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Abstract- Biomedical signs or bio signals are a wide range of signals obtained from the human body that 
can be at the cell, organ, or sub-atomic level. Electromyogram refers to electrical activity from muscle 
sound signals, electroencephalogram refers to electrical activity from the encephalon, electrocardiogram 
refers to electrical activity from the heart, electroretinogram refers to electrical activity from the eye, and so 
on. Monitoring and observing changes in these signals assist physicians whose work is related to this 
branch of medicine in covering, predicting, and curing various diseases. It can also assist physicians in 
examining, prognosticating, and curing numerous conditions.  

However, these signals are frequently affected by the accumulation of many different types of 
noise; it is critical to remove this noise from the signals in order to obtain useful information; the noise 
removal process is accomplished by proposing a new flexible score functions family for blind source 
separation, based on the exponentiated transmuted Weibull densities family.  
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Abstract- Biomedical signs or bio signals are a wide range of 
signals obtained from the human body that can be at the cell, 
organ, or sub-atomic level. Electromyogram refers to electrical 
activity from muscle sound signals, electroencephalogram 
refers to electrical activity from the encephalon, 
electrocardiogram refers to electrical activity from the heart, 
electroretinogram refers to electrical activity from the eye, and 
so on. Monitoring and observing changes in these signals 
assist physicians whose work is related to this branch of 
medicine in covering, predicting, and curing various diseases. 
It can also assist physicians in examining, prognosticating, 
and curing numerous conditions.  

However, these signals are frequently affected by the 
accumulation of many different types of noise; it is critical to 
remove this noise from the signals in order to obtain useful 
information; the noise removal process is accomplished by 
proposing a new flexible score functions family for blind 
source separation, based on the exponentiated transmuted 
Weibull densities family. To obtain the independent source 
signals blindly, we use the well-known Fast independent 
component analysis (Fast-ICA) algorithm and the statistically 
principled method known as Sparse Code Shrinkage, with the 
parameters of similar score functions estimated using an 
effective system based on maximum likelihood. The results 
obtained in our mechanism by using exponentiated 
transmuted Weibull densities outperform those obtained by 
other distribution functions. 
Keywords: biomedical signals denoise; fractional weibull 
distribution; source separation; maximum likelihood; fast 
independent component analysis; sparse independent 
component analysis; electroencephalogram, 
electrocardiogram. 

I. Introduction 

lind Source Separation (BSS) is a high-level 
image/sign processing mechanism with 
numerous applications including sound signals, 

communication, images, and biomedicine [1,2,3,4]. The 
goal of BSS is to recover the source (signals/images) 
from a noisy source with little known information. Non-
Gaussianity [5,6], mutual information minimization [7,8], 
maximum likelihood [9], and neural networks [10,11,12] 
are some of the BSS algorithms that have been debated 
from various perspectives.  Denoising  and  optimization  
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procedures are critical in BSS. The noise separation 
step determines the separability of the noise, and the 
optimization step determines the best solution for the 
objective function obtained from the denoising 
algorithm. Because of the variable features of 
generalized distributions, they generally produce good 
blind denoising results. 

In the Independent Component Analysis (ICA) 
framework, precisely estimating the statistical model of 
the sources remains an open and difficult problem [2]. 
Practical BSS procedures make use of difficult, 
complicated source distributions, as well as situations 
involving abundant sources with varying mixed 
probability density functions (pdf).  Numerous 
parametric density models have been made available in 
recent literature in this direction. Similar models include 
the generalized gamma density [13], the generalized 
Alfa-Beta distribution (AB- divergences) [14], and 
combinations and generalizations such as the super 
and generalized Gaussian admixture model [15], the 
generalized Gaussian density [16], the Pearson family of 
distributions [17], and the so-called extended 
generalized lambda distribution [18], which is an 
extended parameterization of the previously mentioned 
generalized lambda distribution and generalized beta 
distribution models [19]. 

We can find out how medical signals studies 
are very important and many researches are published 
continuously, for instants, Stationary wavelet transform 
based Electrocardiogram (ECG) signal denoising 
method [20], Electrocardiogram signal denoising [21], 
semi-supervised deep blind compressed sensing for 
analysis and reconstruction of biomedical signals from 
compressive measurements [22], biomedical signals 
reconstruction and zero-watermarking using separable 
fractional order Charlier–Krawtchouk transformation and 
sine cosine algorithm [23], research on AR-AKF model 
denoising of the Electromyography (EMG) signal [24], 
threshold parameters selection for empirical mode 
decomposition-based EMG signal denoising  ,[25]
Variational Mode Decomposition (VMD)-based 
denoising methods for surface electromyography 
signals [26], ECG signal denoising method using 
conditional generative adversarial net [27], motion 
artifacts suppression from Electromyogram (EEG) 
signals using an adaptive signal denoising method [28], 
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research on improved Flexible Analysis Wavelet 
Transform (FAWT) signal denoising method in 
evaluation of firefighter training efficacy based on sEMG 
[29], lung sound signal denoising using discrete wavelet 
transform and artificial neural network [30], deep 
learning-based framework For ECG signal denoising 
[31], denoising of ECG signals using weighted 
stationary wavelet total variation [32], denoising of 
medical images utilizing neural network [33], denoising 
of biomedical images using two-dimensional Fourier-
Bessel series [34]. 

Although Fast ICA has drawbacks, such as the 
difficulty of optimizing the log-likelihood function, which 
means the suitable source signals aren't insulated, and 
the order of the independent components (ICs) is 
difficult to determine, it is still one of the most robust 
methods and generally drives veritably good results.  

In addition, we present Sparse Code Shrinkage 
[35], a statistically principled method. which is very 
similar to independent component analysis. 

Still, studying medical signals has become 
extremely important and necessary; it is extremely 
difficult to extract useful information from these signals 
in the time domain simply by observing them. They are 
fundamentally non-linear and non-stationary. Biomedical 
signals are generally affected by various types of noise, 
which is considered a difficult and difficult problem. For 
example, one of the challenges of EEG technology is 
that the electrical activity generated by the brain is 
minute, on the order of a millionth of a volt. As a result, 
scalp recorded electrical pulses are a mixture of genuine 
brain signals mixed with a lot of noise-called artifact-
generated by other parts of the body, such as heart 
activity, eye movements and blinks, other facial muscle 
movements, and so on, which produce electrical signals 
100 times greater than those produced by the brain. 
Furthermore, the background noise is typically 
generated outside of the brain. 

As a result, in order to extract the important 
information from the signals, noise must be removed. 
Many different advanced signal processing mechanisms 
have been developed to accomplish this. The Fractional 
Weibull Distribution (FWD) with ICA is presented in this 
paper for noise removal from biomedical signals. The 
accuracy of the proposed algorithm is measured, and 
the numerical results show that the FWD consistently 
produces good results. The remainder of the paper is 
structured as follows: Section 2 introduces the BSS 
model. The FWD is discussed in Section 3. In Section 4, 
we estimate the parameters of FWD using maximum 
likelihood. Finally, we demonstrate the computational 
efficiency of our proposed mechanism. 

II. Blind Source Separation (BSS) Model 

LeS(t)  =  [s1(t), s2 (t), . . , sN(t)]T(t =  1, 2, . . ., l) 
denotes an independent source signal vector that 

comes from N  signal sources, then we can get the 
observed mixtures 
 X(t)  =  [x1(t), x2 (t), . . . , xK(t)]T(N =  K) under 
the circumstances of the instantaneous linear mixture. 
This leads us to the BSS model 

X(t) = AS(t),                               (1) 

where A is a N ×  N mixing matrix. The target of the BSS 
algorithm is to recover the sources from mixtures  
x(t) by using  

U(t) = WX(t).                                (2) 

where W is a N ×  N  separation matrix and 
U(t) =  [u1(t), u2 (t), . . . , uN (t)]T is the estimate of N 
sources. 

Generally, sources are assumed to be unit-
variance and zero-mean signals with at most one of 
Gaussian distribution. To solve the source estimation 
problem, the unmixing matrix W must be obtained. 
Generally, the maturity of BSS approaches performs 
ICA, by basically optimizing the negative log-likelihood 
(objective) function concerning the un-mixing matrix W 
such that: 

L(u, W) = �E[log pul (ul)] − log|det(W)|
N

l=1

,      (3) 

where E[. ]  represents the expectation operator an 
pu1(u1) is the model for the marginal pdf of ul , for all 
l = 1,2, … , N . In effect, when the distribution of the 
sources is correctly assumed, the maximum likelihood 
(ML) principle leads to estimating functions, which are 
the source score functions [15]  

φl(ul) = −
d

dul
log pul (ul).                    (4) 

In principle, the separation criterion can be 
optimized by any suitable ICA algorithm where contrasts 
are employed (see; e.g.,[2]). The FastICA [3], based on 

Wk+1 = Wk + D(E[φ(u)uT] − diag(E[φl(ul)ul]))Wk ,    (5) 

where, as defined in [4] 

D = diag�
1

E[φl(ul)ul] − E[φl
′(ul)]

� ,              (6) 

where φ(t) = [φ1(u1),φ2(u2), … ,φn(un)]T , valid for all 
l = 1, 2, … , n. 

The following section explains FWD for signal 
modelling. 

III. Independent Component Analysis 
(ICA) 

a) Definition of ICA 
"It's a technique for identifying underlying factors 

or components in multivariate (multi-dimensional) 
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statistical data." The ICA differs from other methods in 
that it seeks components that are both statistically 
independent and non-Gaussian.” [36] 

Now, assume that we observe 𝑛𝑛 linear mixtures 
𝑥𝑥1, . . . , 𝑥𝑥𝑛𝑛  of 𝑛𝑛 independent components [37]. 

𝑥𝑥𝑗𝑗  =  𝑎𝑎𝑗𝑗1𝑠𝑠1 + 𝑎𝑎𝑗𝑗2𝑠𝑠2+. . . +𝑎𝑎𝑗𝑗𝑛𝑛 𝑠𝑠𝑛𝑛 , 𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑗𝑗.           (7) 

The time indicator t has been removed; in the 
ICA model [36,37], it is assumed that each admixture 𝑥𝑥𝑖𝑖  
and independent element 𝑠𝑠𝑘𝑘  is an arbitrary variable 
rather than a suitable time signal. The observed 
values 𝑥𝑥𝑗𝑗 (𝑡𝑡) , for example, microphone signals, are a 
sample of this arbitrary variable. As a preliminary step, 
we can assume that both the admixture variables and 
the independent factors have zeromean. If not, the 
observed variables, 𝑥𝑥𝑖𝑖  can always be centered by 
reducing the sample mean, resulting in a zero-mean 
model. It would be possible to use a vector-matrix 
memo instead of totalities as in the previous equation. 
Let’s denote by 𝑥𝑥 the arbitrary vector whose rudiments 
are the fusions 𝑥𝑥1, . . . , 𝑥𝑥𝑛𝑛 , and by s the arbitrary vector 
with rudiments 𝑠𝑠1, . . . , 𝑠𝑠𝑛𝑛 , and by A the matrix with 
rudiments 𝑎𝑎𝑖𝑖𝑗𝑗  The mixing model is written as 

𝑥𝑥 =  𝐴𝐴𝑠𝑠.                                         (8) 

Also, can be written as 

𝑥𝑥 = �𝑎𝑎𝑖𝑖 𝑠𝑠𝑖𝑖
𝑛𝑛

𝑖𝑖=1

.                                (9) 

The statistical model in Eq. 6 is called the ICA model. 

It's a generative model that describes how the 
observed data are generated by a process of mixing the 
factors𝑠𝑠𝑖𝑖 

The main idea for ICA is veritably simple, 
assume that the components 𝑠𝑠𝑖𝑖  are statistically 
independent. also, they must have non-Gaussian 
distributions. 

b) The Fast ICA Algorithm 

We introduced various non-Gaussianity 
measures [36,37], i.e. objective functions for ICA 
estimation. In practice, we also require an algorithm for 
maximizing the cost function. The FastICA Algorithm is 
one of the most effective ICA algorithms, and it will be 
used in our new proposed system.  

c) Sparse Code Shrinkage 

Another example of using the ICA 
decomposition to find ICA filters for medical 
(images/signals), removing noise from images (signals) 
contaminated with Gaussian noise. A collection of 
medical images was used. As 𝑥𝑥, represent the vector of 
pixel grey levels of a window in an image. The elements 
of 𝑥𝑥 are indexed by their position in the image window or 
patch. The 2-D structure of the windows is irrelevant 
here: 

Row-by-row scanning was used to convert a 
square image window into a vector. 
Now, suppose the noisy image model: 

𝑧𝑧 =  𝑥𝑥 + 𝑛𝑛 ,                                     (10) 

where𝒏𝒏 is uncorrelated noise, with elements similarly 
indexed in the image window as 𝒙𝒙 , and 𝒛𝒛 is the 
measured image window contaminated with noise. 
Assuming that 𝒏𝒏is Gaussian and 𝒙𝒙is non-Gaussian. 

There are numerous methods for removing 
noise, including Discrete Fourier Transform (DFT) 
transformation to spatial frequency space, low-pass 
filtering, and return to image space via Inverse Discrete 
Fourier Transform (IDFT) [38]. However, this is 
inefficient. Better methods include the recently 
introduced Wavelet Shrinkage method [39], which 
employs a wavelet-based transform, or methods based 
on median filtering [38]. These methods, however, did 
not take advantage of image statistics.  

We present Sparse Code Shrinkage [35], 
another statistically principled method that is very similar 
to independent component analysis. Compactly, if we 
form the density of 𝒙𝒙by ICA, and suppose 𝒏𝒏Gaussian, 
the Maximum Likelihood (ML) solution for 𝒙𝒙given the 
measurement 𝒛𝒛can be developed in the signal model 
(10). 

The ML solution can be computed simply, albeit 
roughly, by using an orthogonalized version of ICA 
decomposition. The transform can then be given by  

𝑊𝑊𝑧𝑧 = 𝑊𝑊𝑥𝑥 + 𝑊𝑊𝑛𝑛 =  𝑠𝑠 + 𝑊𝑊𝑛𝑛,                 (11) 

where 𝑾𝑾 is an orthogonal matrix which is the best 
orthogonal approximation of the inverse of the ICA 
mixing matrix. The noise term 𝑾𝑾𝒏𝒏is still Gaussian and 
white. With a quietly suitable choice of orthogonal 
transform, however, the density of 𝑾𝑾𝒙𝒙 =  𝒔𝒔becomes 
largely non-Gaussian, e.g., super-Gaussian with a highly 
positive kurtosis. This relies obviously on the original x 
signals, as assuming, in fact, there exists a model 
𝒙𝒙 =  𝑾𝑾𝑇𝑇𝒔𝒔for the signal, where the “source signals” or 
elements of s have a positive kurtotic density, in such 
case the ICA transform gives highly super-Gaussian 
components. 

It was shown in [35]that, assuming a Laplacian 
density for 𝑠𝑠𝑖𝑖 , the ML solution for 𝑠𝑠𝑖𝑖 is given by a 
“shrinkage function” �̂�𝑠𝑖𝑖  =  𝑔𝑔([𝑾𝑾𝒛𝒛]𝑖𝑖), or in vector form, 
𝒔𝒔� =  𝑔𝑔(𝑾𝑾𝒛𝒛). Function g(.) has a characteristic shape: it 
is zero close to the origin and then linear after a cutting 
value depending on the parameters of the Laplacian 
density and the Gaussian noise density. Supposing 
other forms for the densities, other optimal shrinkage 
functions can be obtained [35]. 

The shrinkage process in the Sparse Code 
Shrinkage model is performed in the rotated space, and 
the signal estimation in the original space is obtained by 
rotating back: 

𝒙𝒙�  = 𝑾𝑾𝑻𝑻𝒔𝒔�  = 𝑾𝑾𝑻𝑻 𝒈𝒈(𝑾𝑾𝒛𝒛).                   (12) 
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Thus, we obtain the Maximum Likelihood 
estimation for the image window 𝒙𝒙in which most of the 
noise has been removed. The rotation operator 𝑾𝑾 is 
such that the sparsity of the components 𝒔𝒔 = 𝑾𝑾𝒙𝒙 is 
maximized. The operator can be learned with a 
modification of the FastICA algorithm; see [35] for 
details. The results of the Sparse Code Shrinkage 
method and classic wiener filtering are given, indicating 
that Sparse Code Shrinkage may be a promising 
approach. The noise is reduced without blurring edges 
or other sharp features as much as in wiener filtering. 
This is largely due to the strongly nonlinear nature of the 
shrinkage operator, which is optimally adapted to the 
inherent statistics of images. 

IV. Proposed Algorithm 

a) Fractional Weibull distribution 
Fractional Weibull Distribution (FWD) or the 

fractional Weibull probability density (FWPD). 

𝑓𝑓(𝑥𝑥, 𝜆𝜆, 𝑘𝑘) =
𝑘𝑘(1 − 𝛿𝛿)

𝜆𝜆
�
𝑥𝑥
𝜆𝜆
�
𝑘𝑘−1

𝑒𝑒−(𝑥𝑥 𝜆𝜆⁄ )𝑘𝑘  , 𝑥𝑥 ≥ 0       (13) 

where k>0 is the shape parameter and λ>0 is the scale 
parameter of the Weibull distribution. Compared to the 

standard Weibull distribution, equation (13) has a 
scaling factor (1- δ1) that is smaller than 1.0, which is 
the reason why equation (13) is called the fractional 
Weibull distribution, or the fractional Weibull probability 
density (FWPD). 

The corresponding cumulative distribution is 
given by: 

𝐹𝐹(𝑥𝑥, 𝜆𝜆, 𝑘𝑘) = (1 − 𝛿𝛿) �1 − 𝑒𝑒−(𝑥𝑥 𝜆𝜆⁄ )𝑘𝑘 �   , 𝑥𝑥 ≥ 0          (14) 

b) Maximum likelihood estimation method 
To demonstrate the method, the Maximum 

Likelihood Estimation (MLE) procedure is used to 
determine the values of the Weibull parameters, λ and k. 
to illustrate the method. For this purpose, the first-order 
optimality conditions below are used. 

c) Parameter stimation 
To estimate the parameters of FWD, the 

maximum likelihood is used. Let X1, X2 … , Xn  be a 
sample of size N from an FWD. Then the log-likelihood 
function (ℒ) is given by: 
 

ℓ = �𝑓𝑓𝑖𝑖(𝑥𝑥, 𝜆𝜆, 𝑘𝑘)
𝑛𝑛

𝑖𝑖=1

= ��
𝑘𝑘(1 − 𝛿𝛿)

𝜆𝜆
�
𝑥𝑥𝑖𝑖
𝜆𝜆
�
𝑘𝑘−1

𝑒𝑒−(𝑥𝑥𝑖𝑖 𝜆𝜆⁄ )𝑘𝑘 �
𝑛𝑛

𝑖𝑖=1

.                                                      (15) 

Hence, the log-likelihood function ℒ = log ℓ becomes  

ℒ = log ℓ = log���
𝑘𝑘(1 − 𝛿𝛿)

𝜆𝜆
�
𝑥𝑥𝑖𝑖
𝜆𝜆
�
𝑘𝑘−1

𝑒𝑒−(𝑥𝑥𝑖𝑖 𝜆𝜆⁄ )𝑘𝑘 �
𝑛𝑛

𝑖𝑖=1

� .                                                      (16)  

ℒ = log ℓ = log�(1 − δ)𝑛𝑛(
𝑘𝑘
𝜆𝜆

)𝑛𝑛 ��
𝑥𝑥𝑖𝑖
𝜆𝜆
�
𝑘𝑘−1

𝑛𝑛

𝑖𝑖=1

�𝑒𝑒−(x 𝜆𝜆⁄ )𝑘𝑘
𝑛𝑛

𝑖𝑖=1

�                                                    (17) 

ℒ = log ℓ = nlog(1 − δ) + 𝑛𝑛𝑓𝑓𝑓𝑓𝑔𝑔 �
𝑘𝑘
𝜆𝜆
� + (𝑘𝑘 − 1)� log(

𝑛𝑛

𝑖𝑖=1

𝑥𝑥𝑖𝑖
𝜆𝜆

) −��
𝑥𝑥𝑖𝑖
𝜆𝜆
�
𝑘𝑘

𝑛𝑛

𝑖𝑖=1

.                                    (18) 

Therefore, the maximum likelihood estimation of λ and k is derived from the derivatives of ℒ. They should satisfy the 
following equations:        

𝜕𝜕ℒ
𝜕𝜕𝜆𝜆

= 0,
∂ℒ
∂k

= 0 .                                                                                      (19) 

𝜕𝜕ℒ
𝜕𝜕𝜆𝜆

 =
𝑛𝑛𝜆𝜆
𝑘𝑘
�
−𝑘𝑘
𝜆𝜆2 � + (𝑘𝑘 − 1)�

𝜆𝜆
𝑥𝑥𝑖𝑖
�
−𝑥𝑥𝑖𝑖
𝜆𝜆2 �

𝑛𝑛

𝑖𝑖=1

+ 𝑘𝑘��
𝑥𝑥𝑖𝑖
𝜆𝜆
�
𝑘𝑘−1 𝑥𝑥𝑖𝑖

𝜆𝜆2

𝑛𝑛

𝑖𝑖=1

 .                                                      (20) 

∂ℒ
∂k

=
𝑛𝑛
𝑘𝑘

+ � log(
𝑛𝑛

𝑖𝑖=1

𝑥𝑥𝑖𝑖
𝜆𝜆

) −��
𝑥𝑥𝑖𝑖
𝜆𝜆
�
𝑘𝑘

𝑛𝑛

𝑖𝑖=1

log �
𝑥𝑥𝑖𝑖
𝜆𝜆
� .                                                                  (21) 

The system of equations (20, 21) must be 
solved in order to estimate the value of parameters. 
However, it can be solved using MATLAB or using the 
Newton-Raphson method as in [19,37]. also, the genetic 
algorithm (GA) [40,41] can be used as an alternative 
numerical method to estimate the parameters the GA 

optimization technique is distinguished by its ability to 
minimize the negative of the log-likelihood objective 
function in (3) without relying on any derivative 
information. , the best estimation found at λ� =
13.55195, and k� = 2.2376. 
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V. Numerical Results 

Numerical experiments show that the estimated 
parameters provide an acceptable solution with 
significantly fewer function evaluations; we generate 
random samples from the fractional Weibull distribution 
along with various parameter combinations, and then 
the ML estimates are obtained.  

A procedure called (ga) in MATLAB can be 
used to obtain the ML estimate, and a similar procedure 
is extremely fast and accurate. The proposed 
mechanism produces outstanding results for both EEG 
and electrocardiogram (ECG) signals. 

VI. Experimental Results 

Resolve FastICA algorithm for (BSS). It is based 
on the estimated values of the parameters and an un-
mixing matrix W estimated by the Fast ICA algorithm, 
and we used a data sample of size 10 from a real data 
set (1000). By substituting (7) into (4) for the source 
estimates  ul , l =  1, 2, . . . , n , it snappily becomes 
obvious, that the proposed score function inherits a 
generalized parametric structure, that can be attributed 
to the flexible FWD parent model. So, a simple calculus 
yields the flexible BSS score function 

𝜑𝜑𝑓𝑓(𝑢𝑢𝑓𝑓) = −
𝑑𝑑
𝑑𝑑𝑢𝑢𝑓𝑓

log
𝑘𝑘(1 − 𝛿𝛿)

𝜆𝜆
�
𝑥𝑥
𝜆𝜆
�
𝑘𝑘−1

𝑒𝑒−(𝑥𝑥 𝜆𝜆⁄ )𝑘𝑘 .      (22) 

In principle φl(ul|θ) is able to model a large 
number of signals as well as various other types of 
heavy- and light-tailed distributions. Experiment trials 
were done to measure the performance of the used 
method through three applications [one in EEG signal 

denoising (using two different EEG signals) and one in 
electrocardiogram (ECG) signal denoising (using two 
different ECG signals) and the last one on medical 
images (using two different medical images)] when 
Gaussian noise is presented. 

In all trials, the performance of the method is 
compared with tanh, skew, pow3 [36], and Gauss [15], 
we measured performance by Cross-Correlation (CC), 
the Mean Squared Error (MSE), Signal to Noise Ratio 
(SNR), Mean Absolute Error (MAE), and Peak Signal to 
Noise Ratio (PSNR). 

Example 1 
Electroencephalogram (EEG) [42], electrical 

action from the brain, one of the most vital signals from 
the human body, studying and improving this field of 
research is very important to physicians whose work is 
related to this branch of medicine, monitoring and 
observing changes in these signals help them to cover, 
predict, and cure brain diseases. In this example we 
applied the proposed mechanisms for denoising two 
different EEG signals, the results are shown in figure.1 
for EEG signal 1, and figure.3 for EEG signal 2. The 
results for EEG signal 1 for the Gauss filter, Pow3 filter, 
Skew filter, and Tanh filter for EEG signal 1 are shown in 
figure.2, and in figure.4 for EEG signal 2, The 
performance is evaluated for all denoising algorithms 
using: Cross-Correlation (CC), the Mean Squared Error 
(MSE), Signal to Noise Ratio (SNR), Mean Absolute 
Error (MAE), and Peak Signal to Noise Ratio (PSNR), 
shown in table 1. The FWD and Sparse FWDhave higher 
performance compared to other algorithms, while 
Sparse FWD is even better. 

Table 1: The Performance of the Proposed Denoising Algorithm for EEG Signals 

Dist. Signal (MSE) (MAE) (SNR) (PSNR) (CC) 

Gauss 
EEG1 0.1777 0.4141 7.5456 19.1214 0.9965 

EEG2 0.1769 0.4135 7.5440 16.2369 0.9966 

Pow3 
EEG1 0.1778 0.4140 7.5429 19.1187 0.9966 

EEG2 0.1758 0.4123 7.5695 16.2624 0.9968 

Skew 
EEG1 0.1753 0.4109 7.6033 19.1791 0.9962 

EEG2 0.1731 0.4066 7.6671 18.1044 0.9961 

Tanh 
EEG1 0.1757 0.4108 7.5946 19.1704 0.9963 

EEG2 0.1725 0.4072 7.5684 16.2613 0.9970 

FWD 
EEG1 0.1683 0.4017 7.7805 19.3563 0.9965 

EEG2 0.1695 0.4025 7.7631 19.1116 0.9968 

Sparse FWD 
EEG1 0.1673 0.3987 7.8071 19.3828 0.9967 

EEG2 0.1703 0.4050 7.7421 19.0906 0.9968 

Example 2 

Electroencephalogram (ECG) [43], is an 
electrical activity from the heart that, like other types of 
biomedical signals, is frequently contaminated with 

various types of noise. In this example we used two 
mechanisms for denoising two different ECG signals, 
the FWD and the sparse FWD, the results are shown in 
figure.5 for ECG signal 1, and figure.7 for ECG signal 2, 
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The results for ECG signal 1 for the Gauss filter, Pow3 
filter, Skew filter, and Tanh filter for EEG signal 1 are 
shown in figure.6, and in figure.8 for EEG signal 2, 
Cross-Correlation (CC), Mean Squared Error (MSE), 
Signal to Noise Ratio (SNR), Mean Absolute Error 

(MAE), and Peak Signal to Noise Ratio (PSNR) are used 
to evaluate the performance of all denoising algorithms, 
as shown in Table 2. When compared to other 
algorithms, FWD and Sparse FWD perform better, with 
Sparse FWD performing even better. 

Table 2: The Performance of the Proposed Denoising Algorithm for ECG Signals 

Dist. Signal (MSE) (MAE) (SNR) (PSNR) (CC) 

Gauss 
ECG1 0.1936 0.4326 20.1974 20.7429 0.9962 

ECG2 0.1745 0.4103 19.8627 21.7396 0.9965 

Pow3 
ECG1 0.1653 0.3976 20.8868 21.4323 0.9963 

ECG2 0.1668 0.3988 20.0631 21.9399 0.9961 

Skew 
ECG1 88.1655 9.1746 -6.3845 -5.8390 0.9969 

ECG2 74.1626 8.3769 -6.4173 -4.5405 0.9965 

Tanh 
ECG1 0.1707 0.4055 20.7445 21.2900 0.9965 

ECG2 0.1790 0.4163 19.7546 21.6315 0.9965 

FWD 
ECG1 0.1442 0.3712 21.4790 22.0245 0.9966 

ECG2 0.1424 0.3693 20.7510 22.6278 0.9967 

Sparse FWD 
ECG1 0.1468 0.3738 21.4014 21.9469 0.9971 

ECG2 0.1570 0.3873 20.3260 22.2029 0.9964 

Example 3 

In this example, we show how our algorithm 
performed for both ICA and Sparse ICA techniques to 
denoise two medical images from [44]. Where Figures 
(9,10,11, and 12) show the original images, noised 
images, and denoised images after applying algorithms 
of   Gauss, pow3, skew, and tanh. However, Figure 17 

shows the denoising results for the FWD algorithm, and 
Figure 18 shows the denoising results for Sparse FWD; 
the results are illustrated in the Figures, and Table 3 
shows the performance of these algorithms.

 
FWD and 

Sparse FWD outperform other algorithms, with Sparse 
FWD outperforming them all.

 

Table 3: The Performance of the Proposed Denoising Algorithms for Medical Images 

A 

 

B 

 

Distribution / 
PSNR 

First Image (Medical) Second Image (Medical) Elapsed time 

(in seconds) MSE RMSE PSNR MSE RMSE PSNR 

Gauss 0.0065 0.0079 85.0652 0.016 0.0128 80.9828 2.416944 

Pow3 0.0083 0.0357 77.0871 0.091 0.0302 78.5261 4.316100 

Skew 0.0072 0.0374 76.6692 0.051 0.0124 79.2583 2.340723 

Tanh 0.0360 0.0188 82.6281 0.033 0.0180 83.0044 2.314567 

FWD 0.0053 0.0073 90.8593 0.013 0.0117 86.7631 1.555153 

Sparse FWD 0.0058 0.0076 90.4310 0.014 0.0122 86.3910 1. 535551 
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Fig. 2: (EEG signal 1): A original signal, B noised signal, C noised signal (original signal in blue and noise in red), D 
denoised signal (Gauss filter), E denoised signal (Pow3 filter), F denoised signal (skew filter), G denoised signal 
(Tanh filter). 
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Fig. 1: FWD & Sparse FWD Filters (EEG signal 1): A original signal, B noised signal, C noised signal (original signal 
in blue and noise in red), D denoised signal (FWD), E denoised signal (Sparse FWD)
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Fig. 4: (EEG signal 2): A original signal, B noised signal, C noised signal (original signal in blue and noise in red), D 
denoised signal (Gauss filter), E denoised signal (Pow3 filter), F denoised signal (skew filter), G denoised signal 
(Tanh filter) 
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Fig. 3: FWD & Sparse FWD Filters (EEG signal 1): A original signal, B noised signal,C noised signal (original signal in 
blue and noise in red), D denoised signal (FWD), E denoised signal (Sparse FWD)
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Fig. 6: (ECG signal 1): A original signal,B noised signal, C noised signal (original signal in blue and noise in red), D 
denoised signal (Gauss filter), E denoised signal (Pow3 filter), F denoised signal (skew filter), G denoised signal 
(Tanh filter) 
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Fig. 5: FWD & Sparse FWD Filters (ECG signal 1): A original signal, B noised signal,C noised signal (original signal in 
blue and noise in red), D denoised signal (FWD), E denoised signal (Sparse FWD)
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Fig. 8: (ECG signal 1): A original signal,B noised signal, C noised signal (original signal in blue and noise in red), D 
denoised signal (Gauss filter), E denoised signal (Pow3 filter), F denoised signal (skew filter), G denoised signal 
(Tanh filter) 
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Fig. 7: FWD & Sparse FWD Filters (ECG signal 2): A original signal, B noised signal, C noised signal (original signal 
in blue and noise in red), D denoised signal (FWD), E denoised signal (Sparse FWD)



 

Fig. 9: ICA Gauss filter: The original Pics to the left, the noised pics in the middle, and the denoised pics to the right 

 

Fig. 10: ICA Pow3 filter: The original Pics to the left, the noised pics in the middle, and the denoised pics to the right 

 

Fig. 11: ICA Skew filter: The original Pics to the left, the noised pics in the middle, and the denoised pics to the right 
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Fig. 13: ICA FWD filter: The original Pics to the left, the noised pics in the middle, and the denoised pics to the right 

 

Fig. 14: Sparse ICA FWD filter: The original Pics to the left, the noised pics in the middle, and the denoised pics to 
the right 
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Fig. 12: ICA Tanh filter: The original Pics to the left, the noised pics in the middle, and the denoised pics to the right



VII. Conclusion 

The fractional Weibull distribution and the 
sparse fractional Weibull distribution were used in this 
paper to introduce two mechanisms for medical signal 
denoising and blind source separation. In terms of 
denoising quality and computational cost, the 
mechanisms outperform existing solutions. We tested 
the mechanisms on two different types of biosignals 
(EEG signals and ECG signals) and two different types 
of medical images; the results were very good, and the 
mechanisms could be extended to work on other types 
of biosignals and medical images. 

In future work, we aim to apply the algorithms to 
natural image denoising and mixed image separation. 
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