756 research outputs found

    Estimating Affective States in Virtual Reality Environments using the Electroencephalogram

    Get PDF
    Recent interest in high-performance virtual reality (VR) headsets has motivated research efforts to increase the user\u27s sense of immersion via feedback of physiological measures. This work presents the use of electroencephalographic (EEG) measurements during observation of immersive VR videos to estimate the user\u27s affective state. The EEG of 30 participants were recorded as each passively viewed a series of one minute immersive VR video clips and subjectively rated their level of valence, arousal, dominance, and liking. Correlates between EEG spectral bands and the subjective ratings were analyzed to identify statistically significant frequencies and electrode locations across participants. Model feasibility and performance was studied using stepwise regression and binary Support Vector Machine models. The model results indicate that scalp measurements of electrical activity can reliably estimate subjective scores of perceived affective states

    Adaptive signal processing algorithms for noncircular complex data

    No full text
    The complex domain provides a natural processing framework for a large class of signals encountered in communications, radar, biomedical engineering and renewable energy. Statistical signal processing in C has traditionally been viewed as a straightforward extension of the corresponding algorithms in the real domain R, however, recent developments in augmented complex statistics show that, in general, this leads to under-modelling. This direct treatment of complex-valued signals has led to advances in so called widely linear modelling and the introduction of a generalised framework for the differentiability of both analytic and non-analytic complex and quaternion functions. In this thesis, supervised and blind complex adaptive algorithms capable of processing the generality of complex and quaternion signals (both circular and noncircular) in both noise-free and noisy environments are developed; their usefulness in real-world applications is demonstrated through case studies. The focus of this thesis is on the use of augmented statistics and widely linear modelling. The standard complex least mean square (CLMS) algorithm is extended to perform optimally for the generality of complex-valued signals, and is shown to outperform the CLMS algorithm. Next, extraction of latent complex-valued signals from large mixtures is addressed. This is achieved by developing several classes of complex blind source extraction algorithms based on fundamental signal properties such as smoothness, predictability and degree of Gaussianity, with the analysis of the existence and uniqueness of the solutions also provided. These algorithms are shown to facilitate real-time applications, such as those in brain computer interfacing (BCI). Due to their modified cost functions and the widely linear mixing model, this class of algorithms perform well in both noise-free and noisy environments. Next, based on a widely linear quaternion model, the FastICA algorithm is extended to the quaternion domain to provide separation of the generality of quaternion signals. The enhanced performances of the widely linear algorithms are illustrated in renewable energy and biomedical applications, in particular, for the prediction of wind profiles and extraction of artifacts from EEG recordings

    ICA and Sparse ICA for Biomedical Signals

    Get PDF
    Biomedical signs or bio signals are a wide range of signals obtained from the human body that can be at the cell organ or sub-atomic level Electromyogram refers to electrical activity from muscle sound signals electroencephalogram refers to electrical activity from the encephalon electrocardiogram refers to electrical activity from the heart electroretinogram refers to electrical activity from the eye and so on Monitoring and observing changes in these signals assist physicians whose work is related to this branch of medicine in covering predicting and curing various diseases It can also assist physicians in examining prognosticating and curing numerous condition

    A systematic review on artifact removal and classification techniques for enhanced MEG-based BCI systems

    Get PDF
    Neurological disease victims may be completely paralyzed and unable to move, but they may still be able to think. Their brain activity is the only means by which they can interact with their environment. Brain-Computer Interface (BCI) research attempts to create tools that support subjects with disabilities. Furthermore, BCI research has expanded rapidly over the past few decades as a result of the interest in creating a new kind of human-to-machine communication. As magnetoencephalography (MEG) has superior spatial and temporal resolution than other approaches, it is being utilized to measure brain activity non-invasively. The recorded signal includes signals related to brain activity as well as noise and artifacts from numerous sources. MEG can have a low signal-to-noise ratio because the magnetic fields generated by cortical activity are small compared to other artifacts and noise. By using the right techniques for noise and artifact detection and removal, the signal-to-noise ratio can be increased. This article analyses various methods for removing artifacts as well as classification strategies. Additionally, this offers a study of the influence of Deep Learning models on the BCI system. Furthermore, the various challenges in collecting and analyzing MEG signals as well as possible study fields in MEG-based BCI are examined

    Hand (Motor) Movement Imagery Classification of EEG Using Takagi-Sugeno-Kang Fuzzy-Inference Neural Network

    Get PDF
    Approximately 20 million people in the United States suffer from irreversible nerve damage and would benefit from a neuroprosthetic device modulated by a Brain-Computer Interface (BCI). These devices restore independence by replacing peripheral nervous system functions such as peripheral control. Although there are currently devices under investigation, contemporary methods fail to offer adaptability and proper signal recognition for output devices. Human anatomical differences prevent the use of a fixed model system from providing consistent classification performance among various subjects. Furthermore, notoriously noisy signals such as Electroencephalography (EEG) require complex measures for signal detection. Therefore, there remains a tremendous need to explore and improve new algorithms. This report investigates a signal-processing model that is better suited for BCI applications because it incorporates machine learning and fuzzy logic. Whereas traditional machine learning techniques utilize precise functions to map the input into the feature space, fuzzy-neuro system apply imprecise membership functions to account for uncertainty and can be updated via supervised learning. Thus, this method is better equipped to tolerate uncertainty and improve performance over time. Moreover, a variation of this algorithm used in this study has a higher convergence speed. The proposed two-stage signal-processing model consists of feature extraction and feature translation, with an emphasis on the latter. The feature extraction phase includes Blind Source Separation (BSS) and the Discrete Wavelet Transform (DWT), and the feature translation stage includes the Takagi-Sugeno-Kang Fuzzy-Neural Network (TSKFNN). Performance of the proposed model corresponds to an average classification accuracy of 79.4 % for 40 subjects, which is higher than the standard literature values, 75%, making this a superior model
    • …
    corecore