and a simulation environment. For

example, when a simulator generates an arbitrary environment, OpenAI Gym sends an action

to an agent in the environment and receives an information as a consequence of the action such

as a variation in the environment (called ‘observation’), an assessment of the variation (called

‘reward’), information on whether the simulator is terminated or not due to the action (called

‘done’), and extra information (called ‘info’). An example code is as follows,

Observation, Reward, Done, Info = env.step(Action)

where env.step() is the function with which the environment can take an action.

OpenAI Gym also provides a feature called Wrapper, which transforms an environment in a

modular way. For example, the Observation Wrapper reconstructs the structure of observation

and sends it to a reinforcement learning algorithm instead of keeping the original form received

from an environment. In our experiment, we use the Observation Wrapper as a buffer to obtain

the statistical information.

NS-3 Gym NS-3 Gym [94] helps us use the NS-3 simulator as an environment for OpenAI

Gym through the socket communication between NS-3 and OpenAI Gym. To use NS-3 Gym

in our experiment, we need to configure NS-3 regarding what kind of observation is transferred

and how to react when receiving an action.
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Table 10: Simulation Parameter

Simulation Parameter Value

nl, nw 3

nue, nsta 15

Pmin 13 dBm

Pmax 23 dBm

Emin -82 dBm

dw, dl 10 seconds

mt 150 Mbps

ml 300 ms

mr -101 dBm

Simulation Environment

We consider an indoor simulation environment based on [5, 83]. Although [83] describes the

indoor environment to evaluate the performance of LTE-LAA, it has some drawbacks such as

the distribution of links is not properly considered [5]. Therefore, we compose the simulation

environment based on [83] except for the layout of the indoor scenario and the path loss model,

which are adopted from [5]. Simulation parameters are summarized in Table 10.

In the following sections, we illustrate the discriminator network and the reinforcement

algorithm, along with the performance evaluation results.

Discriminator Network

For the discriminator network, we build a multilayer perceptron (MLP), where the input layer

takes 30 values and the output layer presents the classification result though the Sigmoid acti-

vation function. There also exist four hidden layers, each of which has 128 nodes with the ReLU

activation function. Finally, we apply a dropout rate of 0.3 and adopt the binary cross-entropy

loss function with Nadam optimizer.

To train the discriminator network, we build a dataset including the throughput and latency

data of the Wi-Fi operator for LAA-WiFi and WiFi-WiFi scenarios. For each scenario, we

consider 482 random topologies, for each of which we measure Ow for 31 times. As a result,

we collect 29,884 measurement data (14,942 for each case), and split them into two groups, one

group with 20,918 data for training and another group with 8,966 data for testing (at a ratio of

7:3).
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When we train the network with the batch size of 62 and 10 epochs, the proposed discrim-

inator achieves 96.152% accuracy for the training dataset, and 95.126% accuracy for the test

dataset, verifying that using throughput and latency the Wi-Fi operator can distinguish whether

the Wi-Fi operator’s service is affected similarly to coexisting with another Wi-Fi operator or

not.

Reinforcement Learning Agent

We have used the twin Delayed DDPG (TD3) [95] method to train an agent of an LAA operator.

Since TD3 can be used for the continuous action space, the agent can fine-tune the values of Ptx
and Eth. Note that we followed the architecture of [95].

We evaluate the RLA-CU on the seven random topologies and present the average results

as follows. Fig. 35 shows that LAA with RLA-CU achieves better performance in terms of

throughput and latency than the conventional LAA. Fig. 36 presents the performance variation

of a Wi-Fi operator under three scenarios. In the LAA+-WiFi scenario, the coexisting Wi-

Fi network achieves a similar performance of throughput and latency compared to the Wi-Fi

network of the LAA-WiFi scenario.

4.6 Conclusion

In this chapter, we proposed an algorithm that enhances the coexistence performance of LTE-

LAA and Wi-Fi networks using reinforcement learning with a discriminator neural network.

Through extensive simulations, we showed that the proposed discriminator network can dis-

tinguish the two coexistence scenarios, i.e., Wi-Fi with Wi-Fi vs. Wi-Fi with LAA, with high

probability. Based on the discriminator, the proposed algorithm enhances not only the perfor-

mance of an LAA network but also the performance of a coexisting Wi-Fi network.

In the future, we would like to extend our model to address more diverse situations, such

as varying the position of eNBs and APs with mobile UEs and Wi-Fi stations. In addition,

we would like to propose the coexistence mechanism for 5G NR operating in the unlicensed

spectrum.
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Figure 35: Performance variation of an LAA operator
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Figure 36: Performance variation of a Wi-Fi operator
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V Conclusion

The 5G achieves progress compared to its predecessor in terms of massive Machine Type Com-

munications (mMTC), enhanced Mobile Broadband (eMBB), and Ultra Reliable Low Latency

Communications (URLLC) by applying mobile edge cloud and unlicensed spectrum band op-

erations, but also it raises problems not considered before. This dissertation has addressed

algorithms to realize more efficient 5G networks in terms of eMBB and URLLC as follows.

Quality-of-Experience based computation offloading framework is proposed to make a strat-

egy to maximize user satisfaction. The proposed framework considers energy consumption,

latency, and monetary cost to measure user satisfaction. And then, based on the measured user

satisfaction, the optimal strategy is determined in two steps; selecting the computation resource

of the mobile edge cloud and scheduling for data transmission. Through extensive simulation, it

is proved that the proposed framework enhances user satisfaction under various environments.

The dynamic CCA threshold algorithm with the lightweight Wi-Fi frame detection is intro-

duced for enhancing the spatial efficiency of an LTE-LAA network. The proposed algorithm

first detects a Wi-Fi preamble without extra hardware, and then the different CCA threshold

is applied according to the detection result. When the proposed algorithm is implemented on

a USRP device, it successfully detects a Wi-Fi preamble with high probability. In addition,

through the NS-3 simulation, the proposed dynamic CCA threshold algorithm enhances the

performance of LTE-LAA and Wi-Fi devices in terms of throughput and latency.

The adaptive control algorithm for an LTE-LAA network is presented for adjusting the net-

work configuration based on the situation assessment. A discriminator neural network estimates

a coexistence situation between LTE-LAA and Wi-Fi networks. With this assessment, the re-

inforcement learning algorithm tries to improve the coexistence between LTE-LAA and Wi-Fi

networks. Through the NS-3 simulation, the proposed AI-based algorithm improves LTE-LAA

and Wi-Fi networks by continuously adjusting the configuration of the LTE-LAA network.
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